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Morphology-dependent resonances in homogeneous and core-shell nonspherical particles

Benjamin Vennes and Thomas C. Preston *

Department of Atmospheric and Oceanic Sciences and Department of Chemistry, McGill University,
805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9

(Received 21 May 2021; revised 18 August 2021; accepted 23 August 2021; published 10 September 2021)

We formulate a perturbation theory for determining the frequencies of quasinormal modes in dielectric
nonspherical core-shell particles. The theory is based on the extended boundary condition method (also known as
the null-field method), which is used to represent the internal field in terms of a matrix Q. In this framework, the
excitation of a morphology-dependent resonance corresponds to a vanishing eigenvalue of the Q matrix, which
can be determined using perturbation techniques to yield explicit formulas for the corresponding eigenfrequency.
We specialize our results to the case of a core-shell spherical particle that has been deformed into a spheroid and
provide a comparison between numerical simulations and the perturbation theory. Excellent agreement is found
for the small perturbations considered here. Further, we investigate the eigenfrequencies of core-shell particles
for an extensive range of parameters.
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I. INTRODUCTION

A. Morphology-dependent resonances

Dielectric microparticles can behave as high-quality factor
Q optical cavities that confine the electromagnetic field to
a region of space [1,2]. This confinement is not absolute
and the resulting resonant states are dissipative modes of
the leaky optical cavity [3]. Due to their finite lifetime, these
are quasinormal modes and, in discussions of microparticles,
are commonly referred to as morphology-dependent reso-
nances (MDRs) [4,5]. In open electromagnetic resonators,
the energy of a given mode leaks out of the resonator due
to coupling to the external medium [6]. In microspheres, Q
depends on several loss channels and optical modes can easily
be spoiled by asphericity [7]. This ultimately results in a vast
range of observed Q from ∼102 to 109 [8,9].

Morphology-dependent resonances can be modeled as
eigenfunctions of the sourceless Maxwell wave equation sub-
ject to the outgoing-wave radiation condition [10]. Given
the non-Hermitian nature of the problem, the corresponding
eigenfrequencies are complex, with the imaginary part being
related to the rate of dissipation of the mode. The eigenfre-
quencies of the quasinormal modes are poles in the complex
plane of the scattering matrix of the open cavity [11]. For
instance, the resonance condition for a homogeneous sphere
can readily be found by setting the denominators of the Mie
scattering coefficients to zero [12]. For resonances in the
optical spectrum of this well-studied system, the real part
of the complex eigenfrequency is the peak position and the
imaginary part determines the peak linewidth [13].

If an arbitrary inhomogeneity is introduced in the spherical
particle or the surface of the particle is deformed, then the
eigenfrequency is not as readily obtained and methods such
as perturbative techniques can be employed to retrieve them.

*thomas.preston@mcgill.ca

Perturbation theories such as the resonant state expansion
have been used for determining the eigenfrequencies of three-
dimensional (3D) optical cavities with an arbitrary dielectric
inhomogeneity [14]. Similarly, the dyadic formulation of
MDRs [15] and its perturbation theory [16,17] accomplishes
the same goal. For shape deformations, examples of perturba-
tion theories include the boundary perturbation method for 2D
and 3D resonators [18,19], a perturbation theory based on the
Kapur-Peierls formalism [20], and a quasinormal mode per-
turbation theory based on the Lippmann-Schwinger equation
[21].

In this paper we provide a perturbation theory for calculat-
ing the eigenfrequencies of a core-shell spherical particle with
small axisymmetric deformations. The technique developed in
this work differs from prior ones in two key ways. First, in our
approach, a perturbation theory is applied to the Stratton-Chu
equations. The use of surface integral equations to describe
the electromagnetic fields is important to the proposed shape
perturbation theory given that any change in the surface pro-
file of either the core or the shell is immediately reflected
in the surface integrals. Second, the subsequent application
of the extended boundary condition method (EBCM) con-
fines the problem to the interior of the resonator as boundary
conditions are met when employing the EBCM. Using field
expansions in spherical vector wave functions (SVWFs), the
internal field coefficients are linearly related to the incident
field through a Q matrix, which can be readily determined for
core-shell structures. By associating a resonant state with a
particular vanishing eigenvalue of the Q matrix, we employ
matrix perturbation theory to find explicit formulas for the
shift in the MDR eigenfrequencies. Therefore, for these two
reasons, this perturbation technique is particularly well suited
for core-shell particles. A complete discussion of the theory is
provided in Sec. II.

The motivation for studying deformed core-shell parti-
cle systems will be outlined here. Applications of core-shell
MDRs for a system composed of a sphere with a concentric
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FIG. 1. Geometry of the undeformed and deformed core-shell
particle.

spherical shell are numerous. The sensitivity of MDRs allows
for nanometer thin coatings on micron-sized droplets to be
characterized with high precision [22]. Shifts in core-shell
MDRs allow for the position of sharp diffusion fronts during
solvent uptake in spherical particles to be tracked [23,24].
This has found application in monitoring water uptake in high-
viscosity aerosol particles in order to study condensed phase
diffusion [25–27]. In the same field of atmospheric aerosol
science, core-shell MDRs have now been used in many studies
of liquid-liquid phase separation [28–31]. Thin coatings on
microspheres can also be used to improve the sensitivity of
MDR-based sensors [32,33].

For a homogeneous spherical particle, deformation leads to
breaking of spherical symmetry and the loss of azimuthal de-
generacy. Morphology-dependent resonance peaks then split
into multiplets. This has been observed in a myriad of ex-
periments [34–37] and can be accurately predicted using an
analytic formula given by Lai et al. [38] For a deformed
core-shell particle, similar splitting is anticipated due to the
lower symmetry, but there is currently no analogous formula.
Further, the investigation of the deformation of such optical
cavities is lacking. Morphology-dependent resonances could
enable the detection of nanometer deformations in core-shell
systems allowing, for instance, simultaneous measurement
of both surface and interfacial tension of phase-separated
droplets. This particle morphology and its surface tension are
now recognized to be key to understanding cloud droplet acti-
vation in a variety of circumstances [39,40]. Finally, core-shell
particles are known to have optical properties that cannot be
realized in homogeneous spheres, e.g., with thicker shells, the
excitation of core resonances can result in sharp extinction

minima [41], which makes investigations into their optical
properties worthwhile in their own right.

B. Eigenfrequencies of spheroidal core-shell particles

The application of the perturbation theory to the quasi-
normal modes of the core-shell system shown in Fig. 1 is
discussed in Sec. II. For readers who wish to bypass that
discussion, here we summarize one of the main results from
our work: formulas for the first-order shifts in the eigenfre-
quencies (i.e., the resonant frequency of MDRs) of a spherical
core-shell particle that is deformed into a spheroid. The eigen-
frequencies of the core-shell particle are labeled according
to their angular momentum numbers and polarization type
(l, m, p), where l is the mode number, m is the azimuthal
mode number bounded by −l � m � l , and p denotes either
transverse electric (TE) or transverse magnetic (TM) polariza-
tion.

The unperturbed core-shell particle and its physical param-
eters are shown in Fig. 1. The shell (core) has a radius a1 (a2)
and refractive index n1 (n2). The core-shell ratio is α = a2/a1.
Upon being perturbed, it will be convenient to expand the shell
and core deformation (r1 and r2, respectively) in Legendre
polynomials as

r j (θ ) = a j +
∞∑

L=0

h( j)
L PL(cos θ ), (1)

where h( j)
L are the expansion coefficients of the deformation.

For the case of interest where L = 2, the core and the shell are
deformed into spheroids and we define the eccentricity of the
core (ec) and shell (es) according to

ec = r2(θ = 0◦) − r2(θ = 90◦)

a2
,

es = r1(θ = 0◦) − r1(θ = 90◦)

a1
. (2)

With these definitions, the fractional shift of a MDR labeled
(l, m, p) is found by using the formulas presented in Sec. II B,
from which the equation

�ν
p
lm

ν
p
l

= 1

6

Rp
l αec + es

Rp
l α + 1

(
3m2

l (l + 1)
− 1

)
, (3)

is obtained, where �ν
p
lm is the first-order shift and ν

p
l is the

eigenfrequency of the undeformed system. We note that the
magnitude of the fractional shift depends on the physical
parameters of the core-shell particle. In addition, the term Rp

l
also incorporates these dependences as it is a function of the
undeformed core-shell particle

RTE
l = n2

2 − n2
1

n2
1 − 1

[
ψl (n2x2)

ξl (x1)

ξ ′
l (x1)ψl (n1x1) − n1ψ

′
l (n1x1)ξl (x1)

n1ψ
′
l (n1x2)ψl (n2x2) − n2ψ

′
l (n2x2)ψl (n1x2)

]2

,

(4)

RTM
l = n2

2 − n2
1

n2
1 − 1

l (l + 1)ψ2
l (n2x2)/(n1x2)2 + [ψ ′

l (n2x2)]2

l (l + 1)ξ 2
l (x1)/(n1x1)2 + [ξ ′

l (x1)]2

[
n1ξ

′
l (x1)ψl (n1x1) − ψ ′

l (n1x1)ξl (x1)

n2ψ
′
l (n1x2)ψl (n2x2) − n1ψ

′
l (n2x2)ψl (n1x2)

]2

, (5)

where x1 = k0a1 and x2 = αx1 are the resonant size parameters of the core-shell sphere. The Ricatti-Bessel functions ψl and ξl are
related to the spherical Bessel function and spherical Hankel function of the first kind as ψl (x) = x jl (x) and ξl (x) = xh(1)

l (x). In
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order to evaluate Rp
l , it is necessary to solve for the resonant size parameter of the core-shell sphere using numerical root-finding

methods, which have been discussed in detail elsewhere [42]. Finally, we note that the degeneracy of the mth azimuthal mode
is lifted according to a quadratic function in m, which remains the same quadratic function as reported for the homogeneous
case. Approximations to Eq. (3) can be obtained in the limit where the shell is very thin compared to the outer radius. These
formulas are convenient since the dependence on the resonant core-shell size parameter is removed, thus alleviating the need
for any numerical methods that the general solution requires. In addition, they still remain functions of the refractive indices of
the core and the thin shell. Insofar as the shell surface and core-shell interface do not touch, the thin shell limit simplifies the
fractional shift to

�νTE
lm

νTE
l

= 1

6

(
n2

2 − n2
1

)
ec + (

n2
1 − 1

)
es

n2
2 − 1

(
3m2

l (l + 1)
− 1

)
, (6)

�νTM
lm

νTM
l

= 1

6

(
n2

2 − n2
1

)[
1 + n2

1

(
n2

2 − 1
)]

ec + (
n2

1 − 1
)[

n2
2 + n2

1

(
n2

2 − 1
)]

es

n2
1n2

2

(
n2

2 − 1
) (

3m2

l (l + 1)
− 1

)
, (7)

where the TM formula is accurate up to O(l−2/3) since we
have made use of the fact that the homogeneous size pa-
rameter is n2x ∼ l[1 + O(l−2/3)]. The fractional shift in the
eigenfrequencies given by Eq. (3) and the thin shell limit
of Eqs. (6) and (7) are the main results of this work. The
following section elaborates on the formalism used to derive
it.

II. RESONANCE CONDITION UNDER SHAPE
PERTURBATIONS

In the T -matrix formalism, the electromagnetic fields in-
cident on and scattered by an arbitrarily shaped particle
are expanded in SVWFs with a time-harmonic dependence
exp(−iωt ). Then, the expansion coefficients of the internal
and scattered fields, denoted by aint and asca, are linearly
related to the incident field ainc through the Q and T matrices
as

Qaint = ainc, asca = Paint, asca = T ainc = PQ−1ainc,

(8)
where we write the T matrix as the product of two matrices
P and Q−1 in anticipation of the use of the EBCM. Consider
the first of these equations in the absence of a source field
ainc; then the homogeneous equation Qaint = 0 has two pos-
sible solutions: (i) the trivial solution where the coefficients
vanish, which is of no interest, and (ii) the internal field is in
a resonant state given by the equation det(Q) = 0. One can
search for the zeros of the determinant numerically as was
done in Ref. [43] Alternatively, for the second solution, we
can define a resonant state when one of the eigenvalues of
Q, denoted by λ

p
lm, is set to zero. Although straightforward

in concept, an analytic expression for λ
p
lm is difficult and

even impossible to find unless some assumptions are made
concerning the geometry of the particle. Here we will assume
that the deviation from spherical symmetry is small enough so
that we can employ matrix perturbation theory to find explicit
formulas for the eigenvalues to first order. In turn, fulfilling
the resonant condition λ

p
lm = 0 will yield the formula for the

fractional shift in the eigenfrequency.
Now we will present the main result for first-order pertur-

bation theory to the eigenvalues of the matrix. Beforehand, we
remark that Q is a non-Hermitian matrix (i.e., has complex
eigenvalues), so special care has to be taken when using per-

turbation theory. This is typically addressed by exploiting the
biorthogonality of the eigenvectors of the matrix of interest
with its adjoint eigenvectors [44]. However, given that the
initial matrix that will be perturbed is diagonal, this means
that the initial eigenvectors are already orthogonal. So the
results from perturbation theory for Hermitian matrices are
immediately carried over. Therefore, for an axisymmetric de-
formation where Q → Q(0) + εQ(1), the new eigenvalues are
changed to first order according to

λ
p
lm = Qp(0)

lm + εQp(1)
lm , (9)

where Qp(0)
lm denotes the diagonal element of the zeroth-order

Q matrix and Qp(1)
lm is the first-order diagonal element of the

perturbation Q matrix. Note that when we set λ
p
lm = 0 in

Eq. (9), ε is used to mark terms of different orders, meaning
that each term will be individually zero.

Expressions for the Q matrix are needed to proceed further
and these are given by using the EBCM. A brief review of this
method is as follows: Fictitious surface currents coincide with
the surface of the particle to produce the internal and external
fields that would arise through the scattering process. For the
time being, we can assume the particle is homogeneous so
that, on its external surface denoted by S1 and regardless of
the existence of internal layers, the fields are given by [45]

Einc(r) + ∇ ×
∫

S1

[n1 × E1(rS )] · G
↔

(k0R)dS

− Z0

ik0
∇ × ∇ ×

∫
S1

[n1 × H1(rS )] · G
↔

(k0R)dS

=
{

Esca(r) + Einc(r) if r lies outside S1

0 if r lies inside S1,
(10)

where k0 is the wave number and Z0 is the impedance in the
surrounding medium. The electric fields Einc, Esca, and E1 are
the incident, scattered, and internal fields, respectively (H1

is the internal magnetic field). Finally, the Green’s dyadic in
free space is G

↔
(k0R), with R = |r − rS|. For a homogeneous

particle, this equation alone is sufficient to solve for the Q
matrix by assuming SVWF expansions for the Green’s dyadic
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and the internal field (see, e.g., Ref. [45]) to give

Qhom = [
Q31

1

] =
[[

K31
1

] + η1
[
J31

1

] [
L31

1

] + η1
[
I31
1

]
[
I31
1

] + η1
[
L31

1

] [
J31

1

] + η1
[
K31

1

]
]
,

(11)
where η1 = Z0/Z1 and I, J, K, L are block matrices. In antici-
pation of the core-shell system, it is convenient to introduce
generalized definitions of this matrix and its blocks in
Eq. (11). For the ith interface, we introduce

[
Q jk

i

] =
[[

K jk
i

] + ηi
[
J jk

i

] [
L jk

i

] + ηi
[
I jk
i

]
[
I jk
i

] + ηi
[
L jk

i

] [
J jk

i

] + ηi
[
K jk

i

]
]
, (12)

for which the elements of the block matrices are given by the
surface integrals[

I jk
i

]
ll ′mm′ = k2

i−1

∫
Si

ni · [
M( j)∗

lm (ki−1rS ) × M(k)
l ′m′ (kirS )

]
dS,

(13)[
J jk

i

]
ll ′mm′ = k2

i−1

∫
Si

ni · [
M( j)∗

lm (ki−1rS ) × N(k)
l ′m′ (kirS )

]
dS,

(14)[
K jk

i

]
ll ′mm′ = k2

i−1

∫
Si

ni · [
N( j)∗

lm (ki−1rS ) × M(k)
l ′m′ (kirS )

]
dS,

(15)[
L jk

i

]
ll ′mm′ = k2

i−1

∫
Si

ni · [
N( j)∗

lm (ki−1rS ) × N(k)
l ′m′ (kirS )

]
dS,

(16)

where it should be clear that j and k denote the radial wave
functions used in the SVWF expansion. Note that square
brackets were employed in Eqs. (11)–(16) to distinguish the
indices (i, j, k) from the elements (or entries) of the matrices.

If the particle is a core-shell one, then an additional surface
equation is needed to account for scattering between the shell
and the core [46],

∇ ×
∫

S1

[−n1 × E1(rS )] · G
↔

(k1R)dS

− Z1

ik1
∇ × ∇ ×

∫
S1

[−n1 × H1(rS )] · G
↔

(k1R)dS

+ ∇ ×
∫

S2

[n2 × E2(rS )] · G
↔

(k1R)dS

− Z1

ik1
∇ × ∇ ×

∫
S2

[n2 × H2(rS )] · G
↔

(k1R)dS

=
{

E1(r) if r lies between S2 and S1

0 if r lies inside S2 or outside S1,
(17)

where now E1 and H1 denote the electric and magnetic fields
in the shell, E2 and H2 denote the electric and magnetic fields
in the core, S2 denotes the core surface, and k2 is the wave
number in the core. In the case of the core-shell system,
the procedure is similar to the homogeneous case and the Q
matrix found is

Qcore-shell = [
Q31

1

][
Q31

2

] − [
Q33

1

][
Q11

2

]
. (18)

In the following sections, we will present the procedure
to extract the frequency shift from both homogeneous and

core-shell particles with an axisymmetric deformation. The
homogeneous case serves the dual purpose of (i) illustrat-
ing the method without excessive algebra and (ii) validating
the method based on already existing results. Thereafter, we
will summarize the procedure to extract the shifts in the
eigenfrequencies for core-shell particles based on the method
presented for the homogeneous case.

A. Homogeneous axisymmetric particle

We will start by considering the TE case, for which the
elements Qp(0)

lm and Qp(1)
lm are found from the diagonal elements

of the first block matrix of Eq. (11). For an axisymmetric
scatterer, these surface integrals are reduced to line integrals
in the polar angle as

QTE
lm =

∫ π

0
sin θdθ |Xlm|2W 31

1 (x1), (19)

where x1 = k0r1(θ ) is a size parameter that depends on the
variation of the surface profile r1 and on the wave number k0,
and W 31

1 (x1) is a radial function defined as

W 31
1 (x1) = ξ ′

l (x1)ψl (n1x1) − n1ψ
′
l (n1x1)ξl (x1). (20)

Although it is only a minor point, a coefficient −1/n1 was
omitted in the definition of W 31

1 (x1) as it factors out in the
analysis. In the limit where the deviation from spherical ge-
ometry is small, we can expand both the wave number k0 and
the radial profile r1(θ ) in terms of a power series characterized
by a small parameter (ε 	 1)

r1(θ ) = r (0) + εr (1)(θ ) = a1 + ε
∑

L

hLPL(cos θ ), (21)

k0 = k(0) + εk(1) + O(ε2), (22)

where r (0) = a1 corresponds to the radius of the unperturbed
spherical particle and r (1)(θ ) is the deviation from the spher-
ical geometry written in terms of an arbitrary superposition
of Legendre polynomials. In turn, k(0) is the resonant wave
number of the unperturbed system and k(1) is the first-order
correction due to the distortion. It is convenient to combine
both expansions in terms of the size parameter

x1 = x(0)
1 + εx(1)

1 + O(ε2)

= k(0)r (0) + ε(k(0)r (1) + k(1)r (0) ) + O(ε2), (23)

because the Taylor expansion of the radial function W 31
1 (x1)

can be written as

W 31
1 (x1) = W 31

1

(
x(0)

1

) + εx(1)
1

[
W 31

1

(
x(0)

1

)]′
. (24)

With the use of the expansion of W (x1) given by Eq. (24), we
may write down the zeroth- and first-order elements of the Q
matrix in Eq. (9) and set each term to zero as

QTE(0)
lm = W 31

1

(
x(0)

1

) ∫ π

0
sin θdθ |Xlm|2 = 0, (25)

QTE(1)
lm = [

W 31
1

(
x(0)

1

)]′
∫ π

0
sin θdθ |Xlm|2x(1)

1 = 0. (26)

The zeroth-order equation leads to the well-known TE reso-
nance condition of spherical dielectric particles. The angular
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integral is nonzero and so the equation is satisfied when
W 31

1 (x(0)
1 ) = 0, for which

ξ ′
l

(
x(0)

1

)
ψl

(
n1x(0)

1

) − n1ψ
′
l

(
n1x(0)

1

)
ξl

(
x(0)

1

) = 0, (27)

where x(0)
1 is the resonant size parameter and so, as was

already discussed, k(0) is the resonant wave number of the
unperturbed system. Now, from the first-order equation, we
seek to determine the first-order correction k(1). Substituting
x(1) in terms of k and r, we have

[
W 31

1

(
x(0)

1

)]′
∫ π

0
sin θdθ |Xlm|2(k(0)r (1) + k(1)r (0) ) = 0. (28)

When solving for the first-order correction, we recall that
r (1) = ∑

L hLPL, where hL is an arbitrary coefficient and PL

is the Legendre polynomial. Therefore, by using this expan-
sion and various properties of the Legendre polynomial, we
determine k(1) as the summation over the coefficients hL,

k(1)

k(0)
=

∑
L

(−hL

a1

)[
1 − L(L + 1)

2l (l + 1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈
Pm

l

∣∣Pm
l

〉 , (29)

where the polar integrals are

〈
Pm

l

∣∣PL

∣∣Pm
l

〉 =
∫ π

0
sin θdθPm

l PLPm
l ,

〈
Pm

l

∣∣Pm
l

〉 =
∫ π

0
sin θdθPm

l Pm
l . (30)

The solution to the former integral can be expressed using the
3- j symbols

〈
Pm

l

∣∣PL

∣∣Pm
l

〉 = (−1)m(2l + 1)
√

L + 1
2

×
(

l l L
0 0 0

)(
l l L
m −m 0

)
, (31)

while the solution to the latter integral is simply given by the
orthogonality of the Legendre polynomial〈

Pm
l

∣∣Pm
l

〉 = 1. (32)

Therefore, an analytic formula for the first-order shift in the
eigenfrequency of a TE mode is

k(1)

k(0)
= (−1)m+1(2l + 1)

∑
L

(
hL

a1

)√
L + 1

2

[
1 − L(L + 1)

2l (l + 1)

]

×
(

l l L
0 0 0

)(
l l L
m −m 0

)
, (33)

which is in perfect agreement with the result given by Lai
et al. up to an additional factor of

√
2 absent in this work.

This discrepancy is simply the result of the difference in the
normalization of the Legendre polynomial.

Next, for the TM mode, the line integral that needs to be
considered is from the fourth block matrix in Eq. (11),

QTM
lm =

∫ π

0
sin θdθ

[
|Xlm|2X 31

1 (x1) + Pm
l

dPm
l

dθ

dx1

dθ
Y 31

1 (x1)

]
,

(34)

where we have defined the two radial functions X 31
1 (x1) and

Y 31
1 (x1) as

X 31
1 (x1) = n1ξ

′
l (x1)ψl (n1x1) − ψ ′

l (n1x1)ξl (x1), (35)

Y 31
1 (x1) = (n2

1 − 1)l (l + 1)
ξl (x1)ψl (n1x1)

n1x2
1

. (36)

These radial functions are also expanded in powers of ε in a
process similar to that outlined in Eqs. (21)–(24). However, it
is not necessary to expand Y 31

1 in a Taylor series due to the fact
that the derivative in θ of the surface profile r1(θ ) is assumed
to scale with ε,

dx1

dθ
= εk(0) dr (1)(θ )

dθ
+ O(ε2) = ε

dx(1)
1

dθ
+ O(ε2), (37)

where we have used r1(θ ) = r (0) + r (1)(θ ). Now conducting
the same analysis as before, we find that the zeroth-order wave
number satisfies the resonant condition for TM modes and its
first-order correction is given by

k(1)

k(0)
= (−1)m+1(2l + 1)

∑
L

(
hL

a1

)

×
√

L + 1
2

[
1 − Al (x

(0)
1 )

L(L + 1)

2l (l + 1)

]

×
(

l l L
0 0 0

)(
l l L
m −m 0

)
, (38)

with Al (x
(0)
1 ) to be evaluated at the TM resonant size parame-

ter of the sphere

Al (x) =
[

1 + l (l + 1)

x2

(
ψl (n1x)

ψ ′
l (n1x)

)2]−1

. (39)

This differs from the solution given by Lai et al. in that an
additional factor of Al has been introduced. In general, Al

is complex, which means that the TM quality factor can be
changed to first order. However, in the limit where the de-
formation mode number L is much smaller than the resonant
mode number l under consideration (i.e., L2/l2 	 1), this
difference between the TE and TM cases is small and can be
neglected. We note that in the work of Lai et al., the O(L2/l2)
contribution due to Al was dropped. We will do the same to
simplify our expression to match their result

k(1)

k(0)
= (−1)m+1(2l + 1)

∑
L

(
hL

a1

)√
L + 1

2

[
1 − L(L + 1)

2l (l + 1)

]

×
(

l l L
0 0 0

)(
l l L
m −m 0

)
, (40)

which is accurate up to O(L2/l2).

B. Core-shell axisymmetric particle

In the core-shell case, we recall that the overall Q matrix
was a product of individual Q matrices evaluated at the core-
shell interface as

Qcore-shell = [
Q31

1

][
Q31

2

] − [
Q33

1

][
Q11

2

] = AB − CD, (41)

where the matrices A, B, C, and D are identical to [Q31
1 ],

[Q31
2 ], [Q33

1 ], and [Q11
2 ], respectively, and are introduced here
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for brevity. To proceed, each term in Eq. (41) is expanded to
first order, which will give an equation in the form of

λ
p
lm = [

Ap(0)
lm Bp(0)

lm − Cp(0)
lm Dp(0)

lm

] + ε
[
Ap(0)

lm Bp(1)
lm + Ap(1)

lm Bp(0)
lm

− Cp(0)
lm Dp(1)

lm − Cp(1)
lm Dp(0)

lm

] + O(ε2), (42)

with the higher-order terms omitted. Therefore, all that is
needed now is the first-order Taylor expansion of the terms
A–D. This is shown in Appendix A.

Using Eqs. (A5)–(A8), the zeroth-order term leads to the
requirement that the zeroth-order wave number k(0) satisfies
the resonance condition of the unperturbed core-shell particle

for TE modes

n1ψ
′
l

(
n1x(0)

2

)
ψl

(
n2x(0)

2

) − n2ψl
(
n1x(0)

2

)
ψ ′

l

(
n2x(0)

2

)
n1ξ

′
l

(
n1x(0)

2

)
ψl

(
n2x(0)

2

) − n2ξl
(
n1x(0)

2

)
ψ ′

l

(
n2x(0)

2

)
= ξ ′

l

(
x(0)

1

)
ψl

(
n1x(0)

1

) − n1ξl
(
x(0)

1

)
ψ ′

l

(
n1x(0)

1

)
ξ ′

l

(
x(0)

1

)
ξl

(
n1x(0)

1

) − n1ξl
(
x(0)

1

)
ξ ′

l

(
n1x(0)

1

) . (43)

Next, the second term will yield an equation which can be
solved for the first-order correction k(1). It is only an algebraic
exercise to extract the first-order correction using Eqs. (A5)–
(A12), the result of which is

k(1)

k(0)
= −

∑
L

RTE
l h(2)

L + h(1)
L

RTE
l a2 + a1

[
1 − L(L + 1)

2l (l + 1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈
Pm

l

∣∣Pm
l

〉 ,

(44)
where RTE

l is a function that depends on the physical parame-
ters of the undeformed core shell

RTE
l = W 33

1 (x(0)
1 )[W 11

2 (x(0)
2 )]′ − W 31

1 (x(0)
1 )[W 31

2 (x(0)
2 )]′

W 11
2 (x(0)

2 )[W 33
1 (x(0)

1 )]′ − W 31
2 (x(0)

2 )[W 31
1 (x(0)

1 )]′
. (45)

To simplify this equation to that given in Sec. I B, we first make use of the resonance condition of the unperturbed core-shell
particle to find that

RTE
l =

(
W 31

1

(
x(0)

1

)
W 11

2

(
x(0)

2

)
)2

W 31
2

(
x(0)

2

)[
W 11

2

(
x(0)

2

)]′ − W 11
2

(
x(0)

1

)[
W 31

2

(
x(0)

2

)]′

W 31
1

(
x(0)

1

)[
W 33

1

(
x(0)

1

)]′ − W 33
1

(
x(0)

1

)[
W 31

1

(
x(0)

1

)]′ . (46)

Next, by using the definition of W jk
i and the Wronskian of the Ricatti-Bessel functions

ξ ′
l (x)ψl (x) − ψ ′

l (x)ξl (x) = i, (47)

we find the expression that was given in the earlier summary

RTE
l = n2

2 − n2
1

n2
1 − 1

[
ψl (n2x(0)

2 )

ξl (x
(0)
1 )

ξ ′
l (x(0)

1 )ψl (n1x(0)
1 ) − n1ψ

′
l (n1x(0)

1 )ξl (x
(0)
1 )

n1ψ
′
l (n1x(0)

2 )ψl (n2x(0)
2 ) − n2ψ

′
l (n2x(0)

2 )ψl (n1x(0)
2 )

]2

. (48)

For the TM case, the resonance condition of the unperturbed system is given by using the zeroth-order equations (A17)–(A20)
to yield

n2ψ
′
l

(
n1x(0)

2

)
ψl

(
n2x(0)

2

) − n1ψl
(
n1x(0)

2

)
ψ ′

l

(
n2x(0)

2

)
n2ξ

′
l

(
n1x(0)

2

)
ψl

(
n2x(0)

2

) − n1ξl
(
n1x(0)

2

)
ψ ′

l

(
n2x(0)

2

) = n1ξ
′
l

(
x(0)

1

)
ψl

(
n1x(0)

1

) − ξl
(
x(0)

1

)
ψ ′

l

(
n1x(0)

1

)
n1ξ

′
l

(
x(0)

1

)
ξl

(
n1x(0)

1

) − ξl
(
x(0)

1

)
ξ ′

l

(
n1x(0)

1

) . (49)

For the first-order correction, we use Eqs. (A17)–(A24) to find that the fractional shift can be expressed as

k(1)

k(0)
= −

∑
L

RTM
l h(2)

L

RTM
l a2 + a1

[
1−Al (x

(0)
2 )

L(L + 1)

2l (l + 1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈
Pm

l

∣∣Pm
l

〉 −
∑

L

h(1)
L

RTM
l a2 + a1

[
1 − Bl

(
x(0)

1

)L(L + 1)

2l (l + 1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈
Pm

l

∣∣Pm
l

〉 , (50)

where the zeroth-order wave number must satisfy the resonance condition for TM modes. Notice that, similar to the homogeneous
case, we have the added complexity of two functions Al and Bl introduced in the ratio of the total mode numbers. If we perform
the same approximation as given by Lai et al., we may readily drop those terms and get a formula accurate up to O(L2/l2). The
full derivation of Al and Bl as well as that of RTM

l is given in Appendix B. Briefly, the procedure is essentially the same as in the
TE case: We use the resonance condition and the Wronskian of the Ricatti-Bessel function to derive simpler expressions than
what is initially found,

RTM
l = n2

2 − n2
1

n2
1 − 1

[
Bl

(
x(0)

2

)
Al

(
x(0)

1

)
(

ψ ′
l

(
n2x(0)

2

)
ξ ′

l

(
x(0)

1

) n1ξ
′
l

(
x(0)

1

)
ψl

(
n1x(0)

1

) − ψ ′
l

(
n1x(0)

1

)
ξl

(
x(0)

1

)
n2ψ

′
l

(
n1x(0)

2

)
ψl

(
n2x(0)

2

) − n1ψ
′
l

(
n2x(0)

2

)
ψl

(
n1x(0)

2

)
)2]

, (51)
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while Al and Bl are

Al (x) =
[

1 + l (l + 1)

(n1x)2

(
ψl (n2x)

ψ ′
l (n2x)

)2]−1

, (52)

Bl (x) =
[

1 + l (l + 1)

(n1x)2

(
ξl (x)

ξ ′
l (x)

)2]−1

. (53)

This effectively concludes the determination of the frac-
tional shift in the eigenfrequencies of a core-shell particle
perturbed by an arbitrary axisymmetric deformation. The frac-
tional shifts for TE and TM modes are given by Eqs. (44)
and (50), respectively. However, the solution that we found,
even though it is in closed form, is rather cumbersome. De-
termining the fractional shift requires the evaluation of the
3- j symbol as well as radial functions which depend on the
resonant size parameter of the core-shell particle [Eq. (48) for
TE modes and Eqs. (51)–(53) for TM modes]. Ultimately, the
most imposing task is the determination of the TE and TM
resonant size parameters which are the roots of the transcen-
dental equations given by Eqs. (43) and (49), respectively. In
the following, we specialize our result in order to find simpler
formulas. We will describe the case of a core-shell particle
that has been deformed into a spheroid as well as its limiting
case of a very thin shell.

To describe the spheroid, we use a quadrupole perturbation
L = 2 and we assume that the mode number of the MDR has
l � L. With this, the angular integral (31) is

〈
Pm

l

∣∣P2

∣∣Pm
l

〉=
√

5

2

l (l + 1) − 3m2

(2l − 1)(2l + 3)
≈

√
5

32

(
1− 3m2

l (l + 1)

)
,

(54)

and using the definition of the Legendre polynomials, we
define the amplitude of deformation e as

e = 3

√
5

8

h

a
. (55)

With these two results, the solution reduces to Eq. (3), which
was given in Sec. I B. Further, in the limit of a thin shell, we
may approximate the core-shell particle by setting x(0)

2 → x(0)
1 .

In this limit, RTE
l and RTM

l are approximated as

RTE
l ≈ n2

2 − n2
1

n2
1 − 1

, (56)

RTM
l ≈ n2

2 − n2
1

n2
1 − 1

1 + n2
1

(
n2

2 − 1
)

n2
2 + n2

1

(
n2

2 − 1
) , (57)

which are used to give Eqs. (6) and (7).
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FIG. 2. Fractional shift of the TE1
52,m and TM1

52,m modes for m = 0 and 52 as a function of the core-shell ratio α. In all four panels, the
shell (core) is deformed into a prolate spheroid with es = 4.743 × 10−4 (ec = es/10). In (a) and (c) the shell (core) has a refractive index of
n1 = 1.41 (n2 = 1.33) and in (b) and (d) these values are exchanged.
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III. RESULTS AND DISCUSSION

In this discussion, we assess the accuracy of the first-order
perturbation theory by comparing it to a full numerical imple-
mentation of the T -matrix formalism. In the framework of the
EBCM, the T matrix of a core-shell particle is the solution to
Eqs. (10) and (17) for the scattered field coefficients [46]

T1 = {[
Q11

1

] − [
Q13

1

]
T2

}{[
Q31

1

] − [
Q33

1

]
T2

}−1
, (58)

where T2 = [Q11
2 ][Q31

2 ]−1 is the T matrix of the core embed-
ded in a medium comprised of the shell. The orientation-
averaged extinction efficiency is given by the trace of the real
part of the T matrix [47]

〈Qext〉 = 2

x2

∞∑
l=1

l∑
m=0

(2 − δm,0)Re
(
T 11

llmm + T 22
llmm

)
. (59)

By calculating Eq. (59) at a specified value of m across a
range of wavelengths, we associate a maximum in 〈Qext〉 with
a particular MDR. Note: 〈Qext〉 should not be confused with
the Q matrix.

In Fig. 2 we compare the fractional shift given by pertur-
bation theory with the full numerical calculation using the T
matrix. Excellent agreement is found between the two calcula-
tions. In Figs. 2(a)–2(d) the shell and the core are both prolate
spheroids as they are characterized by a quadrupole distortion
with es = 4.743 × 10−4 and ec = 4.743 × 10−5, respectively.
In Figs. 2(a) and 2(b) the fractional shifts of the TE1

52,52 and
TM1

52,52 are positive and shows that the m = l modes blueshift
with respect to the unperturbed case. However, the magnitude
of the shift depends on the core-shell ratio and the relative
refractive index between the core and the shell. In Fig. 2(a),
when n1 < n2, a maximum is attained at α ∼ 0.97 (α ∼ 0.95)
for TE (TM) modes. In contrast, when n2 < n1 in Fig. 2(b),
a minimum is reached at α ∼ 0.95 (α ∼ 0.93) for TE (TM)
modes. In both Figs. 2(a) and 2(b), when the shell reaches a
thickness of α < 0.8, the fractional shift becomes insensitive
to the core-shell ratio and to the refractive indices. In this thick
shell limit, the fractional shift corresponds to that of a homo-
geneous dielectric particle perturbed by the shell quadrupole
distortion. For a homogeneous particle, the first-order shift is
independent of the characteristics of the unperturbed particle
and is given by

�ν
p
lm

ν
p
l

= e

6

(
3m2

l (l + 1)
− 1

)
, (60)

which is why the thick shell limit gives the same fractional
shift in both Figs. 2(a) and 2(b). In Figs. 2(c) and 2(d), where
m = 0, the fractional shift is negative and so the modes red-
shift with respect to the unperturbed case. Apart from this
change in sign, the preceding remarks concerning the mag-
nitude of the shift are carried over. This is a consequence of
the fact that the first-order solution decouples the quadratic
function in the azimuthal mode m from the other terms.

The resulting pattern is made clear once we plot 〈Qext〉 as
a function of wavelength. This is shown in Fig. 3, where in
Fig. 3(a) we choose the value of α that coincides with the max-
imum possible splitting as inferred from Figs. 2(a) and 2(c).
We compare this to the “homogeneous equivalent” system,
which is the homogeneous particle where the unperturbed
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(a) n
2
 < n

1

Core-shell
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First-order formula

FIG. 3. Orientation-averaged extinction cross section of the
TE1

52,m modes as a function of the wavelength. The core-shell ratio
is set to (a) α = 0.97 and (b) α = 0.95. Otherwise, the physical
parameters are identical to those listed in Fig. 2. The homogeneous
equivalent system has a refractive index of (a) nhom = 1.354 (n2 <

n1) and (b) nhom = 1.379 (n1 < n2).

MDR frequency coincides with that of the unperturbed core-
shell system. This homogeneous particle is characterized by
the shell quadrupole distortion. Clearly, the core-shell particle
with n2 < n1 has an increase in splitting when compared to
the homogeneous case. In contrast, in Fig. 3(b) the value of
α coincides with the minimal splitting in Figs. 3(a) and 3(c).
Here the core-shell particle with n1 < n2 has a decrease in the
splitting with respect to the homogeneous case.

The resonant size parameter of the unperturbed core-shell
particle that satisfies Eq. (43) or (49) has an infinite number
of roots, which is referred to as the mode order. Physically,
the order of a MDR is associated with the number of ra-
dial maxima in the angular averaged energy density of the
mode in question [48]. In the previous figures we used first-
order MDRs (i.e., the first root). Figure 4 shows the case of
second-order MDRs, namely, the TE2

52,m and TM2
52,m modes.

Essentially, there is a clear variation in α of the splitting as
it undulates between an increase (a decrease) and no increase
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FIG. 4. Fractional shift of the TE2
52,m and TM2

52,m modes for m = 0 and 52 as a function of the core-shell ratio α. In all four panels, the
shell (core) is deformed into a prolate spheroid with es = 4.743 × 10−4 (ec = es/10). In (a) and (c) the shell (core) has a refractive index of
n1 = 1.5 (n2 = 1.45) and in (b) and (d) these values are exchanged.

(decrease) with respect to the thick shell limit. For first-order
modes as in Fig. 2, we have one maximum (minimum) in
α, whereas for second-order modes, we have two maxima
(minima) in α. So, in contrast to the homogeneous case, there
is an implicit dependence of the fractional shift on the order of
the mode. This dependence is evident once we consider that
the fractional shift is a function of the resonant size parameter,
which in turn must be a root of Eq. (43) or (49).

In Fig. 5 the fractional shift as a function of α is shown for a
range of azimuthal modes from m = 0 to m = l in increments
of 4. The parameters chosen correspond to those in Figs. 2(a)
and 2(b), respectively. So the features that were discussed are
already apparent here. For a selected range of the core-shell
ratio in Fig. 5(a), there is an increase in the splitting with
respect to the homogeneous system, whereas in Fig. 5(b)
there is a decrease in the splitting. In Figs. 5(c) and 5(d) the
values of the quadrupole distortions are exchanged (i.e., the
core is more eccentric than the shell), which results in a very
particular behavior. Specifically, in Fig. 5(c) we observe that
as the shell gets thinner (increasing α), all the modes converge
onto zero at α∗ ∼ 0.89 (0.88) for TE (TM) modes. In effect,
despite the fact that the core-shell particle is nonspherical,
no splitting occurs for this particular combination of physical
parameters. After this point, the pattern is essentially inverted

and the modes that were redshifted before now blueshift and
vice versa. This is a special case where a core-shell prolate
spheroid can give rise to the same behavior as a homogeneous
oblate spheroid, in which the m = l modes redshift. This
behavior is made clear once we consider the numerator of
Eq. (3),

N = Rp
l αec + es. (61)

The condition of no splitting in the modes is fulfilled trivially
when the particle is spherical (ec = es = 0). However, we
can also have no splitting, at least to first order, provided the
eccentricity of the core and shell are related by

ec = − es

Rp
l α

, (62)

which is precisely what occurs at the nodes α = α∗ in
Fig. 5(c). When α < α∗, the modes behave as we would
expect because N > 0, and when α > α∗ the behavior inverts
as N < 0.

In Fig. 6 we show the fractional shift when the core is
oblate (i.e., negative eccentricity) with all other parameters
carried over from Fig. 5. In Figs. 6(a) and 6(b) the features that
were seen in Figs. 5(a) and 5(b) are apparent here. However,
the difference is that the negative core eccentricity tends to
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FIG. 5. Fractional shift of the TE1
52,m and TM1

52,m modes as a function of the core-shell ratio α. The shell (core) is deformed into a prolate
spheroid with (a) and (b) es = 4.743 × 10−4 (ec = es/10) and (c) and (d) es = 4.743 × 10−5 (ec = 10es). In (a) and (c) the shell (core) has a
refractive index of n1 = 1.41 (n2 = 1.33) and in (b) and (d) these values are exchanged.

enhance the splitting in Fig. 6(a), whereas in Fig. 6(b) it
suppresses the splitting. It is noteworthy that in Figs. 6(c) and
6(d) it is now the latter that exhibits the no splitting behavior.
This is a result of the change in sign of ec, which means that
the condition given in Eq. (62) can only be satisfied by an
additional change in sign when n1 < n2.

In Fig. 7 the fractional shift is shown as a function of the
core eccentricity in Figs. 7(a) and 7(c) and as a function of
the shell eccentricity in Figs. 7(b) and 7(d) while the other
is held fixed at zero. In all but one case, the pattern ob-
served is that the m ∼ ±l modes tend to blueshift (redshift)
with increasing prolateness (oblateness), whereas the m ∼ 0
modes tend to redshift (blueshift) with increasing prolateness
(oblateness). The exception is Fig. 7(a), where n2 < n1 and
es = 0. Here the pattern is flipped, as the m ∼ ±l modes tend
to redshift (blueshift) with increasing prolateness (oblateness)
and vice versa for the m ∼ 0 modes. So a prolate (oblate)
core embedded in a spherical coating with a smaller refractive
index effectively behaves as a homogeneous oblate (prolate)
spheroid. In all other cases, i.e., Figs. 7(b)–7(d), the core-
shell particle behaves the same as the homogeneous particle.
However, we recall that for core-shell particles, the slope of

the fractional shift also depends on the polarization type of
the mode, which is not the case for homogeneous particles.

In Fig. 8 we vary the core and shell eccentricities with
ec = −es. The main result of interest here is in Fig. 8(c),
where the splittings of the TE modes and TM modes behave
differently from one another. In effect, when the TE1

52,±52

mode redshifts, the TM1
52,±52 mode blueshifts and vice versa.

This is a special case where Eq. (61) changes sign depend-
ing on the polarization type under consideration. We show
this explicitly in Fig. 9, where the fractional shift is plotted
as a function of core-shell ratio using the parameters from
Fig. 8(c). Here the TE mode has two nodes at α∗ ∼ 0.93 and
another at α∗ ∼ 0.96, whereas the TM mode has none. In be-
tween these two nodes, e.g., r ∼ 0.95, the TE and TM modes
split in opposite directions, as we discussed for Fig. 8(c).

Finally, although not shown here, there is another spe-
cial case where the core-shell particle will behave like a
homogeneous particle irrespective of the refractive indices
and core-shell ratio. This occurs when the eccentricities
are equal (ec = es = e), for which the core-shell formula
(3) behaves similarly to that of a homogeneous particle
[Eq. (60)].
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FIG. 6. Fractional shift of the TE1
52,m and TM1

52,m modes as a function of the core-shell ratio α. The shell (core) is deformed into a prolate
(oblate) spheroid with (a) and (b) es = 4.743 × 10−4 (ec = −es/10) and (c) and (d) es = 4.743 × 10−5 (ec = −10es). In (a) and (c) the shell
(core) has a refractive index of n1 = 1.41 (n2 = 1.33) and in (b) and (d) these values are exchanged.

IV. SUMMARY

We have presented a framework for extracting the eigen-
frequencies of nonspherical core-shell particles provided the
nonspherical distortion is small. The method is based on the
observation that in the EBCM, a resonant state can be defined
as the nontrivial solution to the equation Qaint = 0. We asso-
ciate with a particular resonant state a vanishing eigenvalue
λ

p
lm = 0. Then we employ matrix perturbation theory about

a base state for which the eigenvalue is known (i.e., a radi-
ally stratified sphere) to approximate the eigenvalue of the
nonspherical particle. For a core-shell particle, fulfilling the
condition λ

p
lm = 0 allows us to extract closed-form expres-

sions for the first-order frequency shift due to an axisymmetric
deformation. In order to use the formulas, the resonant size
parameter of the core-shell spherical particle needs to
be known a priori, which requires numerical root-finding
methods (however, these are well established [42] and
straightforward to implement). Notwithstanding, we provide a
comparison between the perturbation theory and a numerical
implementation of the T -matrix method in the framework of
the EBCM. For the small perturbations considered here, excel-
lent agreement is found between the two of them. Throughout
this work, we highlighted some very peculiar behavior in the

fractional shift of a MDR that can arise due to the core-shell
morphology of the deformed particle. For instance, we con-
sidered the case of a prolate shell with an embedded prolate
core with a smaller eccentricity. Depending on whether the
core or the shell has the highest refractive index, we observe
either a decrease or an increase in the splitting of the modes
with respect to a homogeneous particle consisting solely of
the shell. Further, we discussed the interesting case where the
splitting in a core-shell particle consisting of two concentric
prolate spheroids with n2 < n1 can give rise to the same split-
ting as in a homogeneous oblate spheroid. Finally, while we
applied our formalism to core-shell particles consisting of two
concentric spheroids, the perturbation theory can readily be
used to determine MDR positions for other geometries. To
accomplish this, one would choose a different radial profile
for the particle surface.
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FIG. 7. Fractional shift of the TE1
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n1 = 1.41 (n2 = 1.33) and in (c) and (d) these values are exchanged. The core-shell ratio is held fixed at α = 0.95.

APPENDIX A: LIST OF EXPRESSIONS FOR THE
CORE-SHELL Q MATRICES

1. TE modes

For the core-shell system, the diagonal elements of the Q
matrix for the TE mode are given by

ATE
lm =

∫ π

0
sin θdθ |Xlm|2W 31

1 (x1), (A1)

BTE
lm =

∫ π

0
sin θdθ |Xlm|2W 31

2 (x2), (A2)

CTE
lm =

∫ π

0
sin θdθ |Xlm|2W 33

1 (x1), (A3)

DTE
lm =

∫ π

0
sin θdθ |Xlm|2W 11

2 (x2). (A4)

Then the zeroth- and first-order terms in the Taylor expansions
are

ATE(0)
lm = W 31

1

(
x(0)

1

) ∫ π

0
sin θdθ |Xlm|2, (A5)

BTE(0)
lm = W 31

2

(
x(0)

2

) ∫ π

0
sin θdθ |Xlm|2, (A6)

CTE(0)
lm = W 33

1

(
x(0)

1

) ∫ π

0
sin θdθ |Xlm|2, (A7)

DTE(0)
lm = W 11

2

(
x(0)

2

) ∫ π

0
sin θdθ |Xlm|2, (A8)

ATE(1)
lm = [

W 31
1

(
x(0)

1

)]′
∫ π

0
sin θdθ |Xlm|2x(1)

1 , (A9)

BTE(1)
lm = [

W 31
2

(
x(0)

2

)]′
∫ π

0
sin θdθ |Xlm|2x(1)

2 , (A10)

CTE(1)
lm = [

W 33
1

(
x(0)

1

)]′
∫ π

0
sin θdθ |Xlm|2x(1)

1 , (A11)

DTE(1)
lm = [

W 11
2

(
x(0)

2

)]′
∫ π

0
sin θdθ |Xlm|2x(1)

2 . (A12)

Similar to the homogeneous case, coefficients of −1/ni are
omitted in the definitions of W jk

i as they factor out in the
analysis.
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FIG. 8. Fractional shift of the TE1
52,m and TM1

52,m modes as a function of the eccentricity. In all instances, the core and shell eccentricities
are related by ec = −es. In (a) and (b) the shell (core) has a refractive index of n1 = 1.41 (n2 = 1.33) and in (c) and (d) these values are
exchanged.

2. TM modes

Here we list the Taylor expansions necessary to conduct
the analysis for TM modes:

ATM
lm =

∫ π

0
sin θdθ

[
|Xlm|2X 31

1 (x1) + Pm
l

dPm
l

dθ
Y 31

1 (x1)

]
,

(A13)

BTM
lm =

∫ π

0
sin θdθ

[
|Xlm|2X 31

2 (x2) + Pm
l

dPm
l

dθ
Y 31

2 (x2)

]
,

(A14)

CTM
lm =

∫ π

0
sin θdθ

[
|Xlm|2X 33

1 (x1) + Pm
l

dPm
l

dθ
Y 33

1 (x1)

]
,

(A15)

DTM
lm =

∫ π

0
sin θdθ

[
|Xlm|2X 11

2 (x2) + Pm
l

dPm
l

dθ
Y 11

2 (x2)

]
,

(A16)

ATM(0)
lm = X 31

1

(
x(0)

1

) ∫ π

0
sin θdθ |Xlm|2, (A17)

BTM(0)
lm = X 31

2

(
x(0)

2

) ∫ π

0
sin θdθ |Xlm|2, (A18)

CTM(0)
lm = X 33

1

(
x(0)

1

) ∫ π

0
sin θdθ |Xlm|2, (A19)

DTM(0)
lm = X 11

2

(
x(0)

2

) ∫ π

0
sin θdθ |Xlm|2, (A20)

ATM(1)
lm =

∫ π

0
sin θdθ

[
|Xlm|2[X 31

1

(
x(0)

1

)]′
x(1)

1

+ Pm
l

dPm
l

dθ

dx(1)
1

dθ
Y 31

1

(
x(0)

1

)]
, (A21)

BTM(1)
lm =

∫ π

0
sin θdθ

[
|Xlm|2[X 31

2

(
x(0)

2

)]′
x(1)

2

+ Pm
l

dPm
l

dθ

dx(1)
2

dθ
Y 31

2

(
x(0)

2

)]
, (A22)
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FIG. 9. Fractional shift of the (a) TE1
52,m and (b) TM1

52,m modes
as a function of the core-shell ratio. The shell eccentricity is es =
4.743 × 10−4, with the core and shell eccentricities related by ec =
−es, and the shell (core) refractive index is n1 = 1.33 (n2 = 1.41).

CTM(1)
lm =

∫ π

0
sin θdθ

[
|Xlm|2[X 33

1

(
x(0)

1

)]′
x(1)

1

+ Pm
l

dPm
l

dθ

dx(1)
1

dθ
Y 33

1

(
x(0)

1

)]
, (A23)

DTM(1)
lm =

∫ π

0
sin θdθ

[
|Xlm|2[X 11

2

(
x(0)

2

)]′
x(1)

2

+ Pm
l

dPm
l

dθ

dx(1)
2

dθ
Y 11

2

(
x(0)

2

)]
. (A24)

APPENDIX B: TERMS FOR TM MODES

Here we sketch how the formulas for Al , Bl , and RTM
l are

obtained. We start by solving for k(1) by using Eqs. (A17)–

(A24), for which we get an equation of the form

k(1)

k(0)
= −E

a1E + a2F

∑
L

h(1)
L

[
1−E−G

E

L(L + 1)

2l (l + 1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈
Pm

l

∣∣Pm
l

〉
+ −F

a1E+a2F

∑
L

h(2)
L

[
1−F−H

F

L(L+1)

2l (l+1)

]〈
Pm

l

∣∣PL

∣∣Pm
l

〉
〈Pm

l |Pm
l 〉 .

(B1)

The terms E–H are defined as

E = X 31
2

[
X 31

1

]′ − X 11
2

[
X 33

1

]′
, (B2)

F = X 31
1

[
X 31

2

]′ − X 33
1

[
X 11

2

]′
, (B3)

G = X 31
2 Y 31

1 − X 11
2 Y 33

1 , (B4)

H = X 31
1 Y 31

2 − X 33
1 Y 11

2 . (B5)

Defining RTM
l = F/E , we have that

RTM
l = X 31

1

[
X 31

2

]′ − X 33
1

[
X 11

2

]′

X 31
2

[
X 31

1

]′ − X 11
2

[
X 33

1

]′

=
(

X 31
1

X 11
2

)2 X 11
2

[
X 31

2

]′ − X 31
2

[
X 11

2

]′

X 33
1

[
X 31

1

]′ − X 31
1

[
X 33

1

]′ , (B6)

where we used the resonance condition to get the last equality.
Expanding all the terms and using the Wronskian recovers the
expression in the main text. Now defining Bl = (E − G)/E ,
we have

Bl = X 31
2

[
X 31

1

]′ − X 11
2

[
X 33

1

]′ − [
X 31

2 Y 31
1 − X 11

2 Y 33
1

]
X 31

2

[
X 31

1

]′ − X 11
2

[
X 33

1

]′

= X 31
2 Z31

1 − X 11
2 Z33

1

X 31
2

[
X 31

1

]′ − X 11
2

[
X 33

1

]′ , (B7)

where Z jk
i is defined so that [X jk

i ]
′ = Y jk

i + Z jk
i . Using the

resonance condition and a bit of manipulation,

Bl = X 33
1 Z31

1 − X 31
1 Z33

1

X 33
1

[
X 31

1

]′ − X 31
1

[
X 33

1

]′ = 1

1 + X 33
1 Y 31

1 −X 31
1 Y 33

1

X 33
1 Z31

1 −X 31
1 Z33

1

. (B8)

After expanding the denominator of the above expression and
using the Wronskian, it is found that

X 33
1 Y 31

1 − X 31
1 Y 33

1

X 33
1 Z31

1 − X 31
1 Z33

1

= l (l + 1)

(n1x1)2

(
ξl (x1)

ξ ′
l (x1)

)2

. (B9)

This yields the term

Bl =
[

1 + l (l + 1)

(n1x1)2

(
ξl (x1)

ξ ′
l (x1)

)2]−1

. (B10)

From the above, it is easy to see that Al = (F − H )/F is
obtained by following the same steps.
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