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Frequency-tunable transient Cherenkov radiation from an inhomogeneous medium
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We propose a scheme to generate coherent radiation with a tunable frequency spectrum based on the excitation
of an inhomogeneous thin layer of a resonant medium by an ultrashort pulse. The Cherenkov-type radiation
emitted in a transient stage, i.e., while the excitation wavefront is still propagating over the medium, is shown
to contain additional frequency components, which are determined by the spatial frequency components of the
medium’s density distribution and the excitation geometry. We demonstrate that the spectral content of this
transient radiation can be adjusted in wide limits by controlling the spatial density distribution of the resonant
medium and the shape of the excitation wavefront. Our theoretical results pave the way towards simple and
compact swept-frequency or frequency-tunable optical oscillators as well as sources of the frequency-modulated
optical radiation.
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I. INTRODUCTION

Cherenkov radiation is the well-known phenomenon aris-
ing when a charged particle moves through a dielectric
medium with a speed greater than the speed of light in this
medium [1–4]. Cherenkov radiation emanates within a cone
with the cone angle determined by the ratio of the particle’s
speed and the speed of light in the medium. Cherenkov radi-
ation has found multiple applications so far in detection and
identification of high-energy charged particles in biomedical
imaging, astrophysics, and particle physics [2–10]. Besides
the charged particles, Cherenkov radiation was also found
to be generated by many propagating optical waves, such as
surface polaritons in metal-dielectric structures [11], a su-
perluminal spot of nonlinear polarization [12], and optical
solitons [13,14]. Finally, there are some nonphysical objects
which can propagate at superluminal velocities and can act
as sources of coherent electromagnetic radiation, including
Cherenkov radiation [15–18]. Among them are a spot of
light on a remote screen from a source rapidly rotating with
a constant angular velocity [15] and a spot of light arising
when a plane wavefront of an ultrashort pulse is incident on
a flat surface at an angle β [15]. In the latter case, the cross-
section point of the wavefront and the medium moves along
the medium with a superluminal velocity V = c/sin β > c. It
should be noted that such medium excitation at superlumi-
nal velocities does not violate the relativity theory. Indeed,
the relativity theory only prohibits the energy transfer with
superluminal velocities. At the same time the superluminal
motion of the intersection point and thus the superluminal
excitation of the medium’s oscillators is not accompanied by
such energy transfer. The superluminal energy transfer would
imply that the wave from a source of the excitation pulse
has reached some point of the medium faster than the light
in vacuum would do, which in fact does not occur, since
neither the excitation pulse nor the secondary radiation from

the medium’s oscillators propagate with velocities faster than
the vacuum speed of light.

Cherenkov radiation also has been investigated in different
spatially inhomogeneous media. The motion of a charged
particle above a periodic grating was found to give rise to the
Cherenkov-type radiation phenomenon known as the Smith-
Purcell effect [19,20]. In recent years Cherenkov radiation has
been actively studied in photonic crystals and metamaterials
[21–25] and a number of unusual features of the Cherenkov
radiation were discovered in such media. In particular, those
include the absence of a velocity threshold for the observa-
tion of the Cherenkov radiation [26–31], the possibility of
a backward-pointing radiation cone [32,33], and polarization
manipulation [34].

Among features, the spectral properties of Cherenkov radi-
ation attract a great deal of interest. The classical Cherenkov
radiation of a moving charge in a dielectric medium exhibits
a broad and rather unstructured frequency spectrum [3]. How-
ever, multiple studies on Cherenkov radiation in spatially
inhomogeneous periodic dielectric media, specifically in pho-
tonic crystals, showed the possibility of obtaining coherent
Cherenkov radiation at a certain frequency with a very narrow
frequency band [21,22]. Such frequency-tunable Cherenkov
radiation was found when a charged particle moves near a
periodic grating structure which possesses photonic bound
states in the continuum (BICs) and quasi-BICs [35]. The
highly coherent Cherenkov radiation was also generated by
a collectively interacting beam of free electrons rather than a
single point charge while traveling through a photonic crystal
[36]. In all these cases the operating frequency could be varied
over a wide range by adjusting the period of the photonic
crystal, which does not seem very convenient for applications,
where the frequency needs to be largely tuned or the whole
range of frequencies has to be excited.

Another alternative approach to obtaining Cherenkov radi-
ation at a specific desired frequency was proposed in Ref. [37],
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where the transient Cherenkov radiation from a string of os-
cillators with periodic density when excited by a superluminal
spot of light was considered. It was found that, when an
ultrashort pulse excites the string at a superluminal velocity
[18], the spectrum of the Cherenkov radiation contains, be-
sides the resonant frequency of oscillators, another frequency,
proportional to the spatial frequency of the oscillators’ density
distribution. In subsequent work [38] the transient Cherenkov
radiation from a circular string of oscillators excited by a
superluminal spot of light moving along the circle was studied
in detail. The possibility of Cherenkov radiation control in
a one-dimensional string of oscillators excited by ultrashort
pulse trains at a superluminal velocity was investigated in
[39].

However, this phenomenon of Cherenkov radiation de-
scribed above was only considered in a one-dimensional string
of oscillators with harmonic spatial density and a plane exci-
tation wavefront. As a result, only one additional frequency
of the transient radiation was obtained. At the same time,
additional degrees of freedom for the control of the medium
radiation can be provided by more complex spatial density
variations in a two-dimensional array of oscillators as well as
by curved excitation wavefronts, as it was outlined in [40].

In this paper, we study Cherenkov radiation from a thin
layer of a resonant medium with spatially inhomogeneous
density upon excitation by an ultrashort pulse with an arbitrary
shape of the wavefront. We remark that in our case Cherenkov
radiation occurs due to the collective coherent phenomenon
of free-induction decay arising when a resonant medium is
excited by an ultrashort pulse with duration shorter than the
medium polarization relaxation time T2 [41]. We demonstrate
that the response of a medium contains, besides the resonant
frequency of medium oscillators, also extra frequency com-
ponents due to the spatially varying medium density upon the
excitation. We consider different geometries of the medium
as well as different types of excitation sources and show
that these additional frequencies can be largely and easily
tuned in wide limits and can also fill the whole frequency
range, whose borders depend on the problem parameters. Our
findings therefore provide a convenient and technologically
feasible concept for implementing a frequency-tunable source
of coherent Cherenkov radiation with large flexibility in the
frequency control.

This paper is organized as follows. In Sec. II we present
the system under consideration and provide the underlying
physical background. In Secs. III and IV we consider sev-
eral possible excitation geometries for the constant excitation
velocity and the varying excitation velocity, respectively, and
analyze the radiation spectrum for each case. A summary and
concluding remarks are provided in Sec. V.

II. MODEL STATEMENT

We assume that the medium oscillators are described by
the standard Lorentz model [41]

�̈P + 2γ �̇P + ω2
0
�P = g0 �E (t ), (1)

with the resonant frequency ω0, the damping rate γ = 1/T2,
and the medium coupling strength g0 to a pump field �E (t ). As
the oscillators one can take, for instance, two-level atoms [41],

semiconductor quantum dots [42–44], or metallic nanoanten-
nas [45–47].

In Ref. [37] it was found that the Cherenkov radiation from
a linear inhomogeneous string of Lorentz oscillators, when
excited by an ultrashort pulse, at the transient stage, i.e., while
the excitation pulse is propagating over the string, contains a
new frequency component given as

� = 2π
V/�

|V cos α/c − 1| . (2)

Here α is the observation angle, � is the period of the density
modulation, and V is the superluminal velocity at which the
intersection point of the wavefront of the exciting pulse and
the string of oscillators moves along the string. Since this
velocity is always higher than the speed of light V � c, the
frequency (2) goes to infinity, when

cos α = c

V
. (3)

The condition (3) actually implies that the observation angle
equals the angle between the string and the excitation wave-
front; hence all oscillators radiate in phase in this particular
direction and no additional modulation of the emitted signal
appears.

After an ultrashort pulse-driven excitation the medium po-
larization oscillates within the time T2 = γ −1 [41]. As a result,
a medium radiates Cherenkov-type radiation via the collec-
tive spontaneous emission related to the free-induction decay
[48,49]. Such a superradiantlike mechanism can be attractive
for the generation of broadband ultrashort pulses in UV and
THz frequency ranges (for a review see [50] and references
therein). As it was shown in [51,52], the response of a linear
oscillator (1) subject to a sudden excitation can be described
as

E (t ) = E0e−γ (t−t0 ) cos ω0(t − t0), t � t0, (4)

where t0 is the time point of the excitation. The sudden exci-
tation means that the duration of the driving ultrashort pulse
is much shorter than the period of the resonant oscillations
2π/ω0. It is worth noting that the oscillator’s response in the
form (4) is only valid after the excitation pulse has passed the
oscillator. At the same time during the action of the excitation
pulse, additional field bursts will be emitted by the oscillator
preceding the response (4). In the following we will not take
these bursts into account and use Eq. (4). On the one hand, this
would greatly simplify the derivations and allows us to obtain
some analytical expressions. On the other hand, as we will
show below, this simplification does not influence the validity
of our results.

Let us suppose now that we have a two-dimensional array
of Lorentz oscillators (1) distributed with a spatial density
ρ(x, y). The thickness of such an array is assumed to be
much smaller than the wavelength of the medium resonant
oscillations. In this case one can reliably neglect the reverse
action of the medium radiation on the excitation pulse and
therefore suppose that all oscillators in the array are driven by
the same pump pulse. The total response of the array is then
given as the sum of the responses of each single oscillator (4)
with certain time delays between them appearing both due to
the excitation delay as the pump pulse propagates over the

033509-2



FREQUENCY-TUNABLE TRANSIENT CHERENKOV … PHYSICAL REVIEW A 104, 033509 (2021)

array with a finite velocity and due to the varying distance
from an arbitrary point of the medium to the observer. Using
Eq. (4), the field emitted from the array is given by the integral
[37]

E (t ) = E0

∫ Lx

0

∫ Ly

0
e−γ (t−τ (x,y)) cos ω0(t − τ (x, y))

×�(t − τ (x, y))D(�nE − �nO)ρ(x, y)dx dy, (5)

with a constant E0 corresponding to a field from a single
oscillator and the Heaviside step function �. The factor
D(�nE − �nO) describes the angular radiation pattern of a single
dipole emitter, where �nE is the unit vector directed along the
polarization direction of the excitation pulse and �nO is the unit
vector pointing in the direction of the observer, and is given
as [53]

D(�nE − �nO) = sin(arccos �nE �nO). (6)

Equation (5) contains several functions to be specified for a
particular system geometry. The delay function τ (x, y) de-
scribes the time point when the excitation pulse reaches the
point of the medium with the coordinates (x, y) as well as
the respective delay in the emission propagation to the ob-
server. Here ρ(x, y) is the spatial density of the oscillators’
distribution. We will mainly use the periodic density in both
coordinates

ρ(x, y) = ρ0(1 + Ax cos �xx)(1 + Ay cos �yy), (7)

with the spatial frequencies �x and �y and the amplitudes of
the density variations Ax, Ay � 1. Such spatial density vari-
ations can be made artificially using modern techniques of
micro- and nanopatterning of the nanoantenna or quantum-dot
arrays or, for instance, by exciting an intense acoustic wave in
an optically thin dielectric plate.

III. CONSTANT EXCITATION VELOCITY

We start with the case of the constant excitation velocity.
Therefore, we assume that our two-dimensional array of os-
cillators (7) is excited by a few-cycle pulse possessing a plane
wavefront. We take the normal to the excitation wavefront to
form the angle θ with the plane of the array and the angle ϕ

with the x axis in the plane of the array. Further, the observer is
supposed to be located at a distant point so that the observation
direction forms an angle α with the array’s plane and its
in-plane projection forms the angle β with the x axis in the
plane of the array (see Fig. 1). In this case the delay function
τ (x, y) is given as

τ (x, y) = R0

c
+ x cos ϕ + y sin ϕ

c/cos θ
− cos α

x cos β + y sin β

c
,

(8)

where R0 is the distance between the origin of coordinates and
the observation point.

We can also specify now the extra factor D(�nE − �nO) =
D(α, β, ϕ) in the integral (5), which accounts for the linear
polarization of the exciting pulse. This factor describes the
angular shape of the dipole emission of the medium oscillators

x

y

z observerTo

x

2

V

y

2

n

FIG. 1. An optically thin layer of a resonant medium with the
spatially inhomogeneous density (the spatial frequencies of the
density distribution are �x and �y over the x and y axes, respec-
tively) is irradiated by a linearly polarized ultrashort pulse with the
plane wavefront (shadowed blue) so that the intersection line of
the wavefront and the medium (dashed blue line) propagates with
the superluminal velocity V = c/cos θ > c over the medium. The
medium radiation is detected at a distant point and the observation
direction is determined by the angles α and β. The angle between
the normal to the wavefront and the plane of the array is θ and the
angle between the velocity vector �V and the x axis in the plane of the
array is ϕ

and in the case of a TE-polarized excitation pulse according
to Eq. (6) is given as

D(α, β, ϕ) = sin{arccos[cos α sin(ϕ − β )]}, (9)

i.e., constant across the whole layer. Besides that, it is worth
noting that the field of a single oscillator E0 in Eq. (5) depends
on the distance R0 as [53]

E0 ∼ 1

R0
.

The integral (5) with the periodic spatial density (7) and
the delay function (8) can be calculated analytically. The
corresponding derivation is provided in the Appendix. It is
convenient to introduce the values

t ′ = t − R0

c
,

qx = ω0
cos θ cos ϕ − cos α cos β

c
,

qy = ω0
cos θ sin ϕ − cos α sin β

c
(10)

so that one can rewrite, in Eq. (5),

ω0(t − τ (x, y)) = ω0t ′ − qxx − qyy.

Then, as shown in the Appendix, the spectrum of the radi-
ation at the transient stage, i.e., while the excitation pulse
is propagating across the medium, contains two additional
frequencies, namely,

�1 = �xω0

qx
= �xc

cos θ cos ϕ − cos α cos β
(11)
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FIG. 2. Radiation from a thin layer of a spatially inhomogeneous
medium shown in Fig. 1 for the parameter values Lx = 60 μm, Ly =
50 μm, ω0 = 1015 s−1, γ = 5 × 1013 s−1, α = 5π/12, β = π/4, θ =
π/3, ϕ = π/6, Ax = Ay = 1, 2π/�x = 3 μm, and 2π/�y = 5 μm.
With these parameters Eqs. (11) and (12) yield �1 = 2.51 × 1015 s−1

and �2 = 5.63 × 1015 s−1.

and

�2 = �yω0

qy
= �yc

cos θ sin ϕ − cos α sin β
. (12)

In the one-dimensional case obtained, Eqs. (11) and (12)
coincide with Eq. (2), keeping in mind the notation used.

Figure 2 shows an example of the radiated field from a
spatially inhomogeneous medium for the parameter values
Lx = 60 μm, Ly = 50 μm, ω0 = 1015 s−1, γ = 5 × 1013 s−1,
α = 5π/12, β = π/4, θ = π/3, ϕ = π/6, Ax = Ay = 1,
2π/�x = 3 μm, and 2π/�y = 5 μm. Using Eqs. (11) and
(12), we find, for the frequencies of the transient Cherenkov
radiation, �1 = 2.51 × 1015 s−1 and �2 = 5.63 × 1015 s−1,
so both frequencies are well separated from the medium’s res-
onant frequency ω0 in the spectrum. The detected field in the
considered example would represent the superposition of the
harmonic oscillations with three incommensurate frequencies
ω0, �1, and �2 in the interval 0 � t ′ � qxLx + qyLy = 61.2
fs, followed by the damped oscillations at the frequency ω0.
The respective frequency spectrum is plotted in Fig. 3. One
can indeed see three well-pronounced peaks at the frequencies
ω0, �1, and �2. The relative strengths of these three peaks are
determined by the system parameters, as provided in the Ap-
pendix. At the same time the peaks at the frequencies �1 and
�2 can be easily made stronger by increasing the dimensions
of the medium layers Lx and Ly, which would increase the
duration of the time interval 0 � t ′ � qxLx + qyLy, where the
corresponding oscillations occur. Also varying the incidence
angles and/or the observation angles, one can easily tune the
detected transient frequencies (11) and (12) in rather wide
limits.

It is important to note that the frequencies (11) and (12) do
not depend on the medium’s resonant frequency ω0, but are
only determined by the parameters of the oscillators’ density
distribution and the excitation geometry. This fact allows gen-
eralizing our main findings to the case of an arbitrary optical

FIG. 3. Spectrum of the radiation from Fig. 2 for ω0 = 1015 s−1,
�1 = 2.51 × 1015 s−1, and �2 = 5.63 × 1015 s−1.

medium. Indeed, the response of a single oscillator provided
by Eq. (4) was specifically derived for a Lorentz oscillator
(1) under the sudden pulsed excitation [51,52]. Otherwise,
if one applies a more complex model to describe the optical
response of a resonant oscillator, the temporal shape of the os-
cillator’s response would be given by another function instead
of Eq. (4). However, an arbitrary function can be expanded
into the temporal Fourier series or the Fourier integral, i.e.,
represented as a superposition of harmonic functions with
different frequencies. Since Eq. (5) is linear over the medium’s
response, this would turn Eq. (5) into the linear superposition
of such integrals from harmonic functions. Each of these
integrals, as shown in the Appendix, yields, besides the corre-
sponding frequency, also the additional transient frequencies
(11) and (12). Since these transient frequencies are indepen-
dent of ω0, they would arise when calculating the integral
(5) for each Fourier component in the medium’s response.
Therefore, the frequencies (11) and (12) would inevitably
appear in the spectrum of the detected radiation, regardless
of the specific choice of the model of medium’s oscillators.

Furthermore, it is also of interest to examine the possible
range of the values of the transient frequencies (11) and (12).
One can easily see that the lower limits are

�lower
1 = �xc,

�lower
2 = �yc (13)

and can be achieved for the specific angle values when the
denominators of Eqs. (11) and (12) become 1. At the same
time there are no finite upper limits for �1 and �2. Indeed,
when the denominators of Eqs. (11) and (12) become 0, both
transient frequencies become infinite, while for an arbitrary
finite frequency exceeding the values (13), one can easily
find such angle values that the expressions (11) and (12)
provide exactly this required value. Therefore, by varying
the excitation and observation angles we can tune the mea-
sured transient frequency in wide limits using the same layer
of a spatially inhomogeneous medium. Let us suppose, for
example, that we can artificially create an inhomogeneous
distribution of the resonant oscillators with the spatial period
of the order of ten of microns. The respective lower limits
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FIG. 4. Diagram showing the dependence of the transient
Cherenkov frequency �1 from Eq. (11) vs the angles ϕ and θ , as
defined in Fig. 1. The values of the observation angles are fixed to
α = 5π/12 and β = π/4. Here �1 is assumed to be expressed in s−1

and plotted in logarithmic scale. The red curve corresponds to the
divergence of the �1 value (for clarity, the color scale is adjusted to
the finite top value of 1018 s−1).

of the measured transient frequencies (13) would fall into the
mid-IR range; thus the whole visible and ultraviolet ranges
can be covered by the described transient Cherenkov radiation
through the respective choice of the geometry parameters.

In Figs. 4 and 5 we have plotted the diagrams showing the
values of the transient Cherenkov frequencies (11) and (12) vs
the angles ϕ and θ (see Fig. 1). Here we have fixed the values
α = 5π/12 and β = π/4, as in Figs. 2 and 3. The values of
�1 and �2 are shown in the logarithmic scale, with �1 and
�2 expressed in s−1. One can easily see the curves of the di-
vergence points, where the values of �1 and �2 go to infinity

FIG. 5. Diagram showing the dependence of the transient
Cherenkov frequency �2 from Eq. (12) vs the angles ϕ and θ , as
defined in Fig. 1. The values of the observation angles are fixed to
α = 5π/12 and β = π/4. Here �2 is assumed to be expressed in s−1

and plotted in logarithmic scale. The red curve corresponds to the
divergence of the �2 value (for clarity, the color scale is adjusted to
the finite top value of 1018 s−1).

(for illustration purposes we restricted the top values in the
diagrams). The physical meaning of this case is the absence
of the transient Cherenkov radiation, when observed under
these specific angles, because all oscillators emit exactly in
phase in the corresponding observation directions. Therefore,
the spatial distribution of the oscillators does not play any role
for such the combinations of the observation and excitation
angles.

Equations (11) and (12) correspond to the case when the
spatial density distribution (7) represents a harmonic function
over each spatial coordinate. One can easily extend these
findings to the case of an arbitrary spatial density of the os-
cillators’ distribution ρ(x, y). Indeed, the integral (5) is linear
over the factor ρ(x, y). Therefore, if the function ρ(x, y) con-
tains other spatial Fourier components, except for (�x,�y),
the spectrum of the transient radiation would contain, similar
to Eqs. (11) and (12), additional respective frequency compo-
nents. For definiteness, let us assume that the spatial density
ρ(x, y) possesses extra spatial Fourier components (κx, κy).
Then in the frequency spectrum of the transient radiation
besides the components (11) and (12), one would measure two
other components

� = κxω0

qx
,
κyω0

qy
. (14)

In a similar way, if the spatial Fourier spectrum of ρ(x, y) con-
tains the whole range of spatial frequencies, the corresponding
frequency spectrum of the transient radiation would contain a
similar range.

To illustrate this result, we consider an exemplary spatial
modulation of the oscillators’ density, similar to Eq. (7), but
with nonconstant spatial periods. Namely, for ρ(x, y) we take
the expression

ρ(x, y) = ρ0

[
1 + Ax cos �x

(
1 + x

4Lx

)
x

]

×
[

1 + Ay cos �y

(
1 + y

4Ly

)
y

]
, (15)

i.e., the harmoniclike function over each coordinate with
slowly varying periods. Specifically, the spatial frequency of
the density modulation along the x axis given as

∂

∂x
�x

(
1 + x

4Lx

)
x = �x

(
1 + x

2Lx

)

increases from �x at x = 0 to 1.5�x at x = Lx; the same
holds for the y axis. According to the reasoning above, in the
spectrum of the detected Cherenkov radiation, we anticipate to
obtain the whole continuous range of the transient frequencies
(11) and (12), starting at the peaks shown in Fig. 3 and extend-
ing up to 1.5 higher upper boundaries. The actual calculation
results are plotted in Figs. 6 and 7. From a comparison of the
field spectra in Figs. 3 and 7 one can see that the single peaks
of the transient radiation indeed get converted into the contin-
uous frequency intervals with the boundaries determined by
the range of spatial frequencies of the density modulation. We
can therefore tune the frequency of the measured Cherenkov
radiation by controlling the medium’s density distribution.
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FIG. 6. Radiation from a thin layer of a spatially inhomogeneous
medium shown in Fig. 1 under the excitation by a plane wavefront
for the same parameter values as in Fig. 2, but for the slowly varying
periods of the medium’s density modulation from Eq. (15).

IV. VARYING EXCITATION VELOCITY

Controlling the density modulation represents just one
of the possible ways to tune the frequency of the transient
Cherenkov radiation. Other possibilities based on the control
of the excitation velocity seem to be more attractive, since
varying the incidence angle of the excitation wavefront can be
rather easily achieved in experiments.

Given that, let us now turn to the case of the varying
excitation velocity. The simplest way to implement this is to
excite the array (7) by a pulse possessing a curved wavefront.
We start with the case of a cylindrical wavefront of a linearly
polarized excitation ultrashort pulse. The respective layout is
schematically depicted in Fig. 8. The axis of the cylindrical
wavefront is located at the height H above the medium and
its projection on the medium plane crosses the x axis at the
point Dx. The angle between the projection of the normal to
the cylinder axis on the plane of the array and the x axis is
fixed throughout the whole array and equals ϕ. The cylindrical
wave is assumed to be linearly polarized along the cylinder

FIG. 7. Spectrum of the radiation from Fig. 6 for ω0 = 1015 s−1.

FIG. 8. An optically thin layer of a resonant medium with a spa-
tially inhomogeneous density (the spatial frequencies of the density
distribution are �x and �y over the x and y axes, respectively) is
irradiated by a linearly polarized ultrashort pulse with a cylindrical
wavefront (shadowed blue). The cylinder axis of the source of the
cylindrical wave is located at the height H above the medium and its
projection on the medium’s plane is shifted along the x axis for Dx .
The normal to the cylinder axis projected on the plane of the array
forms the fixed angle ϕ with the x axis. The medium radiation is
detected at a distant point and the observation direction is determined
by the angles α and β.

axis. The delay function τ (x, y) in this case can be expressed
as

τ (x, y) = R0

c
+

√
H2 + [(x − Dx ) cos ϕ + y sin ϕ]2

c

− cos α
x cos β + y sin β

c
. (16)

As compared to the plane wavefront in Fig. 1, we actually
get the excitation with the fixed ϕ angle, but varying angle
θ across the medium layer. Since the excitation pulse has a
fixed polarization direction, the angular factor D(α, β, ϕ) is
still given by Eq. (9) and is constant across the whole layer.
As the instantaneous value of θ changes, the frequencies (11)
and (12) run over the values within a certain interval. The
boundaries of this interval can be found from the diagrams
in Figs. 4 and 5. Since the frequencies (11) and (12) diverge
at certain values of θ , two options are possible depending on
whether the point of divergence falls in the range of θ values.
If it does, the instantaneous values of the transient frequencies
(11) and (12) run over an infinite range during the finite time
interval, so the respective spectrum would be “smeared” over
the infinite frequency range and would be barely observable.
In contrast, if the divergence point does not fall in the range
of θ values, one would get a finite interval of instantaneous
values of the transient frequencies (11) and (12). In this case
we should obtain the corresponding frequency range in the
measured spectrum whose boundaries can be easily tuned by
the parameters of the excitation geometry.

Figure 9 demonstrates the calculated field from the layer
upon excitation by a cylindrical wavefront for the latter case,
when the finite range of transient frequencies is expected to
appear. Here we have increased the medium’s resonant fre-
quency to ω0 = 1016 s−1 to make sure that the frequencies
of the transient Cherenkov radiation are well separated in the
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FIG. 9. Radiation from a thin layer of a spatially inhomogeneous
medium excited by a cylindrical wavefront as shown in Fig. 8 for the
parameter values Lx = 60 μm, Ly = 50 μm, ω0 = 1016 s−1, γ = 5 ×
1013 s−1, α = 5π/12, β = π/4, ϕ = π/6, Ax = Ay = 1, 2π/�x =
3 μm, 2π/�y = 5 μm, H = 60 μm, and Dx = −40 μm.

spectrum from the medium’s resonant frequency. For the con-
sidered parameter set the instantaneous values of the angle θ

defined as in Fig. 1 run over the range from π/3 at the nearest
point of the layer down to approximately 0.493 ≈ π/6.37 at
the most distant point. From the diagrams in Figs. 4 and 5
one can see that the divergence points for both �1 and �2 do
not fall in this interval. Hence, the frequencies of the transient
Cherenkov radiation fill the finite range with the boundaries
determined from Eqs. (11) and (12) or diagrams in Figs. 4
and 5. Specifically, the frequency �1 changes from �1 =
2.51 × 1015 s−1 as shown in Fig. 3 to �1 = 1.08 × 1015 s−1,
while �2 runs from �2 = 5.63 × 1015 s−1 in Fig. 3 to �2 =
1.46 × 1015 s−1. In total, the continuous range of the transient
frequencies starting near 5.63 × 1015 s−1 and extending up to
1015 s−1 is expected. The field spectrum in Fig. 10 confirms
our calculations and yields the continuous frequency range
with the predicted boundaries. This range also appears to be

FIG. 10. Spectrum of the radiation from Fig. 9 for ω0 = 1016 s−1.

FIG. 11. An optically thin layer of a resonant medium with the
spatially inhomogeneous density (the spatial frequencies of the den-
sity distribution are �x and �y over the x and y axes, respectively)
is irradiated by an azimuthally polarized ultrashort pulse with the
spherical wavefront (shadowed blue). The source of the spherical
wave is located at the point with coordinates lx , ly, and H . The
medium radiation is detected at a distant point and the observation
direction is determined by the angles α and β. The blue arrows show
the direction of the electric-field vector in a certain cross section of
the spherical wavefront.

significantly inhomogeneous and exhibits certain strong max-
ima which seem to originate from a varying part of the layer
covered by the excitation pulse for each instantaneous value of
the angle θ . One can see that the boundaries of the frequency
range can be efficiently tuned by changing the location of the
source of the cylindrical wave or the observation point. In such
way we get huge flexibility in tuning the detected frequencies
of Cherenkov radiation even without the necessity of changing
the medium layer itself.

Next we proceed with the excitation by a spherical wave.
For definiteness, the source of the spherical wave is assumed
to be located at the height H above the plane of the array with
the (x, y) coordinates lx and ly (see Fig. 11). Thus the delay
function τ (x, y) attains the form

τ (x, y) = R0

c
+

√
H2 + (x − lx )2 + (y − ly)2

c

− cos α
x cos β + y sin β

c
. (17)

Equation (5) with the delay function (17) cannot be cal-
culated analytically. However, based on the above results for
a plane excitation wavefront, we can qualitatively determine
certain expected spectral features of the measured radiation.
In such an excitation geometry the excitation velocity is also
varying with time, so instead of isolated additional frequen-
cies (11) and (12) we get a whole range of frequencies filling
an interval in the spectrum. Some features of this interval can
be calculated directly using Eqs. (11) and (12). For instance,
the largest value of the instantaneous excitation velocity is
reached at a point located right below the source of the spher-
ical wave, where the angle θ = π/2, so the corresponding
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FIG. 12. Radiation from a thin layer of a spatially inhomoge-
neous medium shown in Fig. 11 for the parameter values Lx =
60 μm, Ly = 50 μm, ω0 = 3 × 1015 s−1, γ = 5 × 1013 s−1, α =
5π/12, β = π/4, Ax = Ay = 1, 2π/�x = 3 μm, 2π/�y = 5 μm,
H = 60 μm, lx = −50 μm, and ly = −50 μm.

instantaneous transient frequencies are

�1 = − �xc

cos α cos β
,

�2 = − �yc

cos α sin β
. (18)

However, further application of Eqs. (11) and (12) for
the calculation of the instantaneous values of the transient
Cherenkov frequencies is constrained by the polarization is-
sues. Indeed, Eqs. (11) and (12) were derived assuming the
linear polarization of the exciting plane wavefront. In the
case of more complex polarizations of the excitation wave
Eqs. (11) and (12) cannot be directly applied anymore due
to the spatially varying factor (9) arising under the integration
sign in Eq. (5). Here we suppose that our spherical excitation
wavefront is azimuthally polarized as schematically shown in
Fig. 11. Therefore, the angular factor D(x, y, α, β ) attains the
form

D(x, y, α, β ) = sin

[
arccos

(
cos α

x̃ sin β − ỹ cos β√
x̃2 + ỹ2

)]
,

(19)

where we have introduced for convenience

x̃ = x − lx,

ỹ = y − ly.

The integral (5) for the emitted field with the delay func-
tion (17), the spatial density (7), and the angular factor (19)
was calculated numerically for several exemplary parameter
values. One of the examples is depicted in Figs. 12 and
13. Figure 12 shows the measured electric field from the
medium layer with the same size parameters as in Figs. 2,
3, 9, and 10, but excited by a spherical wavefront instead.
Also, we have increased the medium resonant frequency to
ω0 = 3 × 1015 s−1 in order to make it easier to distinguish
the frequencies of the transient Cherenkov radiation. Since

FIG. 13. Spectrum of the radiation from Fig. 12 for ω0 = 3 ×
1015 s−1.

the angle between the wavefront and the layer varies upon
the pump pulse propagation over the medium, one can no-
tice the complex nonregular character of the field oscillations
in the transient stage. This fact is especially clearly seen in the
frequency spectrum in Fig. 13. Here we get a wide continu-
ous range of additional transient frequencies extending from
almost the resonant frequency ω0 up to the lower boundary
around 1015 s−1. Therefore, the transient Cherenkov radiation
in the considered case possesses an ultrabroadband spectrum
of more than one octave.

Finally, we move on to the case of a disk-shaped thin layer
of a resonant medium with radially varying spatial density
ρ(r). In this case the integral (5) is reduced to the form

E (t ) = E0

∫ R

0

∫ 2π

0
e−γ (t−τ (r,φ)) cos ω0(t − τ (r, φ))

×�(t − τ (r, φ))D(�nE − �nO)ρ(r)r dr dφ, (20)

where (r, φ) are the polar coordinates, R is the radius of the
disk, and the angular factor D(�nE − �nO) = D(ϕ, α, β ) is given
as

D(φ, α, β ) = sin{arccos[cos α sin(β − φ)]}. (21)

We suppose here that the disk-shaped layer of a resonant
medium with the radius R is placed into the center of the
coordinate system, while the source of the spherical excitation
wave is located at the point with coordinates (lx, ly, H ). For
the delay function τ (r, φ) we get the expression

τ (r, φ) = R0

c
+

√
H2 + (r cos φ − lx )2 + (r sin φ − ly)2

× 1

c
− cos α cos(φ − β )

r

c
. (22)

The spatial density of the medium’s oscillators is taken to be
radially varying and harmonic, similar to Eq. (7):

ρ(r) = ρ0(1 + Ar cos �rr). (23)

The integral (20) with the dependences (21)–(23) was nu-
merically calculated for the parameters R = 60 μm, Ar = 1,
2π/�r = 5 μm, H = 60 μm, and different values of lx and
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FIG. 14. Dependence of the radiation spectrum from a disk-
shaped layer of a spatially inhomogeneous medium on the source
shift lx = ly for the parameter values R = 60 μm, ω0 = 3 × 1015 s−1,
γ = 5 × 1013 s−1, α = 5π/12, β = π/4, Ar = 1, 2π/�r = 5 μm,
and H = 60 μm.

ly. The results for a specific case of lx = ly are shown in
the diagram in Fig. 14, where the spectrum of the detected
radiation is plotted vs the source shift lx = ly. One can see
that an auxiliary spectral maximum of the transient Cherenkov
radiation is especially pronounced, when a source is not lo-
cated above the disk but is rather shifted aside. In Figs. 15
and 16 the obtained electric field and its spectrum are plotted
for the parameter values lx = −100 μm and ly = −100 μm.
Besides a medium resonance we also get here a strong peak
of the transient Cherenkov radiation near approximately 5.7 ×
1014 s−1. As before, the strength and the central frequency
of the Cherenkov peak can be varied by moving the source
of the spherical wave and the observation direction, which
allows efficient tuning of the transient Cherenkov radiation to
a desired frequency.

FIG. 15. Radiation from a disk-shaped layer of a spatially inho-
mogeneous medium for the parameter values R = 60 μm, ω0 = 3 ×
1015 s−1, γ = 5 × 1013 s−1, α = 5π/12, β = π/4, Ar = 1, 2π/�r =
5 μm, H = 60 μm, lx = −100 μm, and ly = −100 μm.

FIG. 16. Spectrum of the radiation from Fig. 15 for ω0 = 3 ×
1015 s−1.

V. CONCLUSION

We have investigated the transient Cherenkov radiation
from a spatially inhomogeneous resonant medium being ex-
cited by an ultrashort pulse. This radiation is related to the
collective phenomenon of the free-induction decay arising,
when a thin layer of a medium is excited by an ultrashort
pulse, which is shorter in duration than the medium coherence
time T2. We have obtained that, by varying the medium geom-
etry and/or the shape of the wavefront of the exciting wave,
we can tune the frequency spectrum of the measured radiation
in wide limits. Specifically, additional frequencies appear in a
transient stage, i.e., while the excitation wavefront propagates
over the medium layer. The inhomogeneity of the medium
results in the varying number of oscillators contributing to
the total optical response, which in turn leads to the signal
modulation with the frequencies proportional to the spatial
frequency of the medium’s density variations.

Our findings provide a convenient approach for the fre-
quency control of the Cherenkov radiation from a spatially
inhomogeneous medium. While earlier studies yielded the
possibility to tune the frequency of the Cherenkov radiation
by changing the period of a photonic crystal, this was barely
suitable to serve as a frequency-tunable or a swept-frequency
source in applications since the period of a photonic crystal
cannot be so rapidly and readily changed with time. In our
setup the frequency of the detected Cherenkov radiation can
be controlled not only by the period of the density distribution,
but also through the excitation and observation geometry.
Namely, by varying the shape of the excitation wavefront, the
location of the excitation source and/or the observation direc-
tion, we can easily perform the control of the spectrum of the
Cherenkov radiation. We expect therefore that the proposed
scheme can be exploited to create an efficient and flexible
compact source of frequency-tunable coherent radiation.
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APPENDIX

Here we present the calculation of the integral (5) with
the periodic spatial density (7) and the delay function (8).
Let us assume for definiteness that qx, qy > 0 and take for
simplicity γ = 0 s−1. At the time period t ′ < 0, no field at the

observation point is detected, since the medium response has
not yet reached the observer. Within the time interval 0 � t ′ <

min(qxLx, qyLy), the excitation wavefront propagates over the
inhomogeneous array and starts the medium oscillators. In
this case the exact calculation of the integral (5) yields

E (t )

E0Dρ0
= q2

x (1 + Ax ) − �2
x

qxqy
(
q2

x − �2
x

) (1 − cos ω0t ′) + Ayqy
q2

x (1 + Ax ) − �2
x

qx
(
q2

x − �2
x

)(
q2

y − �2
y

)
(

cos
�yω0t ′

qy
− cos ω0t ′

)

− qxAx

qy
(
q2

x − �2
x

)
(

1 − cos
�xω0t ′

qx

)
− qxqyAxAy�

2
x(

q2
x − �2

x

)(
�2

xq2
y − �2

yq2
x

)
(

cos
�yω0t ′

qy
− cos

�xω0t ′

qx

)

= 1

qxqy
−

[
q2

x (1 + Ax ) − �2
x

][
q2

y (1 + Ay) − �2
y

]
qxqy

(
q2

x − �2
x

)(
q2

y − �2
y

) cos ω0t ′ + qxAx
[
q2

y�
2
x (1 + Ay) − q2

x�
2
y

]
qy

(
q2

x − �2
x

)(
q2

y�
2
x − q2

x�
2
y

) cos
�xω0t ′

qx

+ qyAy
[
q2

x�
2
y (1 + Ax ) − q2

y�
2
x

]
qx

(
q2

y − �2
y

)(
q2

x�
2
y − q2

y�
2
x

) cos
�yω0t ′

qy
, (A1)

i.e., we get the terms oscillating at frequencies ω0, �1, and
�2.

In the next stage, when min(qxLx, qyLy) � t ′ <

max(qxLx, qyLy), the excitation passes the array along
one of the coordinate axes while still exciting along another
axis. Therefore, instead of two additional frequencies of

the transient radiation (11) and (12) one obtains only one,
which corresponds to the coordinate axis where the excitation
wavefront has not yet reached the end of the array. If, for
definiteness, we have qxLx > qyLy, then in the time interval
qyLy � t ′ < qxLx the integral (5) gives the terms oscillating
at frequencies ω0 and �1 as follows:

E (t )/E0Dρ0 = cos ω0t ′ q
2
x (1 + Ax ) − �2

x

qxqy
(
q2

x − �2
x

)
(

cos qyLy − 1 + Ayqy

2(qy − �y)
[cos(qy − �y)Ly − 1]

+ Ayqy

2(qy + �y)
[cos(qy + �y)Ly − 1]

)
+ sin ω0t ′ q

2
x (1 + Ax ) − �2

x

qxqy
(
q2

x − �2
x

)
(

sin qyLy

+ Ayqy

2(qy − �y)
sin(qy − �y)Ly + Ayqy

2(qy + �y)
sin(qy + �y)Ly

)

+ cos
�xω0t ′

qx

qxAx

qy
(
�2

x − q2
x

)
[

cos
�xqyLy

qx
− 1 + Ay�xqy

2(�xqy − �yqx )

(
cos

�xqy − �yqx

qx
Ly − 1

)

+ Ay�xqy

2(�xqy + �yqx )

(
cos

�xqy + �yqx

qx
Ly − 1

)]
+ sin

�xω0t ′

qx

qxAx

qy
(
�2

x − q2
x

)
(

sin
�xqyLy

qx

+ Ay�xqy

2(�xqy − �yqx )
sin

�xqy − �yqx

qx
Ly + Ay�xqy

2(�xqy + �yqx )
sin

�xqy + �yqx

qx
Ly

)
.

Then, for max(qxLx, qyLy) � t ′ < qxLx + qyLy we again get varying integration limits over both axes. As a result, the
oscillations again occur at all three frequencies ω0, �1, and �2. Indeed, assuming as before qxLx > qyLy, in the time interval
qxLx � t ′ < qxLx + qyLy we get, for the integral (5),

E (t )

E0Dρ0
= − 1

qxqy
+ cos ω0t ′

(
q2

x (1 + Ax ) − �2
x

qxqy
(
q2

x − �2
x

) (cos qyLy − 1) + Ay
q2

x (1 + Ax ) − �2
x

2qx(qy − �y)
(
q2

x − �2
x

)

× [cos(qy − �y)Ly − 1] + Ay
q2

x (1 + Ax ) − �2
x

2qx(qy + �y)
(
q2

x − �2
x

) [cos(qy + �y)Ly − 1] + 1

qxqy
cos qxLx

+ Ayqy

qx
(
q2

y − �2
y

) cos qxLx + Ax

2qy(qx + �x )
cos(qx + �x )Lx + AxAyqy

2(qx + �x )
(
q2

y − �2
y

) cos(qx + �x )Lx

+ Ax

2qy(qx − �x )
cos(qx − �x )Lx + AxAyqy

2(qx − �x )
(
q2

y − �2
y

) cos(qx − �x )Lx

)
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+ sin ω0t ′
(

q2
x (1 + Ax ) − �2

x

qxqy
(
q2

x − �2
x

) sin qyLy + Ay
q2

x (1 + Ax ) − �2
x

2qx(qy − �y)
(
q2

x − �2
x

) sin(qy − �y)Ly

+ Ay
q2

x (1 + Ax ) − �2
x

2qx(qy + �y)
(
q2

x − �2
x

) sin(qy + �y)Ly + 1

qxqy
sin qxLx + Ayqy

qx
(
q2

y − �2
y

) sin qxLx

+ Ax

2qy(qx + �x )
sin(qx + �x )Lx + AxAyqy

2(qx + �x )
(
q2

y − �2
y

) sin(qx + �x )Lx

+ Ax

2qy(qx − �x )
sin(qx − �x )Lx + AxAyqy

2(qx − �x )
(
q2

y − �2
y

) sin(qx − �x )Lx

)

+ cos
�xω0t ′

qx

(
− qxAx

qy
(
q2

x − �2
x

) cos
�xqyLy

qx
− AxAyqx�x

2(�xqy − �yqx )
(
q2

x − �2
x

) cos
(�xqy − �yqx )Ly

qx

− AxAyqx�x

2(�xqy + �yqx )
(
q2

x − �2
x

) cos
(�xqy + �yqx )Ly

qx

)

+ sin
�xω0t ′

qx

(
− qxAx

qy
(
q2

x − �2
x

) sin
�xqyLy

qx
− AxAyqx�x

2(�xqy − �yqx )
(
q2

x − �2
x

) sin
(�xqy − �yqx )Ly

qx

− AxAyqx�x

2(�xqy + �yqx )
(
q2

x − �2
x

) sin
(�xqy + �yqx )Ly

qx

)

+ cos
�yω0t ′

qy

[
AxAyqx�x

2(�xqy − �yqx )
(
q2

x − �2
x

) cos
(�xqy − �yqx )Ly

qy
+ AxAyqx�x

2(�xqy + �yqx )
(
q2

x − �2
x

)

× cos
(�xqy + �yqx )Ly

qy
− Ayqy

qx
(
q2

y − �2
y

) cos
�yqxLx

qy
− AxAy

4(qx + �x )(qy − �y)
cos

(
�x + �y

qx

qy

)
Lx

− AxAy

4(qx + �x )(qy + �y)
cos

(
�x − �y

qx

qy

)
Lx − AxAy

4(qx − �x )(qy − �y)
cos

(
�x − �y

qx

qy

)
Lx

− AxAy

4(qx − �x )(qy + �y)
cos

(
�x + �y

qx

qy

)
Lx

]

+ sin
�yω0t ′

qy

[
− AxAyqx�x

2(�xqy − �yqx )
(
q2

x − �2
x

) sin
(�xqy − �yqx )Ly

qy
− AxAyqx�x

2(�xqy + �yqx )
(
q2

x − �2
x

)

× sin
(�xqy + �yqx )Ly

qy
− Ayqy

qx
(
q2

y − �2
y

) sin
�yqxLx

qy
− AxAy

4(qx + �x )(qy − �y)
sin

(
�x + �y

qx

qy

)
Lx

+ AxAy

4(qx + �x )(qy + �y)
sin

(
�x − �y

qx

qy

)
Lx + AxAy

4(qx − �x )(qy − �y)
sin

(
�x − �y

qx

qy

)
Lx

− AxAy

4(qx − �x )(qy + �y)
sin

(
�x + �y

qx

qy

)
Lx

]
.

Finally, when qxLx + qyLy � t ′ in the integral (5) we get only oscillations at the medium resonant frequency ω0; hence the
radiation spectrum in this case contains only one frequency:

E (t )

E0Dρ0
= cos ω0t ′

(
q2

x (1 + Ax ) − �2
x

qxqy
(
q2

x − �2
x

) (cos qyLy − 1) + Ay
q2

x (1 + Ax ) − �2
x

2qx(qy − �y)
(
q2

x − �2
x

) [cos(qy − �y)Ly − 1]

+ Ay
q2

x (1 + Ax ) − �2
x

2qx(qy + �y)
(
q2

x − �2
x

) [cos(qy + �y)Ly − 1] − 1

qxqy
[cos(qxLx + qyLy) − cos qxLx]

− Ay

2qx(qy − �y)
{cos[qxLx + (qy − �y)Ly] − cos qxLx} − Ay

2qx(qy + �y)
{cos[qxLx + (qy + �y)Ly]

− cos qxLx} − Ax

2qy(qx + �x )
{cos[(qx + �x )Lx + qyLy] − cos(qx + �x )Lx} − AxAy

4(qx + �x )(qy − �y)

×{cos[(qx + �x )Lx + (qy − �y)Ly] − cos(qx + �x )Lx} − AxAy

4(qx + �x )(qy + �y)
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×{cos[(qx + �x )Lx + (qy + �y)Ly] − cos(qx + �x )Lx} − Ax

2qy(qx − �x )
{cos[(qx − �x )Lx + qyLy]

− cos(qx − �x )Lx} − AxAy

4(qx − �x )(qy − �y)
{cos[(qx − �x )Lx + (qy − �y)Ly] − cos(qx − �x )Lx}

− AxAy

4(qx − �x )(qy + �y)
{cos[(qx − �x )Lx + (qy + �y)Ly] − cos(qx − �x )Lx}

)

+ sin ω0t ′
(

q2
x (1 + Ax ) − �2

x

qxqy
(
q2

x − �2
x

) sin qyLy + Ay
q2

x (1 + Ax ) − �2
x

2qx(qy − �y)
(
q2

x − �2
x

) sin(qy − �y)Ly

+ Ay
q2

x (1 + Ax ) − �2
x

2qx(qy + �y)
(
q2

x − �2
x

) sin(qy + �y)Ly − 1

qxqy
[sin(qxLx + qyLy) − sin qxLx]

− Ay

2qx(qy − �y)
{sin[qxLx + (qy − �y)Ly] − sin qxLx} − Ay

2qx(qy + �y)
{sin[qxLx + (qy + �y)Ly]

− sin qxLx} − Ax

2qy(qx + �x )
{sin[(qx + �x )Lx + qyLy] − sin(qx + �x )Lx} − AxAy

4(qx + �x )(qy − �y)

×{sin[(qx + �x )Lx + (qy − �y)Ly] − sin(qx + �x )Lx} − AxAy

4(qx + �x )(qy + �y)

×{sin[(qx + �x )Lx + (qy + �y)Ly] − sin(qx + �x )Lx} − Ax

2qy(qx − �x )
{sin[(qx − �x )Lx + qyLy]

− sin(qx − �x )Lx} − AxAy

4(qx − �x )(qy − �y)
{sin[(qx − �x )Lx + (qy − �y)Ly] − sin(qx − �x )Lx}

− AxAy

4(qx − �x )(qy + �y)
{sin[(qx − �x )Lx + (qy + �y)Ly] − sin(qx − �x )Lx}

)
.

It is worth addressing the role of the nonzero damping
rate γ of the medium oscillators. In such a case all cal-
culations above become much more cumbersome; however,
some general conclusions can still be made. First of all,
all oscillation terms above would turn into damped oscil-
lations. Therefore, the width of all spectral peaks would
be increased due to the damping effect. This fact mainly
limits the broadening of the spectral peak at the medium’s

resonant frequency ω0, since the respective oscillations con-
tinue until getting completely stopped by the damping. At the
same time, the spectral broadening of the transient Cherenkov
peaks �1 and �2 is also limited by the finiteness of the
time interval 0 � t ′ < qxLx + qyLy, where the oscillations at
these frequencies arise. Hence, the total broadening of these
spectral peaks is determined by the mutual action of both
factors.
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