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Traditional optical gyroscopes rely on the Sagnac effect that the resonant frequency shift is linear with the
rotation rate. Recently, optical gyroscopes operating near an exceptional point (EP) have been extensively
investigated to improve the response to rotation. However, the high-performance implementation of this kind
of gyroscope requires strict conditions, which restrict the practical application of these devices. In this paper, a
non-Hermitian photonic configuration based on a single resonator is proposed to establish an exceptional surface
(EP surface) constructed of numerous EPs. It is demonstrated theoretically that rotation-induced frequency
splitting in our configuration is four orders of magnitude higher than that in the traditional gyroscope. We also
investigate the shot-noise-limited minimum detectable rotation rate compared to the conventional gyroscope with
the same radius and intrinsic loss, when the system is tuned around the EP. This proposed approach attempts to
combine robustness with high sensitivity detection of the rotation.
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I. INTRODUCTION

Resonant optical gyroscopes are based on the Sagnac
effect, namely, the resonant frequency difference of the
counterpropagating traveling waves [clockwise (CW) and
counterclockwise (CCW) waves] in a rotating resonator
is linear with the rotation rate � [1–4]. Recently, non-
Hermitian optical gyroscopes operating near an exceptional
point (EP) exhibited excellent performances in rotation detec-
tion [5–10]. In quantum open systems, EPs are non-Hermitian
degeneracies, at which the eigenvalues degenerate and the cor-
responding eigenmodes coalesce. They have been extended to
various non-Hermitian optical systems via parity-time (PT )
symmetry [11–20], anti-PT symmetry [21–24], and optical
chiral behaviors [25–29].

According to the above concepts, different versions of
optical gyroscopes based on EPs have been designed to
enhance rotation detection in theory and experiments. The
PT -symmetric ring laser gyroscope (RLG) and anti-PT -
symmetric gyroscope operating at an EP result in sensitivity
several orders of magnitude higher than that of classical gyro-
scopes [5,6]. An experimental version of the non-Hermitian
Brillouin laser gyroscope has been successfully built in a
resonator in which the predicted EP-enhanced Sagnac effect
was generated to obtain a fourfold enhancement of the scale
factor [8]. In the same period, Lai et al. judiciously modified a
commercial helium-neon RLG to operate it at an EP [9]. The
response of this device shows a square-root dependence on the
rotational speed and the sensitivity is enhanced up to 20 times
compared to the commercial RLG.

Despite the tremendous advantage of EP sensors in sensi-
tivity enhancement, most of them suffer from the fabrication
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errors or experimental uncertainties. In practice, the strong
response of the EP-based sensors generally requires strict
implementation conditions of simultaneous and precise con-
trolling parameters. As a result, EP-based sensors are very
susceptible to external errors and the actual sensitivities of
these devices fall short of theoretical expectations.

Recently, the notion of the EP surface was presented and a
corresponding configuration to implement it was designed to
overcome the challenges faced by EP-based sensors [30,31].
In comparison with an isolated EP, an EP surface constructed
of numerous EPs provides additional degrees of freedom that
can make the working point shift along the EP surface when
the system experiences undesired perturbations. Such an ar-
rangement has been demonstrated to be robust against external
perturbations [31]. In previous works, the EP surface was
constructed of a specific type of EP, called chiral EP, which
arises from the unbalanced contribution of CW and CCW
traveling modes in a whispering-gallery-mode (WGM) res-
onator. However, this kind of chiral EP is not appropriate for
detecting rotation because the rotation of a resonator cannot
produce additional coupling between CW and CCW modes.

In this paper, we present a non-Hermitian photonic con-
figuration in order to establish an EP surface constructed of
numerous chiral EPs. A mechanism is introduced to enhance
the rotation detection using the chiral EP. We demonstrate
theoretically that the enhanced frequency splitting and noise-
limited precision of our configuration operate around the EP.
This scheme can be exploited to combine robustness with
enhanced sensitivity of the rotation detection.

II. ENHANCEMENT OF ROTATION SENSING
AT A CHIRAL EP

In a WGM microresonator, the asymmetric backscatter-
ing between counterpropagating optical modes is related to
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the chiral EPs. At a chiral EP, CW and CCW traveling
modes coalesce into one mode owing to a fully asymmetric
backscattering between the counterpropagating modes. With
the coupled-mode theory, this feature can be well described
by a non-Hermitian Hamiltonian H0 [27,31],

i
d

dt

[
aCW

aCCW

]
= H0

[
aCW

aCCW

]
, H0 =

[
ω0 − iγ 0

A0 ω0 − iγ

]
,

(1)

where aCW and aCCW are the intracavity mode fields in the
CW and CCW directions, respectively; ω0 is the resonance
frequency; γ denotes the effective loss or gain coefficient, i.e.,
γ = γ0 + κ/2 − g, where γ0 is the intrinsic loss rate, κ is the
external coupling rate, and g is the external gain rate; and A0

quantifies the intrinsic backscattering strength. The complex
eigenvalues of H0 are ωEP1,2 = ω0 − iγ and the corresponding
eigenvectors coalesce to one vector ã1,2 = (0, 1)T . In this
case, the resonator supports a pair of degenerate cavity modes
with identical resonance frequency ω0.

When a resonator rotates with a rate of � (in the CCW
direction), CW and CCW modes experience an opposite
Sagnac frequency shift that can be described by the per-
turbed Hamiltonian HI = [�ωs 0

0 −�ωs
]. The Sagnac shift is

�ωs = 4πR�/ngλ, where R is the resonator radius, ng is
the group index, and λ is the operating wavelength. In a
conventional resonator operating at a diabolic point (DP)
[32], the rotation-induced frequency splitting between the two
counterpropagating modes is �ωDP = 2�ωs. Once the system
operating at a chiral EP is subject to rotation, the perturbed
system is described by an effective non-Hermitian matrix

H = H0 + HI =
[
ω0 + �ωs − iγ 0

A0 ω0 − �ωs − iγ

]
. (2)

Now the eigenvalues of the total Hamiltonian H are ωEP1,2 =
ω0 − iγ ± �ωs. It should be noted that the corresponding
mode splitting �ωEP = 2�ωs shows distinctly a linear de-
pendence on the rotation rate. The square-root response to
rotation does not occur at a chiral EP [5,6]. Hence, to enhance
the rotation detection using a chiral EP, we need to construct
a new perturbed form induced by rotation as

Hind =
[
�ωs B1(�ωs)

0 −�ωs

]
, (3)

where the backscattering coefficient B1(�ωs) is related to the
rotation. The Hamiltonian Hind shows that the rotation not
only induces the Sagnac shift but also results in the mode
coupling between the CW and CCW modes. The total Hamil-
tonian is H = H0 + Hind and the resulting eigenfrequencies of
H are

ω±=ω0 − iγ ±
√

B1(�ωs)A0 + �ω2
s . (4)

Equation (4) demonstrates that the rotation-induced perturba-
tion forces the system to depart from the EP, triggering an
eigenfrequency splitting. The complex eigenfrequency split-
ting is calculated as

�ωEP=ω+ − ω− = 2
√

B1(�ωs)A0 + �ω2
s . (5)

FIG. 1. (a) Schematic of a non-Hermitian photonic structure. A
WGM microresonator is coupled to a fiber taper with a reflector on
one side and a phase-shifted FBG on the other side. The blue (dashed
line) box shows a schematic of a phase-shift FBG. At the phase-
shifted FBG, the left-incident signal is Sin and the right-incident
signal is the CCW mode. (b) Schematic diagram of an EP surface
[31]. The EP surface exhibits the characteristic that the operating
point of the system will shift along the surface when it experiences
undesired perturbations. (c) Optical mode-coupling situations in the
absence or presence of the rotation. The CW and CCW optical modes
in the WGM microresonator are represented by red solid and dotted
circles, respectively.

Assuming a sufficiently small rotation, i.e., �ωs �
B1 � A0, the complex eigenfrequency splitting �ωEP ≈
2
√

B1(�ωs)A0, which shows that the frequency splitting
has a square-root dependence on B1(�ωs). That is the
characteristic of EP sensing. This result clearly indicates
that the perturbation form presented in Eq. (3) provides a
mechanism to enhance rotation detection using a chiral EP.
The enhancement factor Se defined by the ratio of �ωEP to
�ωDP is

Se = �ωEP

�ωDP
=

√
B1(�ωs)A0

�ωs
, (6)

which is therefore proportional to
√

A0B1 and inversely pro-
portional to the Sagnac shift �ωs. From Eq. (6) we see that
the larger A0 is required and the perturbation B1 needs to
dramatically increase with the Sagnac shift �ωs to enhance
the frequency splitting.

III. NON-HERMITIAN EP SURFACE SYSTEM FOR
ENHANCING ROTATION DETECTION

In this section, we present a way to establish an EP surface
with a single resonator. Compared with the PT -symmetric
and anti-PT -symmetric coupled resonators [5,6], a single
resonator is applied more flexibly in practice. This non-
Hermitian photonic system is shown in Fig. 1(a), where a
WGM resonator is coupled to a fiber taper with a coupling rate
κ . In the absence of rotation, the microresonator supports two
counterpropagating WGM modes with the same resonance
frequency ω0. A phase-shifted fiber Bragg grating (FBG) is in-
troduced on one end of the fiber with a reflectivity rR(ωCCW).
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In addition, a partial reflector with reflectivity rm is on the
other side of the fiber.

Due to the presence of the reflector and the phase-shifted
FBG, the counterpropagating WGM modes are coupled with
each other. The dynamics of the system can be described by
the coupled-mode equations as [25,28]

i
daCW

dt
= (ω0 − iγ )aCW + κ1aCCW − itLeiφ1

√
κSin,

i
daCCW

dt
= (ω0 − iγ )aCCW + κ2aCW − itLrmei(φ1+2φ2 )√κSin,

(7)

with the input signal field Sin. The κ1 = α1κ and κ2 = α2κ

represent the unidirectional coupling coefficients, which de-
scribe the backscattering strength from the CCW (CW) mode
to the CW (CCW) mode. Here α1 = rR(ωCCW)e2iφ1 and α2 =
rme2iφ2 , where irR and irm are the field reflection coefficients
at the phase-shifted FBG and the reflector, respectively. In
addition, φ1 = βL1 and φ2 = βL2 represent the propagating
phases, with β the propagation constant of the fiber and L1,2

the propagation distance in the fiber. To better reveal the non-
Hermitian character of such a system, we consider an effective
Hamiltonian derived by the coupled-mode equations (7) [31],

H0,eff =
[
ω0 − iγ α1(ωCCW)κ

α2κ ω0 − iγ

]
. (8)

The necessary condition to operate the system at the EP is
to generate a fully asymmetric backscattering between the
counterpropagating optical modes. To satisfy this condition,
the off-diagonal matrix element α1κ needs vanish at �ωs = 0,
i.e., α1(ω0)κ = 0, while α2κ is nonzero. Consequently, the ef-
fective non-Hermitian Hamiltonian of this photonic structure
in the absence of rotation is similar to Eq. (1),

HES =
[
ω0 − iγ 0

α2κ ω0 − iγ

]
, (9)

where α2κ denotes the intrinsic backscattering coefficient
from the CW to CCW modes. The eigenvalues of HES are
ωES1,2 = ω0 − iγ and the corresponding eigenvectors coa-
lesce to one eigenvector ãES1,2 = (0, 1)T . Once the system
was originally located at an EP in a resonance frequency ω0,
for any value of α2κ or γ , the eigenvalues degenerate and the
corresponding eigenmodes still coalesce. Accordingly, there
is an EP surface consisting of these possible parameters as
shown in Fig. 1(b), where the system can always be operated
at an EP. This feature corresponds to prominent robustness
that makes the system easier to implement in photonic tech-

nologies, because the system avoids controlling precisely the
coupling coefficient and gain or loss rate of the resonator.

In Sec. II we introduced a perturbed Hamiltonian in Eq. (3)
to enhance the rotation detection with a chiral EP. Consider
our configuration, in which the phase-shifted grating acts as
a medium that relates the rotation to the additional mode
coupling. The rotation Hamiltonian is given by

HI,rot =
[
�ωs α1(ωCCW)κ

0 −�ωs

]
. (10)

This expression, which corresponds to Eq. (3), describes the
rotation inducing the mode shift and simultaneously causing
a backscattering from the CCW to the CW mode generated
by the phase-shifted FBG [see Fig. 1(c)]. Then the resulting
eigenvalues of the non-Hermitian matrix H = HES + HI,rot are

ω±=ω0 − iγ ±
√

κ2rRrme2iφ + �ω2
s , (11)

where φ = φ1 + φ2. Equation (11) implies that the eigenfre-
quencies depend on the relative phase between the counter-
propagating modes [28,33]. To evaluate the sensitivity of the
system, we calculate the complex eigenfrequency splitting as

�ωsp=ω+ − ω− = 2
√

κ2rRrme2iφ + �ω2
s . (12)

The real part of �ωsp represents the frequency splitting and
the imaginary part denotes a linewidth broadening. In a small
rotation, the eigenfrequency splitting �ωsp is approximately
equal to 2

√
κ2rmrReiφ . The enhancement eigenfrequency

splitting provided by the EP sensor is

Se = �ωsp

�ωDP
=

√
κ2rRrmeiφ

�ωs
. (13)

For a sufficiently low rotation rate, a larger enhancement
factor can be obtained.

IV. NUMERICAL RESULTS

A. Tuning the system operating on an EP surface

As depicted in Fig. 1(a), the phase-shifted FBG is utilized
to reflect the CCW mode to the CW mode and then provides
the additional coupling strength, i.e., α1κ , when the system ro-
tates. Hence, the field reflectivity rR is related to the frequency
shift −�ωs induced by the Sagnac effect. The field reflectivity
and the transmissivity of the phase-shifted FBG are given by
(for details see the Appendix)

rR =
∣∣∣∣∣

κ0
[− neff

c (�ωB − �ωs)(eiϕ − 1)r2
1 + iσ r1(1 + eiϕ )

]
κ2

0

(
1 + r2

1eiϕ
) − [ neff

c (�ωB − �ωs)
]2(

1 + r2
1

) − 2i neff
c (�ωB − �ωs)σ r1

∣∣∣∣∣,

tL =
∣∣∣∣∣

eiϕ/2σ 2sech2(σ l )

κ2
0

(
1 + r2

1eiϕ
) − ( neff

c �ωB
)2(

1 + r2
1

) − 2i neff
c �ωBσ r1

∣∣∣∣∣,
(14)
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FIG. 2. (a) Reflection spectra and transmission spectra of a π -
shifted FBG at �ωs = 0 with an effective index neff = 1.44, a
uniform index modulation �nac = 5 × 10−4, a nominal period � =
538.19 nm, a Bragg wavelength λB = 1550 nm, length l = 2 mm,
and � = 0. (b) Reflection and transmission spectra of the π -shifted
FBG as functions of the rotation rate with the system operating at an
EP surface, with length l = 8 mm and �ωB = 0.

where �ωB = ω − ωB, ωB = 2πc/λB, and ω is the frequency
of the input laser. The reflectivity and transmissivity of power
are RR = |rR|2 and TL = |tL|2, respectively. A special case
of ϕ = π corresponds to a π -shifted FBG, whose hallmark is
the narrow transmission resonance in the middle of the totally
reflecting band gap [34], which is important for operating the
system at the EP and enhancing rotation detection.

Figure 2(a) depicts the reflection spectrum RR and trans-
mission spectrum TL of the π -shifted FBG with � = 0. A
narrow peak in the transmission spectrum and a dip in the
reflection spectrum of the π -shifted FBG are observed around
�ωB = 0. To ensure the reflectivity of the CCW mode at the
FBG close to zero, the frequency of the CCW mode, i.e., ω0

when � = 0, should be equal to ωB. At this time, a fully
asymmetric backscattering between the counterpropagating
optical modes occurs, which results in the generation of an
EP surface in our system, as discussed in Sec. III. Figure 2(b)
shows the reflectivity RR as a function of the rotation rate
� when the system operates at the EP surface. Variations in
resonance frequency induced by rotation lead to changes in
reflectivity, and then the additional coupling α1κ is generated

FIG. 3. Numerical simulations of the complex eigenfrequency
splitting dependent on the phases φ1 and φ2 with rotation rate � =
5 rad/s: (a) the real part Re(�ωsp) of the eigenfrequency splitting and
(b) the imaginary part Im(�ωsp ) of the eigenfrequency splitting. The
parameters are κ = 2.25 × 108 Hz, R = 171.31 μm, and rm = 0.8.

as described in Eq. (9), which breaks the degeneracy of the
eigenfrequencies and pushes the system away from the EP
surface.

B. Enhancement of eigenfrequency splitting

In this section, the eigenfrequency splitting of the EP
surface system is numerically demonstrated. In particular,
the real and imaginary parts of the complex eigenfrequency
splitting at the EP can be controlled by the relative phase
between the two coupling modes. In Figs. 3(a) and 3(b), the
complex eigenfrequency splitting changes periodically from
a minimum (maximum) to a maximum (minimum) with the
variation of φ1 and φ2. The trends of the variations in the real
and imaginary parts of the frequency splitting are the opposite.
As predicted by Eq. (11), when the propagating phases in
fiber are set as φ1 = π and φ2 = π , the eigenfrequency split-
ting exhibits an entire real splitting �ωsp = √

κ2rmrR + �ω2
s .

Our scheme can avoid the complex eigenfrequency split-
ting by only adjusting appropriate propagation phases in the
fiber [6].

In general, the eigenfrequency splitting induced by rotation
is extracted from the transmission spectrum. According to the
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input-output relation Sout = tLtmSineiφ + aout
CW + aout

CCW, with
aout

CW = tm
√

κeiφ2 aCW and aout
CCW = rRtm

√
κei(2φ1+φ2 )aCCW, the

transmission coefficient is calculated by solving Eq. (7) in the
steady-state approximation

T =
∣∣∣∣Sout

Sin

∣∣∣∣
2

=
∣∣∣∣tmtL

(
ei(φ1+φ2 ) + iκ

ei(φ1+φ2 )(iR2 + rme2iφ2κα1) + eiφ′
eiφ1 rR(ie2iφ2 rmR1 + κα2)

κ2α1α2 + R1R2

)∣∣∣∣
2

, (15)

where R1 = γ + i�ω1, R2 = γ + i�ω2, �ω1,2 = �ω ±
�ωs, �ω = ω0 − ω is the frequency detuning from the in-
put laser frequency to the cavity resonance frequency, and
φ′ = 2φ1 + φ2.

In Fig. 4 we present a series of normalized transmission
spectra versus the rotation rate � occurring in the EP sensor
and conventional gyroscope. To clearly exhibit the Sagnac-
induced frequency shift in the conventional gyroscope, we
plot the transmission spectra with the rotation rate 100 × �.
When the system is at rest, the transmission spectrum exhibits
a resonance peak at the EP, since the resonator supports only
one traveling mode that does not lead to frequency splitting.
Evidently, the EP-based sensor exhibits larger frequency split-
ting than that of the DP-based sensor with an increase of
rotation. The frequency splitting is supposed to be detected
for the smaller perturbation; however, this is limited by the
finite linewidths of the eigenmode that can be improved fur-
ther through external gain introduced into the resonator. The
parameters of the simulation in Fig. 4 are γ0 = 1.5 × 107 Hz,
κ = 2.25 × 108 Hz, γ = 1.5 × 107 Hz, φ1 = π , and φ2 = π .

Figure 5 shows the transmission peak trajectory of the
system on the contour map, which is consistent with the paths
of eigenfrequencies expressed by Eq. (11). The strengths of
the two resonant peaks are different, which can be explained
by the superposition of the different wave components, due to

FIG. 4. Series of normalized transmission spectra of the cases of
the EP sensor and conventional gyroscope as a function of rotation
rate �. Note that the normalized transmission spectra of the conven-
tional gyroscope are depicted with rotation rate � × 100.

the two eigenmodes containing different CCW and CW wave
components.

C. Scale-factor enhancement

Considering the conventional measurement of rotation, the
scale factor is generally calculated as the derivative of the
eigenfrequency splitting �ωsp with respect to the rotation rate
�. Hence, the Sagnac scale factor of the EP system is

SES= ∂�ωsp

∂�

∣∣∣∣
�→0

= κ

√
rm

rR

∂rR

∂�ωs

4πR

ngλ
, (16)

where 4πR/ngλ is the scale factor of the conventional gy-

roscope and Se = κ
√

rm
rR

∂rR
∂�ωs

is the EP enhancement factor.

This enhancement factor depends on the coupling rate κ and
reflection amplitude rR that are determined by the structure
parameters of the FBG. The superior performance of the EP
surface-based gyroscope becomes prominent at low rotation
rates, as depicted in Fig. 6, where the scale factor in the
vicinity of the EP is enhanced by four orders of magnitude in
comparison to the conventional Sagnac effect. The proposed
EP surface system enhances the frequency splitting better than
a conventional gyroscope does.

D. Noise limits

Although the EP sensor exhibits the enhancement in terms
of the scale factor, it is a transduction coefficient from the
rotation to the frequency splitting rather than an appropriate

FIG. 5. Trajectory of the transmission peaks as a function of the
rotation rate �. The red solid line and white dashed line highlight the
eigenfrequencies with the variation of rotation rate �. Here �ω± =
ω± − ω0 are the eigenfrequency detunings.
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FIG. 6. Comparison of the Sagnac scale factor SES [given in
Eq. (16)] of the EP surface system and the Sagnac scale factor of
the conventional gyroscope. The inset shows the Sagnac scale factor
of the conventional gyroscope.

metric to evaluate the detection precision. Recent works have
demonstrated that the enhancement in frequency splitting at
the EP does not mean an enhancement of detection precision
under the noise limit [35–37]. In fact, for a conventional
gyroscope, the Sagnac frequency shift can be measured with
the change of transmission power when the laser is tuned to
a certain frequency, which is also applicable to our system.
When the gyroscope rotates, the transmission coefficient ex-
periences a change in �T , which causes a transmission signal
change at the detector �Pout = Pin�T with the input power
Pin. The sensitivity can be defined as [35]

S = 1

Pin

(
dPout

d�

)
ω

∣∣∣∣
�→0

=
(

dT

d�

)
ω

∣∣∣∣
�→0

(17)

and is then calculated by differentiating the transmission
coefficient given in Eq. (15). To evaluate the performance
of the EP sensor, the most important physical quantity is
the minimum detectable rotation rate under the noise limit,
i.e., �min = σs/SPin, where the total noise σs primarily arises
from the shot noise, detector noise, laser relative-intensity
noise, laser-frequency noise, etc. [35]. By using the balanced-
detection technique and improving the Q factor of the
resonator, the noise sources can be reduced to the shot noise
and detector noise, i.e.,

σs =
√

σ 2
shot + σ 2

DN =
√

2(h̄ω + q/ρ)Pout + σ 2
DN, (18)

where σ 2
shot denotes the shot noise, σ 2

DN is the detector noise,
h̄ω is the photon energy, q is the electron charge, and ρ de-
notes the detector responsivity. Then the minimum detectable
rotation rate �min is written as

�min =
√

2(h̄ω + q/ρ)T Pin + σ 2
DN

SPin
. (19)

The detector noise is independent of the parameters of the sen-
sor and output power. In the detector noise limit, minimizing

[d
eg
/(h
√H
z)
]

FIG. 7. Shot-noise-limited �min of the EP gyroscope plotted
versus rotation rate. The black dashed line is the optimized shot-
noise-limited �min of the conventional gyroscope.

�min requires maximizing the sensitivity S. In contrast, the
shot noise depends on the input power and the transmission
coefficient determined by the parameters of the gyroscope.
When the shot noise dominates, �min will be minimized by
optimizing the value of

√
T /S. Here we mainly study the

shot-noise-limited minimum detectable rotation rate.
The potential of the EP sensor to enhance rotation detec-

tion can be evaluated by a comparison with the conventional
gyroscope. Following the contrast principle of the gyroscopes,
both the EP sensor and a single-resonator gyroscope with
the same radius and intrinsic loss rate are considered. In
this section, we demonstrate the passive EP sensor and pas-
sive single-resonator gyroscope. The radius of the resonator
R = 171.31 μm and intrinsic loss rate γ0 = 1.5 × 107 Hz are
chosen as discussed before. Other free parameters, namely,
coupling rate κ and frequency detuning �ω, are optimized to
minimize �min for the conventional gyroscope. We emphasize
that the laser frequency is set at the resonance frequency
of the EP sensor, because the responsivity is maximum
when exciting the EP sensor on resonance, as demonstrated
in Ref. [37].

Figure 7 depicts the shot-noise-limited �min of the EP
sensor (red solid line) and the optimized shot-noise-limited
�min of the conventional gyroscope (black dashed line). The
simulated parameters are an input laser with wavelength λ =
1550 nm and input power Pin = 100 μW and the detector
responsivity ρ = 1 A/W [35]. The shot-noise-limited �min of
the EP sensor is approximately equal to 0.1 deg/(h

√
Hz) and

is three orders of magnitude lower than that of a conven-
tional gyroscope. When the system rotates and then departs
from the EP, the EP sensor still has better precision than the
conventional gyroscope. The reasons for the improved detec-
tion precision are as follows. For conventional gyroscopes,
a rotation alters the transmission only through the Sagnac
frequency shift �ωs. In contrast, for the EP sensor presented
here, a rotation alters the field transmission coefficient via
two mechanisms: (i) the Sagnac frequency shift �ωs and (ii)
the additional coupling α1κ induced by rotation [4], as given
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in Eq. (15). A rotation can introduce larger perturbation to
our configuration compared to the conventional gyroscope. In
addition, at an EP, having two collapsing eigenmodes makes
a single transmission peak. The two eigenmodes separating
from each other due to the degeneracy broken by rotation
results in the reduced influence on each other; therefore, the
transmission changes dramatically around the EP to generate
higher sensitivity.

V. CONCLUSION

We have introduced an approach for enhancing rotation
detection by using a chiral EP and proposed a non-Hermitian
photonic configuration to implement it. The system can still
remain at an EP when it experiences undesirable fabrica-
tion errors or experimental uncertainties. In the absence of
rotation, the proposed system is finely tuned to be at the
EP surface. Different from the conventional gyroscope, the
phased-shifted FBG provides an additional coupling from
the CCW mode to the CW mode when the system rotates.
The coupling induced by rotation forces the system to depart
from the EP surface, causing enhanced frequency splitting
compared to the traditional Sagnac effect. The shot-noise-
limited minimum detectable rotation rate is lower than that
of a conventional gyroscope by three orders of magnitude.
We anticipate that the EP surface system has the potential to
combine robustness with sensitivity enhancement of rotation
detection and is also suitable to realize an integrated photonics
gyroscope in practice.
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APPENDIX

In Fig. 1(a), a phase-shifted FBG relies on two uniform
and symmetric FBGs with a discrete phase ϕ is introduced in
the middle between them. For a single-mode grating, the re-
fractive index distribution is n(z) = neff + �nac cos[2πz/� +
�(z)], where neff is the effective refractive of the fiber, �nac

is the refractive modulation strength of the grating, � is the
nominal period, z is the position along the fiber, and �(z) is
the additional phase modulation. The input and output relation
of each uniform gratings of length l (l = L/2) is represented

by the matrix [38]

M1 = M2

=
[

cosh(σ l ) + i δ
σ

sinh(σ l ) i κ0
σ

sinh(σ l )

−i κ0
σ

sinh(σ l ) cosh(σ l ) − i δ
σ

sinh(σ l )

]
,

(A1)

where σ =
√

κ2
0 − δ2, κ0 = �nac/λ is the coupling coeffi-

cient of the grating, and δ = 2πneff( 1
λ

− 1
λB

) is the detuning
parameter, with λB = 2πneff� the Bragg wavelength that de-
termines the center of the transmission and reflection.

The matrix that denotes the phase-shift region can be de-
scribed as [38]

Mph =
[

eiϕ/2 0

0 e−iϕ/2

]
. (A2)

The spectral profile from a phase-shifted FBG can be sim-
ulated using the transfer matrix method [38–41]; hence the
transfer matrix F described by the phase-shifted FBG can be
written as

F = M2 × Mph × M1 =
[

F11 F12

F21 F22

]
. (A3)

Hence, the reflected amplitude and the transmission amplitude
of the phase-shifted FBG can be found from the matrix F as

rR =
∣∣∣∣F12

F22

∣∣∣∣, tL =
∣∣∣∣ 1

F22

∣∣∣∣. (A4)

The reflection and transmission amplitudes are calculated as

rR =
∣∣∣∣ κ0

[−δ(eiϕ − 1)r2
1 + iσ r1(1 + eiϕ )

]
κ2

0

(
1 + r2

1eiϕ
) − δ2

(
1 + r2

1

) − 2iδσ r1

∣∣∣∣,

tL =
∣∣∣∣ eiϕ/2σ 2sech2(σ l )

κ2
0

(
1 + r2

1eiϕ
) − δ2

(
1 + r2

1

) − 2iδσ r1

∣∣∣∣,
(A5)

where r1 = tanh(κ0l ). In our system, the phase-shifted FBG is
utilized to reflect the CCW mode to the CW mode, that is, the
reflection amplitude rR is related to the frequency of the CCW
mode. When the laser frequency is set as ω0, the frequency
detuning parameter of the CCW mode with rotation can be
written as

δ = 2πneff

(
1

λCCW
− 1

λB

)
= neff

c
(ω0 − �ωs − ωB). (A6)

It should be noted that the transmission amplitude tL is not af-
fected by rotation and then the frequency detuning parameter
in the transmission amplitude is independent of rotation. The
reflectivity and transmissivity of the power are RR = |rR|2 and
TL = |tL|2, respectively.
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