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Magnomechanical phonon laser beyond the steady state
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Phonon lasers, the mechanical analogs of optical lasers, have long been a subject of interest as they provide
coherent sound waves. We numerically study a magnomechanical phonon laser that operates under a general
continuous-wave pump. This system consists of a microwave cavity, a sphere of magnetic material (yttrium iron
garnet), a microwave drive pump, and a uniform external bias magnetic field. A population inversion between
the supermodes of the system leads to phonon laser action. We study the population inversion and the stimulated
emission of phonons under various conditions, such as different drive pump powers and detunings. Unlike
previous studies, our results show that the population inversion between the supermodes oscillates with time.
Despite the oscillations of the population inversion, one can achieve relatively large stimulated phonon emission
if the power of the drive pump is beyond a threshold. Moreover, the optimum operation occurs if the frequency
of the drive field matches the frequencies of the cavity photons and magnons. Since it is highly tunable with low
loss and has an extra degree of freedom provided by the constant magnetic field, it is possible to develop the
system into an alternative to the optomechanical phonon lasers.
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I. INTRODUCTION

Phonon lasers generate intensified, coherent sound oscil-
lations (mechanical vibrations) induced by optical pumping
[1]. Since sound waves propagate 5 orders of magnitude
slower than the speed of light, their wavelength is much
shorter than that of light waves of the same frequency [2].
Therefore, one can perform precise, nondestructive measure-
ments and achieve a high concentration of energy using
focused sound waves. The phonon laser has potential appli-
cations in audio filtering, acoustic imaging, highly precise
sensing, imaging or switching, and topological sound control
[3–11].

Phonon lasers have been investigated in some platforms
such as in a trapped ion system driven by optical forces [12],
quantum dots [13–15], superlattices [16], electromechanical
resonators [17], and optomechanical systems [1,18–22]. Re-
cently, a phonon laser in a cavity magnomechanical system
has been proposed [23,24]. The system includes a microwave
cavity, a small sphere of magnetic material, a uniform external
bias magnetic field, and a microwave drive pump (Fig. 1). The
magnetic material should have a high spin density and a strong
spin-spin exchange interaction so that it can support a Kittel
mode (uniform magnetostatic mode) [25] with a relatively low
damping rate. One of the most promising materials for the
magnetic sphere is yttrium iron garnet (YIG), which can have
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a strong coupling to cavity photons [26–30], phonons [31],
and superconducting qubits [32,33].

Compared with its optomechanical counterpart, the mag-
nomechanical phonon laser introduced in Refs. [23,24] has
an additional degree of freedom—an adjustable, uniform
magnetic field. Its high tunability enables the cavity mag-
nomechanical systems to be a promising platform to develop
various novel phenomena such as microwave-to-optical quan-
tum transducers for quantum information processing [34] and
quantum-enhanced detection of magnons in magnon spintron-
ics [35,36]. However, the previous schemes of magnomechan-
ical phonon laser were studied under the assumption of a
steady-state condition. As we know from certain optomechan-
ical phonon lasers, say, the PT -symmetric ones, a truly steady
state does not exist under the normal operation conditions, and
the key parameters, such as the population inversion between
the supermodes and the phonon emission, can vary with time
[22,37]. In magnomechanical systems, the magnetostriction
force (the expansion or contraction of a magnetic material
in response to a magnetic field [38]) plays a role similar
to the radiation pressure force in optomechanical systems.
Therefore, one may ask whether the dynamical behavior of a
magnomechanical phonon laser demonstrates is important to
its operation. In this paper, we address this question by inves-
tigating the magnomechanical phonon laser in the dynamical
regime.

We organize the rest of the paper as follows. In Sec. II,
we first introduce the system and its Hamiltonian, and then
we linearize the nonlinear equations of motion of the system
by a special method of decomposing the total time evolution
operator [39–41]. Afterward, based on the physical picture in
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FIG. 1. Schematic diagram of the magnomechanical phonon
laser. Panel (a) shows the magnetic sphere is inserted in the mi-
crowave cavity mode. An external magnetic field B along the z
direction provides a uniform magnon mode for the magnetic sphere.
Moreover, we have applied a drive microwave pump with the am-
plitude Ed and the angular frequency ωd along the x direction.
Panel (b) symbolically shows that the magnetic sphere deforms in
response to the magnetic field of the microwave cavity mode. Panel
(c) demonstrates the schematic analogy between an optical laser and
the phonon laser. Here the stimulated transition of phonons occurs
between the two supermode states of the cavity, ô†

1|0〉 and ô†
2|0〉,

and their occupation numbers 〈ô†
i ô

†
i 〉 (i = 1 and 2) are generally time

dependent in the dynamical operation of the setup.

Sec. III, we simulate the behaviors of the population inversion
and the phonon number by considering different parameters
in Sec. IV. Finally, in Sec. V, we summarize our results.

II. MODEL AND METHOD

A. System Hamiltonian

Figure 1 shows the scheme of the magnomechanical
phonon laser. Like in Ref. [23], we place a highly polished
magnetic sphere (regarded as an ensemble of N spins) of
1 mm in diameter in a microwave cavity. Simultaneously, we
apply a uniform external bias magnetic field B in the vertical
direction z. This adjustable magnetic field (varying between 0
and 1 T) collectively excites the spins of the magnetic sample
and aligns them along the z direction—magnons. When the
static magnetic field is uniform, one calls the corresponding
mode the Kittel mode. The magnon mode Hamiltonian is
Ĥmagnon = ωmm̂†m̂, where ωm is the angular frequency of the
magnon mode, and m̂† and m̂ are the creation and annihila-
tion operators of the magnon, respectively. The frequency of
the magnon mode is related to the magnetic field by ωm =
γgB/μ0, where γg = 2π × 28 GHz/T is the gyromagnetic
ratio and μ0 = 4π × 10−7 H/m is the vacuum permeabil-
ity. The uniform magnetic field establishes the Kittel mode
and mediates the coupling between the magnons and cavity
photons of the angular frequency ωa. One can write the Hamil-
tonian of the cavity photons as Ĥphoton = ωaâ†â, where â† and
â are the creation and annihilation operators of the microwave
photon in the mode, respectively. The coupling depends on
the position of the magnetic sample and the intensity of the
magnetic field.

Moreover, we apply a microwave drive pump along the x
direction to harmonically excite the magnon mode. Since the
directions of B, the magnetic field of the drive pump, and

the magnetic field of the cavity mode are perpendicular to
each other, we can adjust each one independently. Further-
more, we assume that the diameter of the magnetic sphere
is much smaller than the wavelength of the cavity modes
so that the photon-photon coupling is negligible. We set the
position of the magnetic sphere to the maximum amplitude
of the microwave field. The time-dependent magnetic field
of the pump harmonically drives the magnons and changes
the magnetization. Therefore, the magnetic sphere is har-
monically deformed (magnetostriction effect), converting it
to a mechanical resonator with the phonon mode of angular
frequency ωb. Thereby, the magnetostrictive interaction leads
to the coupling between magnons and phonons. The overlap
between the uniform magnon mode and the phonon mode
determines the magnetostrictive coupling strength.

The Hamiltonian of the microwave drive pump is Ĥd =
iEd (m̂†e−iωd t − m̂ eiωd t ), where ωd is the drive pump fre-
quency and Ed =

√
5

4 γg
√

ρVB0 is the amplitude of the drive
field. In this equation, V is the volume of the magnetic sam-
ple, ρ = 4.22 × 1027 m−3 is the spin density of the magnetic
sphere, and B0 is the amplitude of the magnetic field of the
drive pump [42]. Notice we use the magnetic field of the pump
to drive the system and, hence, it includes m̂.

The Hamiltonian Ĥdipole = J (âm̂† + â†m̂) describes the
magnon-photon coupling, which is similar to a scattering of
the magnons into the cavity photons through magnetic dipole
interaction. The coupling strength J between the Kittel mode
and the microwave cavity field mode, which can be tuned by
changing the position of the magnetic sphere [23], is given by
1
2 g∗μBδB

√
N , where g∗ is the g factor and μB is the Bohr mag-

neton. This coupling is enhanced collectively by the factor√
N if there are N fully polarized spins in the unit volume of

the ensemble, an effect like the collective enhancement of the
atom-field coupling in atomic ensembles. Using an embedded
Jaynes-Cummings model, the enhancement by

√
N times was

found for the magnetic dipole coupling of an ensemble of
spins to a superconducting microwave stripline structure [43].
The parameter δB is the amplitude of the vacuum fluctuations
of the microwave cavity magnetic field in the ferromagnetic
crystal, and it is transverse to the external magnetic field.
If the microwave magnetic field is uniform throughout the
ferromagnetic crystal, the magnetic dipole coupling vanishes
except for the uniform magnetostatic (Kittel) mode [34] so
that the coupling between higher-order magnetostatic modes
and a microwave cavity mode requires a nonuniform cavity
magnetic field. If J � γm, γa, where γm and γa are the damp-
ing rates of the magnon and photon modes, the hybrid system
will enter the strong coupling regime [36].

The Hamiltonian of the magnomechanical interaction is
given by ĤM = −gm̂†m̂(b̂ + b̂†), where g is the magnome-
chanical coupling factor (the derivation of the Hamiltonian
is given in the Supplemental Material for Ref. [31]). This
interaction is usually negligible in the typical experiments, but
one can significantly enhance it by driving the magnon mode
with a sufficiently intense microwave field [42].

The total Hamiltonian can be written as the sum of the
linear and nonlinear parts:

Ĥ = ĤL + ĤNL, (1)
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where

ĤL = ωaâ†â + ωmm̂†m̂ + ωbb̂†b̂ + J (â†m̂ + m̂†â)

+ iEd (m̂†e−iωd t − m̂ eiωd t ),

ĤNL = −gm̂†m̂(b̂ + b̂†). (2)

Then we obtain the differential equations that
describe the time evolution of the system
operators:

˙̂a = −(iωa + γa)â − iJm̂,

˙̂m = −(iωm + γm)m̂ − iJâ + igm̂(b̂ + b̂†) + Ed e−iωd t ,

˙̂b = −(γb + iωb)b̂ + igm̂†m̂, (3)

where γb is the damping rate of the phonon mode. In our
analysis, we apply a strong pumping field so that |m̂| � 1 and
|â| � 1. Moreover, we are primarily concerned with the “co-
herent” emission of phonons (similar to the coherent emission
of photons in an optical laser [44]) instead of the quantum
features of the mechanical field (such as the correlations in the
mechanical field). Therefore, we neglect the quantum noise
contributions in Eq. (3), though they may slightly modify the
results without giving a qualitative change as in the coupled
cavity systems [45].

The common method to solve the similar systems of non-
linearity is converting each operator (say, â) to a classical
average value plus a quantum fluctuation: â → 〈â〉s + δâ [46].
This approximation assumes the existence of a steady-state
〈â〉s of the system, which should be found in the mean-field
approximation of the nonlinear dynamical equations of mo-
tion. However, in many realistic situations, there does not exist
a time-independent or simple harmonic oscillating steady
state for the magnomechanical phonon laser. For this reason,
we adopt an alternative method for linearizing the system
dynamics as in Refs. [22,39–41,47–52].

B. Linearization of dynamics

Referring to Refs. [39–41], we can decompose the total
time evolution operator as follows:

Û (t ) = T̂ exp

{
−i

∫ t

0
ds[ĤL(s) + ĤNL(s)]

}

= ÛL(t ) × T̂ exp

{
−i

∫ t

0
ds Û †

L (s)ĤNL(s)ÛL(s)

}

= ÛL(t ) × T̂ exp

{
−i

∫ t

0
ds [Ĥ1(s) + Ĥ2(s)]

}

= ÛL(t )T̂ exp

{
−i

∫ t

0
ds Û2(t, s)Ĥ1(s)Û †

2 (t, s)

}
Û2(t )

≡ ÛL(t )Û1(t )Û2(t ), (4)

where T̂ indicates the time ordering and Ûi(t ) = T̂ exp [ −
i
∫ t

0 ds Ĥi(s)]. In the second line of this equation, we have
decomposed the total time evolution from the left, and in the
fourth line we have decomposed the remaining part of the time
evolution from the right side. First, we find ÛL(t ) as

ÛL(t ) = T̂ exp

[
−i

∫ t

0
ĤL(s) ds

]

= exp

[
− iωat â†â − iωmt m̂†m̂ − iωbt b̂†b̂

− iJt (â†m̂ + m̂†â) + i
Ed

ωd
m̂†(e−iωd t − 1)

+ i
Ed

ωd
m̂(eiωd t − 1)

]
. (5)

To attain Û †
L (τ )ĤNLÛL(τ ) ≡ Ĥ1(τ ) + Ĥ2(τ ), we first should

obtain Û †
L (τ )ĉÛL(τ ), where ĉ = â, m̂, and b̂. If ÛL ≡ e−Ĝ and

Â(t ) ≡ eĜâe−Ĝ, where Ĝ† = −Ĝ, then

dÂ

dt
= eĜ

[
dĜ

dt
, â

]
e−Ĝ =

[
dĜ

dt
, Â

]
. (6)

Similarly, we define M̂(t ) ≡ eĜm̂e−Ĝ and B̂(t ) ≡ eĜb̂e−Ĝ. Af-
ter the simplification we obtain

d

dt

⎛
⎝ Â

M̂
B̂

⎞
⎠ =

⎛
⎝−iωa −iJ 0

−iJ −iωm 0
0 0 −iωb

⎞
⎠

⎛
⎝ Â

M̂
B̂

⎞
⎠ +

⎛
⎝ 0

Ed e−iωd t

0

⎞
⎠.

(7)

We define � ≡ 1
2

√
4J2 + (ωa − ωm)2, 	 ≡ ωa − ωm, and

η ≡ 1
2 (ωa + ωm). Also, noting that Â(0) = â, M̂(0) = m̂, and

B̂(0) = b̂, we define the “superoperators” or hybrid photon-
magnon modes as

ô1 ≡ â + m̂√
2

, ô2 ≡ â − m̂√
2

. (8)

The superoperators are the orthogonal eigenstates of the Her-
mitian Hamiltonian ωaâ†â + ωmm̂†m̂ + J (â†m̂ + m̂†â). Then,
the solution of Eq. (7) in terms of the supermode operators is

⎛
⎝ Â(t )

M̂(t )
B̂(t )

⎞
⎠ = 1√

2

⎛
⎝cos(�t ) − i 	

2�
sin(�t ) − i J

�
sin(�t )e−iηt cos(�t ) − i 	

2�
sin(�t ) + i J

�
sin(�t )e−iηt 0

cos(�t ) + i 	
2�

sin(�t ) − i J
�

sin(�t )e−iηt − cos(�t ) − i 	
2�

sin(�t ) − i J
�

sin(�t )e−iηt 0
0 0 e−iωbt

⎞
⎠

⎛
⎝ô1

ô2

b̂

⎞
⎠

+

⎛
⎜⎝

iEd (4�2−	2 )
8J�

(
e−i(�+η)t −e−iωd t

η+�−ωd
+ ei(�−η)t −e−iωd t

η+�−ωd

)
iEd
4�

( (2�−	)(e−i(�+η)t −e−iωd t )
η+�−ωd

+ (2�+	)(ei(�−η)t −eiωd t )
�−η+ωd

)
0

⎞
⎟⎠ ≡

⎛
⎝α11 α12 0

α21 α22 0
0 0 e−iωbt

⎞
⎠

⎛
⎝ô1

ô2

b̂

⎞
⎠ +

⎛
⎝E1

E2

0

⎞
⎠.
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Knowing how A, M, and B evolve with time, we can find Ĥ1 and Ĥ2 as

Ĥ1 = −g(α21E∗
2 ô1 + α22E∗

2 ô2 + α∗
21E2ô†

1 + α∗
22E2ô†

2 + |E2|2)(B̂ + B̂†) (9)

and

Ĥ2 = − g(α21α
∗
21ô†

1ô1 + α21α
∗
22ô†

2ô1 + α22α
∗
21ô†

1ô2 + α22α
∗
22ô†

2ô2)(B̂ + B̂†). (10)

Ĥ1 describes the coupling between the two-level system of supermodes and the phonons, and Ĥ2 is a nonlinear Hamiltonian
without being intensified by the pump field (it does not contain a factor of Ed ).

We assume the quantum state of our system is the product of a cavity vacuum state and the mechanical thermal state, as well as
a vacuum magnon state, i.e., ρ(0) = |0〉a〈0| ⊗ |0〉m〈0| ⊗ ∑∞

n=0 nth/(1 + nth )n+1|n〉〈n|, where nth is the thermal reservoir mean
occupation number, to have H2(t )|0〉c = 0. Having the specific forms of Ĥ1 and Ĥ2, we can write the supermode populations as

〈ô†
i ôi(t )〉 = Tr(Û †

2 (t )Û †
1 (t )Û †

L (t )ô†
i ôiÛL(t )Û1(t )Û2(t )ρ(0))

= Tr(Û †
1 (t )Û †

L (t )ô†
i ôiÛL(t )Û1(t )Û2(t )ρ(0)Û †

2 (t ))

= Tr(Û †
1 (t )Û †

L (t )ô†
i ôiÛL(t )Û1(t )ρ(0)), (11)

for i = 1 and 2, where the action Û2(t ) does not change the quantum state. The supermode populations 〈ô†
i ôi(t )〉,

therefore, only evolve as the result of the successive actions of ÛL(t ) and Û1(t ). In the definition of Û1(t ) =
T̂ exp[−i

∫ t
0 dsÛ2(t, s)Ĥ1(s)U †

2 (t, s)], we apply the Taylor expansion to Û2. Since g � �, J, η, ωa, ωm, γa, γm, we can safely
neglect all terms including g2 and higher orders. This is the only approximation we use in the procedure. One should note that
the effect of a nonlinear magnomechanical term is included in Ĥ1 because of the factor g it contains. This approximation, which
is independent of the value of Ed , linearizes the equations of motion. Note that the unitary operation ÛL(t ) only displaces the
supermode operators in Eq. (11) and the evolution of Û1 determines the equations of motion.

The action Û1(t ) of the Hamiltonian Ĥ1 leads to a system of linear equations [53]:

d

dt
ô1 = −(α11α

∗
11γa + α21α

∗
21γm)ô1 − (α12α

∗
11γa + α22α

∗
21γm)ô2 + igα∗

21E2(b̂e−iωbt + b̂†eiωbt ) + λ1,

d

dt
ô2 = −(α11α

∗
12γa + α11α

∗
22γm)ô1 − (α12α

∗
12γa + α22α

∗
22γm)ô2 + igα∗

22E2(b̂e−iωbt + b̂†eiωbt ) + λ2,

d

dt
b̂ = igα21E∗

2 eiωbt ô1 + igα∗
21E2eiωbt ô†

1 + igα22E∗
2 eiωbt ô2 + igα∗

22E2eiωbt ô†
2 − γbb̂ + λ3. (12)

Its compact form

d

dt
ĉ = Mĉ + λ(t ), (13)

where

ĉ = (ô1, ô†
1, ô2, ô†

2, b̂, b̂†)T , (14)

and

λ1 = −(γaα
∗
11E1 + γmα∗

21E2),

λ2 = −(γaα
∗
12E1 + γmα∗

22E2),

λ3 = ig|E2|2eiωbt , (15)

has the solution

ĉ(t ) = T̂ exp

[∫ t

0
dτ M(τ )

]
ĉ(0)

+
∫ t

0
dτ T̂ exp

[∫ t

τ

ds M(s)

]
λ(τ )

≡ ĉs(t ) + ĉds(t ), (16)

where ĉs(t ) and ĉds(t ) are the homogeneous and inhomoge-
neous parts of the solution, respectively. We can formally

write

T̂ exp

[∫ t

τ

ds M(s)

]

=

⎛
⎜⎜⎝

d11(t, τ ) d12(t, τ ) . . . d16(t, τ )
d21(t, τ ) d22(t, τ ) . . . d26(t, τ )

...
. . .

d61(t, τ ) d66(t, τ )

⎞
⎟⎟⎠. (17)

Since there is no analytical expression for the matrix exponen-
tial, we use the following product

T̂ exp

[∫ t

0
ds M(s)

]
≈

0∏
i=N−1

(1 + M(si ) h), (18)

where the step size h is chosen so small to assure
M(si )M(si+1) = M(si+1)M(si), to numerically calculate the
evolved operators. We use the algorithm developed in
Refs. [22,37] to deal with such evolutions of the system op-
erators.

C. Supermode population inversion

There are two terms in the solution (16). The supermode
populations from the first term are obtained by taking the
average of 〈ô†

i,sôi,s(t )〉 with respect to the system’s initial state
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ρ(0). This part of the contribution is found as

〈ô†
1,sô1,s〉 = d21(t, 0) d12(t, 0) + d23(t, 0) d14(t, 0)

+ d25(t, 0) d16(t, 0)(nth + 1)

+ d26(t, 0) d15(t, 0) nth (19)

and

〈ô†
2,sô2,s〉 = d41(t, 0) d32(t, 0) + d43(t, 0) d34(t, 0)

+ d45(t, 0) d36(t, 0)(nth + 1)

+ d46(t, 0) d35(t, 0) nth. (20)

Considering the displacement terms due to the action of
ÛL(t ), the second pure drive term λ(t ) yields the following
contribution:

〈ô†
1,dsô1,ds〉 = |E1 + E2 + ô1,ds(t )|2,

〈ô†
2,dsô2,ds〉 = |E1 − E2 + ô2,ds(t )|2, (21)

where

ô1,ds =
∫ t

0
dτ [d11(t, τ ) λ1 + d12(t, τ ) λ∗

1 + d13(t, τ ) λ2

+ d14(t, τ ) λ∗
2 + d15(t, τ ) λ3 + d16(t, τ ) λ∗

3] (22)

and

ô2,ds =
∫ t

0
dτ [d31(t, τ ) λ1 + d32(t, τ ) λ∗

1 + d33(t, τ ) λ2

+ d34(t, τ ) λ∗
2 + d35(t, τ ) λ3 + d36(t, τ ) λ∗

3]. (23)

The quantum noises may modify the result, but their con-
tribution is neglected here because the main source of such
contribution due to the thermal environment is proportional to
the small damping rate γb of the mechanical mode.

After numerically solving Eq. (13) and using Eq. (11), we
obtain the total supermode populations as

〈ô†
i ôi〉 = 〈ô†

i,sôi,s〉 + 〈ô†
i,dsôi,ds〉. (24)

Then, we define the population inversion as

	N = 〈ô†
1ô1〉 − 〈ô†

2ô2〉. (25)

This quantity determines the performance of the magnome-
chanical phonon laser.

III. OPERATION OF THE MAGNOMECHANICAL
PHONON LASER

Like an optical laser, the phonon laser demonstrates
properties such as threshold, gain saturation, and linewidth
narrowing in the lasing regime [19,54–56], but its operation
is different. The medium of an optical laser is material, the
transition occurs between the energy levels or bands, and the
output is an optical beam (cavity mode). On the other hand,
the two supermodes of the magnomechanical system form
the medium of the phonon laser, the thermal or spontaneous
phonons mediate the transition between the supermodes, and
the material as a phonon mode provides the output (stimulated
phonons) [1,18].

The magnetostriction interaction in magnomechanical sys-
tems plays the role of radiation pressure in optomechanical

FIG. 2. The population inversion between superoperators for dif-
ferent values of the drive pump. Here we have set γa = 2.6 MHz,
γm = 1.6 MHz, γb = 628 Hz, ωa = ωm = ωd = 20π GHz (the res-
onant condition), ωb = 24π MHz, J = 2π MHz, g = 0.2π Hz, and
nth = 2.4 × 105. (a) One obtains a higher population inversion for
a stronger drive pump. The green (bottom), red (middle), and blue
(top) curves correspond to drive powers Ed = 2 × 1013 γa, Ed =
3 × 1013 γa, and Ed = 4 × 1013 γa, respectively. (b) The normalized
amplified stimulated phonon emission. The green (bottom), red (mid-
dle), and blue (top) curves correspond to drive powers Ed = 1.2 ×
1014 γa, Ed = 1.4 × 1013 γa, and Ed = 1.6 × 1013 γa, respectively. If
we double the drive power, the difference between the amplified
stimulated phonon fields is several orders of magnitude in long time
scales. We have used stronger drive pump powers in panel (b).

systems. However, unlike the radiation pressure force, the
magnetostrictive force is highly tunable via the external mag-
netic fields. This feature allows one to achieve a controllable
phonon laser [24]. Building up a mechanical mode by mag-
netostriction is the foundation for such phonon lasing. We
can describe the whole process as follows. Initially, we place
the magnetic sample in the microwave cavity. The uniform
magnetic field B generates a uniform magnon (Kittel) mode
in the magnetic sphere. On the other hand, the time-dependent
magnetic field of the microwave drive excites the magnons
harmonically, and the magnetostriction effect deforms the
magnetic sphere sinusoidally, converting it to a resonator.
Now the system can be modeled by three types of quan-
tized oscillations: the first one stands for the microwave
cavity field, which is between two mirrors; the second rep-
resents the magnetization in the magnetic sample; and the
third is the stimulated mechanical oscillation over the mag-
netic sphere. The magnetic dipole interaction Ĥdip couples the
quantized microwave cavity field (photons) to the quantized
magnons, and the magnomechanical interaction ĤM couples
the magnons with the phonons. The magnons and microwave
photons of the coupled resonators form the superoperators
defined in Eq. (8). This process is similar to the optome-
chanical system of two coupled whispering-gallery-mode
resonators in which the circulating photons in each one form
the hybrid modes or supermodes [22]. We define the superop-
erators as the symmetric and antisymmetric combinations of

033511-5



VASHAHRI-GHAMSARI, LIN, HE, AND XIAO PHYSICAL REVIEW A 104, 033511 (2021)

FIG. 3. (a)–(c) The population inversion for the same parameters used in Fig. 2, but here we allow a nonzero detuning between the
frequencies of the cavity photons and the magnons. In panel (a), the system is in resonant condition. The panels (b) and (c) correspond to
ωa − ωm = 0.01 GHz and ωa − ωm = −0.01 GHz, respectively. The population inversion is 1 order of magnitude larger than these nonresonant
cases. (d) The amplified phonon emission for the same parameters used in panels (a)–(c): blue (top) curve for panel (a), green (middle) curve
for panel (b), and red (bottom) curve for panel (c). To obtain a strong phonon emission, the detuning must be smaller than 1 MHz.

magnon and photon modes, and they form a two-level system
(TLS).

The microwave drive pump excites the mechanical mode
associated with the quantized phonons in the magnetic
sample. These phonons, which we call “thermal phonons,”
mediate the transition between the upper and lower levels of
the TLS and will be amplified to the stimulated phonon field
under the condition of population inversion. One can draw
an analogy between the spontaneous and stimulated emission
in an optical laser and the thermal and stimulated phonons
in a phonon laser. To achieve a reasonably strong stimulated
phonon field, one should provide a high population inversion
condition between the supermodes. As discussed in the previ-
ous section, the population inversion is a dynamical quantity,
whereas in, e.g., Refs. [18–20,23], it is treated as a constant
value. Similar to an optical laser [44], the phonon laser dy-
namical equations take the following forms [18,19,22,37],

dbs

dt
= (−γb − iωb)bs − i

g

2
p,

d p

dt
= i

g

2
	N (t )bs + (−γa − γm − 2iJ )p, (26)

by plugging in the dynamically evolving 	N (t ), where p =
〈ô†

2ô1〉. In Eq. (26) we have used a subscript “s” to indi-
cate the stimulated phonon field. The variables in Eq. (26)
are mean-field ones, but the population inversion 	N (t ) is
determined quantum mechanically. This is similar to the semi-
classical treatment of an atomic level transition, in which the
atomic levels are described quantum mechanically while the
radiations are regarded as classical. Because of the mean-
field treatment, there are no noise terms in Eq. (26). After

we numerically solve the system of differential equations in
Eq. (26), we obtain the intensified field bs(t ). In the following
section, we demonstrate the dynamical evolutions of the popu-
lation inversion 	N and the amplification ratio for the phonon
number |bs(t )/bs(0)|2. Here we use the parameters close to the
experimental values used in other setups [31].

IV. PHONON LASING UNDER VARIOUS
SYSTEM CONDITIONS

A. Relevance of the pump power

We are interested in knowing how the population inver-
sion and the stimulated phonon emission vary under different
conditions. In the first case, we assume all parameters are
fixed, except the drive pump Ed . In Fig. 2, we choose these
parameters: γm = 1.6 MHz, γb = 628 Hz, ωa = ωm = ωd =
20π GHz (the resonant condition), ωb = 24π MHz, J =
2π MHz, g = 0.2π Hz, and nth = 2.4 × 105. In the numerical
calculations, we choose γa as the parameter to normalize all
other parameters so that the algorithm works with the dimen-
sionless parameters. Here Ed is a variable, with its order of
magnitude being 1013 in Fig. 2(a) and being 1014 in Fig. 2(b).

Figure 2(a) shows that the population inversion demon-
strates a pattern of the fast oscillations modulated by a slow
oscillation, like in a wave packet with a certain envelope. Sim-
ilar to the optomechanical phonon laser, where the oscillation
of the mechanical mode brings about the sidebands with the
multipliers of the mechanical frequency to the cavity fields,
the mechanical mode here induces those sidebands to the
magnon field and the cavity field, thus leading to the different
oscillating components of the supermodes. As we increase
the power of the drive pump, we obtain a higher population
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FIG. 4. (a)–(c) The population inversion for the same parameters used in Fig. 3, but here we allow a nonzero detuning between the
frequencies of the drive pump and those of the cavity photons and the magnons. Panel (a) shows the system in the resonant condition. Panels
(b) and (c) correspond to ωd − ωa = 0.001 and ωd − ωa = −0.001 GHz, respectively. To have a reasonably large population inversion, the
detuning should be smaller than 1 MHz. (d) The amplified phonon emission for the same parameters used in panels (a)–(c): blue (top) curve
for panel (a) and red (bottom) (curve) for panels (b) and (c). The green curve is coincident on the red curve and, hence, invisible. Here there is
no stimulated phonon emission for the negative detuning.

inversion, but the maximum and the minimum in its evolved
envelops still occur at where they are for a lower pump power.
We also observe the same behavior for the stimulated phonon
emission—a stronger phonon emission is achieved for higher
drive power in Fig. 2(b). The time-dependent magnetic field
in the cavity increases with the power of the drive pump, to
have a more intense magnetostriction interaction and, hence,
a better phonon lasing.

B. Detuning effect

In addition to the drive pump power and the magnon-
photon coupling strength, the resonance condition of the
system can affect the phonon laser operation. In Fig. 3, we fix
the values of the drive pump power and the magnon-photon
coupling strength to Ed = 5 × 1013 γa and J = 2π × 105 γa,
but allow a nonzero detuning of ωa − ωm = ±0.001 GHz.
As we observe in Figs. 3(a)–3(c), the population inversion
can be 1 order of magnitude larger in the resonant condition.
Also, the amplified phonon emission is much larger under the
resonant condition after a long duration for those values of
detuning. The detuning is relatively large (106 Hz). Thus one
can see that, to have the best operation, the detuning must be
less than 1 MHz, so as not to affect the population inversion
and the phonon emission substantially.

We also investigate the mismatch between the frequency
of the drive pump ωd and that of the cavity photon ωa and the
magnon ωm. As we expect, the patterns in Figs. 3(a)–3(d) also
exist in Figs. 4(a)–4(d), where we use the same parameters as
those in Fig. 3, but fix ωa = ωm = 20π GHz and allow a vari-
able ωd . In Fig. 4(a), the system is in the resonant condition.

In Figs. 4(b) and 4(c), we set ωd − ωa = 0.001 GHz and ωd −
ωa = −0.001 GHz, respectively. Particularly, in Fig. 3(d), one
sees that no phonon lasing will exist when the detuning is
ωd − ωa = −0.001 GHz. An analog in photon laser is that, if
one drives a two-level atom at a frequency very different from
the transition frequency, no lasing will occur as well. To the
currently concerned phonon laser, there will not be an efficient
phonon field amplification if the pump frequency mismatches
the frequencies of the cavity photon and magnon.

V. DISCUSSION AND CONCLUSION

Similar to an optical laser, one has the gain and the thresh-
old for the magnomechanical laser. The gain of an optical laser
depends on the population inversion between the ground state
and the excited state. The larger the population inversion is,
the higher the gain of the field will be. Furthermore, in an
optical laser, the pump power should be beyond a “threshold”
to provide the condition of population inversion. The same
argument is valid to the concerned phonon laser. In contrast to
the steady-state assumption, we here target the more general
situation that the population inversion can be time dependent,
so we adopt a different approach to the linearization of the
system dynamics and an analysis of the population inversion
in a numerical way.

It is also possible to study the pulsed phonon laser in the
approach we adopt. The pump field Ed (t ) can take any form
in principle, and a sufficiently strong pump in pulses may give
rise to a pulsed output of the stimulated phonon field. This
issue should be studied with a further improved numerical tool
in the future.

033511-7



VASHAHRI-GHAMSARI, LIN, HE, AND XIAO PHYSICAL REVIEW A 104, 033511 (2021)

In summary, we have studied a magnomechanical phonon
laser beyond the steady-state approximation. Our numerical
simulations show that the population inversion between the
upper and lower supermodes of the system constantly varies
with time, in contrast to an assumption of constant population
inversion in the previous studies. We investigate the phonon
laser performance, in terms of the population inversion and
stimulated phonon field under various system conditions,
such as the pump powers, magnon-photon couplings, and
detunings. Despite the time-dependent population inversion,
one can achieve a relatively strong emission of stimulated

phonons if the power of the drive pump is beyond a threshold.
The increase of the pump power enables a stronger phonon
lasing. A lower magnon-photon coupling can lead to a higher
population inversion and a better phonon lasing. Moreover,
the phonon laser will have the optimum operation when the
frequency of the drive field matches the frequencies of the cav-
ity photons and magnons. Since the magnomechanical system
we consider is highly tunable with low loss and has an extra
degree of freedom provided by a magnetic field, it can work
as an alternative to a phonon laser based on optomechanical
systems.
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[19] H. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F.

Nori, Phys. Rev. Lett. 113, 053604 (2014).
[20] Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, Phys.

Rev. Applied 10, 064037 (2018).
[21] R. M. Pettit, W. Ge, P. Kumar, D. R. Luntz-Martin, J. T. Schultz,

L. P. Neukirch, M. Bhattacharya, and A. N. Vamivakas, Nat.
Photonics 13, 402 (2019).

[22] B. He, L. Yang, and M. Xiao, Phys. Rev. A 94, 031802(R)
(2016).

[23] M.-S. Ding, L. Zheng, and C. Li, Sci. Rep. 9, 15723 (2019).
[24] Y. Xu, J.-Y. Liu, W. Liu, and Y.-F. Xiao, Phys. Rev. A 103,

053501 (2021).
[25] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,

New York, 2004).
[26] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Phys. Rev. Lett.

113, 156401 (2014).
[27] Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-

P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, Phys. Rev. B 94,
224410 (2016).

[28] J. A. Haigh, S. Langenfeld, N. J. Lambert, J. J. Baumberg, A. J.
Ramsay, A. Nunnenkamp, and A. J. Ferguson, Phys. Rev. A 92,
063845 (2015).

[29] X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Phys. Rev. Lett.
117, 123605 (2016).

[30] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson,
Phys. Rev. Lett. 117, 133602 (2016).

[31] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Sci. Adv. 2,
e1501286 (2016) and see supplemental material.

[32] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki,
K. Usami, and Y. Nakamura, Science 349, 405 (2015).

[33] D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi,
T. Ishikawa, R. Yamazaki, and Y. Nakamura, Sci. Adv. 3,
e1603150 (2017).

[34] R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi,
R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. B 93,
174427 (2016).

[35] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Nat. Phys. 11, 453 (2015).

[36] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y.
Nakamura, Appl. Phys. Express 12, 070101 (2019).

[37] Y. F. Xie, Z. Cao, B. He, and Q. Lin, Opt. Express 28, 22580
(2020).

[38] K. M. Krishnan, Fundamentals and Applications of Magnetic
Materials (Oxford University, Oxford, 2016).

[39] B. He, Phys. Rev. A 85, 063820 (2012).
[40] Q. Lin, B. He, R. Ghobadi, and C. Simon, Phys. Rev. A 90,

022309 (2014)
[41] Q. Lin, B. He, and M. Xiao, Phys. Rev. Applied 13, 034030

(2020).
[42] M.-S. Ding, L. Zheng, and C. Li, J. Opt. Soc. Am. B 37, 627

(2020).

033511-8

https://doi.org/10.1038/s41566-018-0213-5
https://doi.org/10.1103/Physics.3.16
https://doi.org/10.1063/1.3459142
https://doi.org/10.1038/ncomms7427
https://doi.org/10.1103/PhysRevLett.118.033903
https://doi.org/10.1038/nature25156
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1126/science.1246957
https://doi.org/10.1063/1.4807838
https://doi.org/10.1103/PhysRevLett.114.145501
https://doi.org/10.1063/1.4919584
https://doi.org/10.1038/nphys1367
https://doi.org/10.1103/PhysRevLett.109.054301
https://doi.org/10.1103/PhysRevB.88.064305
https://doi.org/10.1103/PhysRevLett.111.186601
https://doi.org/10.1103/PhysRevLett.104.085501
https://doi.org/10.1103/PhysRevLett.110.127202
https://doi.org/10.1103/PhysRevLett.104.083901
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevApplied.10.064037
https://doi.org/10.1038/s41566-019-0395-5
https://doi.org/10.1103/PhysRevA.94.031802
https://doi.org/10.1038/s41598-019-52050-7
https://doi.org/10.1103/PhysRevA.103.053501
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevB.94.224410
https://doi.org/10.1103/PhysRevA.92.063845
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1126/sciadv.1603150
https://doi.org/10.1103/PhysRevB.93.174427
https://doi.org/10.1038/nphys3347
https://doi.org/10.7567/1882-0786/ab248d
https://doi.org/10.1364/OE.396893
https://doi.org/10.1103/PhysRevA.85.063820
https://doi.org/10.1103/PhysRevA.90.022309
https://doi.org/10.1103/PhysRevApplied.13.034030
https://doi.org/10.1364/JOSAB.380755


MAGNOMECHANICAL PHONON LASER BEYOND THE … PHYSICAL REVIEW A 104, 033511 (2021)

[43] A. Imamoglu, Phys. Rev. Lett. 102, 083602 (2009).
[44] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University, Cambridge, England, 1997).
[45] B. He, L. Yang, Z. Zhang, and M. Xiao, Phys. Rev. A 91,

033830 (2015).
[46] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[47] Q. Lin and B. He, Opt. Express 26, 33830 (2018).
[48] C. Wang, Q. Lin, and B. He, Phys. Rev. A 99, 023829 (2019).
[49] Q. Lin, B. He, and M. Xiao, Phys. Rev. A 96, 043812 (2017).
[50] B. He, L. Yang, Q. Lin, and M. Xiao, Phys. Rev. Lett. 118,

233604 (2017).

[51] Q. Lin and B. He, Opt. Express 23, 24497 (2015).
[52] B. He, S.-B. Yan, J. Wang, and M. Xiao, Phys. Rev. A 91,

053832 (2015).
[53] C. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin,

2004).
[54] H. Wu, G. Heinrich, and F. Marquardt, New J. Phys. 15, 123022

(2013).
[55] H. Wang, Z. Wang, J. Zhang, Ş. K. Özdemir, L.
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