
PHYSICAL REVIEW A 104, 033521 (2021)

Precision limit for simultaneous phase and transmittance estimation with
phase-shifting interferometry

Ryo Okamoto 1,2,* and Tatsuki Tahara 3,2

1Department of Electronic Science and Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
2PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

3Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology
(NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795, Japan

(Received 6 April 2021; accepted 7 September 2021; published 22 September 2021)

The use of phase-shifting interferometry (PSI) in the ultra-low-light region would open the way for important
applications, such as imaging of phototoxic substances and sensing of ultrafast phenomena. In the ultra-low-light
region, the statistical nature of photons can be a dominant source of noise compared with other noise caused by
experimental instruments. Here we theoretically derive the precision limit determined by the statistical nature
of photons for simultaneously measuring the transmittance and phase of a sample with PSI. We show that the
precision of PSI depends on the phase and transmittance themselves. We also show a trade-off relation between
transmittance and phase. Then we compare PSI with sequential optimal measurements in which the transmittance
and phase of a sample are separately measured for each corresponding optimal measurement. We also discuss
the case where the input number of photons fluctuates with a Poisson distribution and show that the fluctuation
affects both the transmittance and phase precision for PSI.
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I. INTRODUCTION

Phase-shifting interferometry (PSI) is a powerful and well-
established technique to measure the phase and transmittance
of a sample [1], widely used for various applications, such as
optical surface quality measurements [1,2], quantitative phase
microscopy [3–7], and digital holography [8–14]. In PSI, a
phase shifter is placed on one arm of an interferometer and
a sample is placed on the other arm, and the output light
intensities of the interferometer are measured for several ref-
erence phases added by the phase shifter. The transmittance
and phase of the target are estimated from these measured
intensities.

Recently, PSI has been applied to measurements at the
photon-counting level [15,16]. The use of PSI in the ultra-low-
light region would open the way for important applications,
such as the imaging of cells containing phototoxic molecules
and the measurement of ultrafast phenomena. In the ultra-low-
light region, the statistical nature of photons can be a dominant
source of noise compared with noise caused by experimental
instruments. Consequently, it is important to understand the
effect of noise caused by the statistical nature of photons in
PSI.

In a pioneering study, Yamamoto et al. experimentally
observed how the measurement precision in digital hologra-
phy using PSI is affected by the statistical nature of photons
[15]. The experiment was performed at the photon-counting
level using a weak coherent light and a photon detector. PSI
was used to estimate the phase shift caused by a sample and
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the precision of the estimated phase was evaluated from the
experimental data. In another study, a numerical simulation
of digital holography taking into account the Poisson fluctu-
ation of input photon number was conducted to evaluate the
precision of transmittance estimates using PSI [17]. Recently,
the precision of phase measurement for PSI has been theoreti-
cally derived by considering the fluctuation of photogenerated
electrons in a photodetector, but the input light was assumed
to have no statistical nature [18]. Thus, the fundamental pre-
cision limit determined by the statistical nature of photons for
PSI has not yet been theoretically derived.

In this paper, we theoretically derive the precision limit
when estimating the transmittance and phase for a sample with
PSI. We find that the measurement precision for transmittance
and phase depends on the unknown transmittance and phase
themselves. A trade-off relation between transmittance and
phase is also observed. Then we compare PSI with sequen-
tial optimal measurements (SOM) in which the transmittance
and phase of a sample are separately measured for each
corresponding optimal measurement for single-photon inputs.
While the transmittance estimation used in standard PSI gives
a slightly worse precision than that for SOM, an alternative
approach, which is not commonly used in PSI, almost reaches
the precision for SOM. Regarding the phase estimation, we
show that PSI can achieve a better precision than SOM. We
also discuss the case where the input number of photons
fluctuates with a Poisson distribution. We show that the input
photon number fluctuation affects both the transmittance and
phase precision for PSI and the dependence on the phase
disappears.

This paper is organized as follows. In Sec. II we define
the precision for SOM. In Sec. III we theoretically derive the
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FIG. 1. Schematic of PSI. Photons are input into the interfer-
ometer. The phase (φm) and transmittance (T ) for the sample are
measured through the detection of the photons with single-photon
detectors (SPD1 and SPD2) at the output. The phase shifter (PS) is
used to control the phase of the interferometer. BS: beam splitter. θoff :
offset phase of PS. θ : phase shift given by PS.

precision for PSI and then numerically analyze and compare
the performance. Section IV concludes the paper.

II. PRECISION FOR SEQUENTIAL OPTIMAL
MEASUREMENTS OF TRANSMITTANCE AND PHASE

In this section, we define the measurement precision for
SOM. In the following sections, we compare the precision
for SOM with that for PSI. If one is interested in only the
transmittance of a sample, combining a single-photon state as
an input with photon-counting detection just after the sam-
ple gives the optimal precision at the ultimate quantum limit
beyond the classical limit (shot-noise limit) [19,20], although
it is completely insensitive to the phase of the sample. On the
other hand, if one is interested in only the phase of the sample,
the standard interferometric limit gives the best precision for
phase measurement with single-photon inputs [21]. For sim-
plicity, we assume N input photons divided into N/2 photons
for each measurement. Thus, when we sequentially estimate
the transmittance T and phase φ for a sample with each
optimal measurement, the uncertainties of the transmittance
�TS and phase �φS for SOM are given as follows [19–21]:

�TS = 1√
N

√
2T (1 − T ), (1)

�φS = 1√
N

1 + √
T√

2T
. (2)

III. PRECISION FOR SIMULTANEOUS MEASUREMENT
OF TRANSMITTANCE AND PHASE WITH PSI

In this section, we theoretically derive the precision for
PSI. Figure 1 shows a schematic of PSI. First, photons are
input into a beam splitter (BS1) and are divided into two
paths. Then, the photons pass through the phase shifter (PS) in
one of the paths and through the sample having transmittance
T and phase φm in the other path. After being recombined
at a second beam splitter (BS2), the photons are detected at
the output by two single-photon detectors (SPD1 and SPD2).

Note that we assume that the single-photon detectors have
a perfect detection efficiency and no dark count in order to
focus on the precision limit given by the statistical nature of
the photons.

For a reflectivity of the first beam splitter (BS1) of r and
that of the second (BS2) of 50%, the probability that a photon
is detected by SPD1 can be written as follows:

p(θ ) = 1
2 {1 − r(1 − T ) + 2

√
Tr(1 − r) cos[φm − (θoff + θ )]},

(3)

where θoff and θ are the offset phase of PS and the phase shift
given by PS, respectively. The probability that a photon is
detected by SPD2 is p(θ + π ). Therefore, when N photons are
input into the setup, the photon counts detected by SPD1 and
SPD2 are given by N × p(θ ) and N × p(θ + π ), respectively.

Different versions of PSI use different numbers of steps
for the phase shift. In this paper, we focus on four-step PSI,
which is most widely used. When photons are detected at both
outputs, we can obtain four kinds of counts corresponding to
the required four phases from just two phases (0 and π/2) of
the PS. We assume that the total input photon number N is
distributed equally over the two phase shifts. Thus, the four
kinds of photon counts are written as Ni ≡ N/2 × pi, where
pi ≡ p((i − 1)π/2) and i = 1, 2, 3, 4. The transmittance and
phase can be extracted as follows:

T = 1

N2r(1 − r)

(
N2

24 + N2
13

)
, (4)

φ = arctan
N24

N13
, (5)

where φ ≡ φm − θoff , N13 ≡ N1 − N3 and N24 ≡ N2 − N4.
Since θoff can be determined by an independent measurement,
we can obtain the phase for the sample φm. We also consider
another approach to estimate T from the photon counts as
follows:

T =
√

4

r2N2

(
N2

1 + N2
2 + N2

3 + N2
4

) + 3

(
1 − r

r

)2

− 2
1 − r

r
.

(6)

Although this is not commonly used in PSI, the precision for
the transmittance estimated from Eq. (6) can be higher than
that estimated from Eq. (4), as we will show in the following
analysis.

First, we consider the case where the number of photons
used is constant for each measurement. This corresponds to
the situation in which N photons from a single photon source
are used for each measurement. In this case, the variance of
the detected photon count is given by �N2

i = N
2 pi(1 − pi ).

We also took into account the covariance between N1 and N3

and between N2 and N4, which are given by Cov(Ni, Nj ) =
−N

2 pi p j ({i, j} = {1, 3} or {2, 4}). The uncertainties of the
estimated transmittance, �TPS and �TPS′ , and phase �φPS are
obtained using Eqs. (4), (6), and (5), respectively, through an
error propagation analysis as follows:

�TPS = 1√
N

√
2T [1 − r − (2 − 3r)rT − r(1 − r)T cos(4φ)]

r(1 − r)
, (7)
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�TPS′ = 1√
N

√
(1 − r)3 + (1 − r)2(1 + 8r)T − r(1 − r)(11 − 20r)T 2 − r2(7 − 8r)T 3 − r3T 4 − 2r(1 − r)2T 2 cos(4φ)

r[2 + r(T − 2)]2
, (8)

�φPS = 1√
N

√
1 − r + r2T + r(1 − r)T cos(4φ)

2r(1 − r)T
. (9)

These equations show that all uncertainties depend on T and φ in a nontrivial manner. Equation (8) indicates that �TPS′ is
minimized when r = 1 and reaches the quantum limit for an N photon input: �TPS′ = 1√

N

√
T (1 − T ) = �TS/

√
2. However, in

this case, �TPS and �φPS diverge to infinity.
We find that both �TPS and �φPS will be minimized when r satisfies the relation r = 1

1+√
T

. Note that this relation is also
required to achieve the standard interferometric limit [21]. After substituting this relation into Eqs. (7), (8), and (9), we obtain
the following equations:

�TPS = 1√
N

√
2T [1 + 2(

√
T − T ) − T cos(4φ)], (10)

�TPS′ = 1√
N

√√
T + 9T + 10

√
T T − 10T 2 − 7

√
T T 2 − T 3 − 2T 2 cos(4φ)

2 + √
T

, (11)

�φPS = 1√
N

√
1 + 2

√
T + T cos(4φ)

2T
. (12)

Equations (10) and (11) show that �TPS and �TPS′ are mini-
mized for a given T when the phase φ satisfies cos(4φ) = 1.
In this case, �TPS = �TPS′ = �TS = 0 at T = 1. At T = 0,
�TPS = �TPS′ = �TS = 0 with arbitrary φ. Equation (12)
shows that �φPS is equal to or smaller than �φS. �φPS

is minimized for a given T when the phase φ satisfies
cos(4φ) = −1. In this case, when T = 1, �φPS reaches the
standard quantum limit 1/

√
N for an N photon input. �φPS

is maximized and is equal to �φS when the phase φ satisfies
cos(4φ) = 1.

Figures 2(a) and 2(c) illustrate �TPS and �TPS′ for N =
100, respectively. In Figs. 2(b) and 2(d), we compare �TPS

and �TPS′ with �TS for φ satisfying cos(4φ) = 1 (orange
dashed curve) and cos(4φ) = −1 (red dot-dashed curve). The
blue solid curves in Figs. 2(b) and 2(d) correspond to �TS.
�TPS and �TPS′ depend on φ except for at T = 0. For φ

satisfying cos(4φ) = 1, both �TPS and �TPS′ are 0 at T = 0
and 1. �TPS and �TPS′ have different maximum values of
0.096 at T = 0.53 and 0.077 at T = 0.47, respectively. �TPS′

almost reaches �TS while �TPS is maximally 37% larger than
�TS. When φ satisfies cos(4φ) = −1, �TPS monotonically
increases with T , reaching a maximum value of 0.2 at T = 1,
while �TPS′ has a maximum value of 0.087 at T = 0.59
and has a slightly smaller value of 0.067 at T = 1. The
comparison between �TPS [Fig. 2(b)] and �TPS′ [Fig. 2(d)]
reveals that the T estimation with Eq. (6) allows a higher
precision than that with Eq. (4) except for the region around
0 < T < 0.1.

Figure 2(e) illustrates �φPS for N = 100. In contrast to
�TPS, �φPS diverges to infinity at T = 0. As T increases,
�φPS decreases and an oscillation with φ appears. Figure 2(f)
shows �φPS when φ satisfies cos(4φ) = 1 (orange dashed
curve) and cos(4φ) = −1 (red dot-dashed curve). The blue
solid curve in Fig. 2(f) corresponds to �φS. As discussed
above, �φS is equal to �φPS for φ satisfying cos(4φ) = 1.
When φ satisfies cos(4φ) = −1, �φPS reaches the standard
quantum limit of 1/

√
N = 0.1 at T = 1.0.

Comparing Figs. 2(a) and 2(c) with Fig. 2(e), we see that
the values of φ minimizing �φPS maximize �TPS and �TPS′ ,
and vice versa. Also, for the T dependence, �φPS diverges
to infinity at T = 0 while �TPS and �TPS′ take a minimum
value of 0 at T = 0. This suggests a trade-off between the
uncertainties in the estimation of T and φ. Note that we
can control θoff of PS to satisfy a desired condition [such as
cos(4φ) = 1] through the relation φ = φm − θoff . An adaptive
strategy is available for this purpose even if we have no infor-
mation about the target phase φm [22–26]. Similarly, we can
adaptively tune the reflectance of BS1 to be r = 1

1+√
T

using a
tunable BS.

Next, we consider the case where the input photons have
a Poisson distribution in photon number per unit time, and
it affects the statistics of the output photons. This situation
can occur in many conventional systems where a coherent
light is used for the input and the photon number or power
at the output is measured during an accumulation time. In
this case, the Poisson fluctuation affects the variance of the
detected photon count and changes it to �N2

i = Ni pi from
�N2

i = Ni pi(1 − pi ). The uncertainties of the estimated trans-
mittance, �TPSP and �TPSP′ , and phase �φPSP are obtained
using Eqs. (4), (6), and (5), respectively, through an error
propagation analysis as follows:

�TPSP = 1√
N

√
2T (rT + 1 − r)

(1 − r)r
, (13)

�TPSP′

= 1√
N

√
(1 − r)3 + 9r(1 − r)2T + 9r2(1 − r)T 2 + r3T 3

r[2 + r(T − 2)]
,

(14)

�φPSP = 1√
N

√
rT + 1 − r

2rT (1 − r)
. (15)
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FIG. 2. Measurement uncertainties in the estimation using PSI for N = 100 input photons. [(a)–(d)] Uncertainties in T . Panels (a) and
(c) illustrate �TPS and �TPS′ , respectively. In (b) the orange dashed and red dot-dashed curves indicate �TPS with cos(4φ) = 1 and cos(4φ) =
−1, respectively. In (d) the orange dashed and red dot-dashed curves indicate �TPS′ with cos(4φ) = 1 and cos(4φ) = −1, respectively. The
blue solid curves in (b) and (d) indicate �TS. [(e), (f)] Uncertainties in φ. Panel (e) illustrates �φPS. In (f) the orange dashed and red dot-dashed
curves indicate �φPS with cos(4φ) = 1 and cos(4φ) = −1, respectively. The blue solid curve indicates �φS.

Because the φ-dependent terms cancel each other in the
derivation process, these uncertainties do not depend on φ

but only on T , unlike �TPS, �TPS′ , and �φPS. Note that
the cancellation of the φ-dependent terms is a feature that
occurs specifically in four-step PSI. It does not occur, for
instance, in three-step PSI. Equation (14) is minimized to be
�TPSP′ = √

T/N when r = 1. However, in this case, �TPSP

and �φPSP diverge to infinity. Equations (13) and (15) are
minimized when r satisfies the relation r = 1

1+√
T

, which was
also used to optimize Eqs. (7) and (9). After substituting this
relation into Eqs. (13), (14), and (15), we obtain the following
equations:

�TPSP = 1√
N

√
2T (1 +

√
T ), (16)

�TPSP′ = 1√
N

1 + √
T

2 + √
T

√
(1 + T + 8

√
T )

√
T , (17)

�φPSP = 1√
N

1 + √
T√

2T
. (18)

We can see that �φPSP is exactly the same as �φS and �φPS

with cos(4φ) = 1.
Figure 3(a) illustrates �TPSP (red dashed curve) and �TPSP′

(purple dotted curve) when N = 100. �TPSP and �TPSP′ are 0
at T = 0 and monotonically increase with T and have max-
imum values of about 0.28 and 0.21, respectively. These T
dependences are similar to that for �TPS with cos(4φ) = −1
[red dot-dashed curve in Fig. 2(a)], but the maximum values
are different. �TS is smaller than both �TPSP and �TPSP′ ,
and the difference is largest at T = 1. Note that the input
photons for SOM are assumed to be a single-photon state.
Thus, when the input photons has a Poisson fluctuation, the
uncertainty in T for the sequential strategy increases and has
a similar shape to �TPSP and �TPSP′ . Note also that SOM has a
drawback in practical implementation; it requires two separate
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FIG. 3. Measurement uncertainties in the estimation with PSI for
N = 100 input photons which have a Poisson fluctuation. (a) Un-
certainties in T . The red dashed curve, the purple dotted curve, and
the blue solid curve indicate �TPSP, �TPSP′ , and �TS, respectively.
(b) Uncertainties in φ. The red dashed curve and the blue solid curve
indicate �φPS and �φS, respectively.

experimental setups to measure the phase and transmittance of
a sample.

Figure 3(b) shows �φPSP when N = 100. �φPSP (red
dashed curve) diverges to infinity at T = 0 and decreases with
T , reaching a minimum value of about 0.14 at T = 1. As
shown above, �φPSP is the same as �φS [blue solid curve in
Fig. 3(b)].

Comparing Fig. 3(a) with Fig. 3(b), we see that the T
minimizing �φPSP maximizes �TPSP and �TPSP′ , and vice
versa. This suggests that there is a trade-off between the
uncertainties in the estimation of T and φ also when the input
photons have a Poisson fluctuation.

IV. CONCLUSION

In conclusion, we have derived the theoretical precision
of PSI. We found that the precision of PSI depends on the
transmittance and phase for the sample when single photons
are input into the interferometer and can be optimized by
tuning the second beam splitter of the interferometer. We
also showed the trade-off relation between transmittance and
phase precision. Then we compared PSI with SOM. While
the transmittance estimation used in standard PSI gives a
slightly worse precision than that for SOM, an alternative
approach, which is not commonly used in PSI, almost reaches
the precision for SOM. Regarding the phase estimation, we
found that PSI can achieve a better precision than SOM.
We then showed that the phase dependence in the precision
disappears when the input photons fluctuate with a Poisson
distribution and the precision for the transmittance and that
for the phase are inferior to those without Poisson fluctuation.
We believe that our results not only open the door to explore
sensing and imaging using PSI in the ultra-low-light region
but also provide the fundamental understanding of precision
limit for simultaneous transmittance and phase estimation
with photons. It would be interesting to extend the study to
quantum-enhanced interferometry [27–30].
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