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in a closed-contour interaction scheme
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We study theoretically an optical cavity and a parity-time (PT )-symmetric pair of mechanical resonators,
where all oscillators are pairwise coupled, forming an optomechanical system with a closed-contour interaction.
Due to the presence of both gain and feedback, we explore its stability and the root loci over a wide cou-
pling range. Under the red-sideband pumping and for the so-called PT -unbroken phase, it displays a double
optomechanically induced transparency (OMIT) for an experimentally realizable parameter set. We show that
both the transmission amplitude and the group delay can be continuously steered from the lower transmission
window to the upper one by the loop coupling phase which breaks the time-reversal symmetry and introduces a
static synthetic gauge field. In the PT -unbroken phase both the gain-bandwidth and delay-bandwidth products
remain constant over the full range of the controlling phase. Tunability in transmission and bandwidth still
prevails in the PT -broken phase, albeit over a reduced range. In essence, we suggest a simple scheme that grants
coupling phase-dependent control of the single and double OMIT phenomena within an effective PT -symmetric
optomechanical system.
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I. INTRODUCTION

Electromagnetically induced transparency is one of the
striking quantum interference effects in light-matter interac-
tion [1,2], which alters the optical susceptibility of a medium,
leading to phenomena such as the giant Kerr effect, can-
celing the absorption, and the group delay or advance of a
probe light around a specific wavelength [3]. By augmenting
its basic level scheme it can support a double transparency
window [4,5] which greatly enhances the nonlinear coupling
between two copropagating weak signals [6,7]. Its offspring in
cavity optomechanics by harnessing the dispersively coupled
radiation pressure encompasses optomechanically induced
transparency (OMIT) [8–12] and double OMIT [13–17].

Recently, the basic OMIT framework has been enriched
in various directions. One of them was by introducing three-
mode coupling, which gives rise to profound consequences.
For instance, in the case of two photonic modes coupled to a
mechanical resonator, switching from transparency to absorp-
tion by adjusting the strength of the cavity coupling [18] and
nonreciprocal amplification or attenuation have been reported
[19,20]. This work was extended to reconfigurable nonrecip-
rocal transmission between two microwave modes [21] and
nonreciprocal enhancement of second-order sidebands [22].
In a cavity-magnon system that utilizes pathway interfer-
ence, switching between fast and slow light transmission has
been proposed [23] and experimentally achieved by tuning
the relative phase of the magnon pumping and cavity probe
[24]. Other important progress has been brought about by
parity-time (PT )-symmetric photonic concepts that widen the
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range of opportunities [25,26]. For instance, under a varying
gain-to-loss ratio, inverted OMIT is displayed, as well as the
possibility to exchange slow and fast lights [27–29]. In the
quantum regime, for blue-detuned driving, the PT symmetry
enables the elimination of the dissipation effect [30]. In a
recent study, within the three-mode paradigm, the transition
of the system from the so-called PT -broken phase to the PT -
unbroken phase is accompanied by single to double OMIT,
when the so-called exceptional point (EP) is crossed [31].
Indeed, this is one example of the extensive research efforts
that have been dedicated to the interesting features of the
EP in optomechanics, with a few others being nonreciprocal
energy transfer between two eigenmodes of a mechanical sys-
tem [32], loss-induced transparency [33], enhanced sensitivity
[34], and sideband generation [35]. These are complemented
by other OMIT studies in systems having photonic-sector PT
symmetry [36–39].

One further direction to engineer electromagnetically in-
duced transparency is by completing the basic � scheme to
a � coupling [40–42], which was used earlier for coherence
population trapping [43]. Very recently, this was utilized for
nonreciprocal ground-state cooling [44] and OMIT tunability
by controlling the so-called dark-mode effect [45]. It basi-
cally makes up a closed-contour interaction that embodies a
synthetic gauge field which has totally revamped photonics
[46–49]. Going beyond the so-called static gauge field, in
cases where the field freely evolves and behaves like a limit-
cycle oscillator, it can acquire a dynamical degree of freedom
of its own [50,51]. Both static and dynamical synthetic gauge
fields have been employed in optomechanics [50,52–58] and
other hybrid systems involving atoms [59] and spins [60].

In this work, bringing together these concepts, we study
theoretically an optical cavity coupled to a PT -symmetric

2469-9926/2021/104(3)/033504(13) 033504-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8818-6548
https://orcid.org/0000-0003-2493-517X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.033504&domain=pdf&date_stamp=2021-09-07
https://doi.org/10.1103/PhysRevA.104.033504


SÜTLÜOĞLU AND BULUTAY PHYSICAL REVIEW A 104, 033504 (2021)

pair of mechanical resonators under a red-detuned pumping
within the sideband-resolved regime. In our scheme all os-
cillators are pairwise coupled, in contrast to Ref. [31], thus
comprising a closed-contour interaction [60]. This simple ex-
tension enables us to take advantage of the aforementioned
advances. Because of the gain and feedback in the closed loop,
first we work out its stability over the parameter space and
the representative root loci. This clearly displays how their
character drastically changes from the PT -broken phase to
the PT -unbroken phase. The most conspicuous outcome is
the switch from single to double OMIT behavior. This can
be obtained in the stable region of an experimentally real-
izable parameter space. We show that both the transmission
amplitude and slow light group delay of each transparency
window can be continuously steered by any of the coupling
phases in the closed-contour interaction, acting as a static
synthetic gauge field [55]. Both the gain-bandwidth and the
delay-bandwidth products remain fairly constant over the full
span of the coupling phase. In the PT -broken phase an OMIT
bandwidth tunability of about 50% is provided.

The paper is organized as follows. In Sec. II we present our
model and its theoretical analysis for the probe transmission
characteristics. In Sec. III we discuss the parameter set we use
for our calculations. Section IV contains the results, starting
with the stability analysis and followed by the control of the
OMIT behavior, bandwidth, and slow light properties. Sec-
tion V addresses the experimental relevance of our model, and
our main conclusions are highlighted in Sec. VI. Appendix A
introduces the gauge transformation that leads to the closed-
loop phase starting from a general case; Appendix B presents
some analytical expressions derived by means of the so-called
adiabatic elimination technique.

II. THEORY

We consider a ternary-coupled system consisting of a pho-
tonic cavity attached to a pair of PT -symmetric mechanical
resonators, so that one end of cavity is coupled to the passive
mechanical resonator via coupling constant g1 as well as to
the active one via g2 as shown in Fig. 1. The mechanical
resonators have equal amounts of loss (γ1 > 0) and gain
(γ2 < 0), i.e., γ1 = −γ2, and they are coupled to each other
via a mechanical coupling constant μ. The cavity is driven by
a strong control laser with angular frequency ωl and amplitude
εl , as well as by a weak probe laser with ωp and εp. Laser
powers can be obtained using Pi = h̄ωiε

2
i , i = l, p, where ε2

i
is expressed in the frequency dimension.

The Hamiltonian in the rotating frame of the control laser
at angular frequency ωl is

Ĥ = h̄�â†â + h̄ωm(b̂†
1b̂1 + b̂†

2b̂2) − h̄μ(b̂†
1b̂2 + b̂†

2b̂1)

− h̄â†âg1(b̂†
1 + b̂1) − h̄â†â(g2b̂†

2 + g∗
2b̂2)

+ ih̄
√

ηκεl (â
† − â) + ih̄

√
ηκεp(â†e−iωt − âeiωt ), (1)

where â (â†), and b̂1 (b̂†
1) and b̂2 (b̂†

2) are the annihilation
(creation) operators of the cavity and mechanical modes, re-
spectively, κ is the cavity decay rate, and η is the cavity
coupling parameter [9]. Here the detuning between the cavity
and the control laser is � = ωcav − ωl and that of the probe
is ω = ωp − ωl [31]; the former governs the physics and

FIG. 1. Closed-contour interaction optomechanical system com-
posed of a photonic cavity with the relevant resonance at ωcav and
two mechanical resonators with identical frequencies ωm. Loss and
gain rates are indicated with wavy arrows. A strong pump laser and
a weak probe laser with angular frequencies ωl and ωp, respectively,
are externally coupled to the cavity.

the latter serves as the primary characterization variable. In
Eq. (1) and in the remainder of this analysis, without loss
of generality, we take the two coupling coefficients μ and
g1 as real and non-negative while leaving g2 = |g2|eiφ
 as
complex, with φ
 the total closed-loop coupling phase. Details
of the corresponding gauge transformation that justifies this
are provided in Appendix A.

The Heisenberg-Langevin equations which characterize
the time evolution of the photon and phonon modes are found
based on the above Hamiltonian as

dâ

dt
= −i�â + iâg1(b̂†

1 + b̂1) + iâ(g2b̂†
2 + g∗

2b̂2)

+√
ηκεl + √

ηκεpe−iωt − κ

2
â, (2)

db̂1

dt
= −iωmb̂1 + iμb̂2 + ig1â†â − γ1

2
b̂1, (3)

db̂2

dt
= −iωmb̂2 + iμb̂1 + ig2â†â − γ2

2
b̂2, (4)

where the dissipation is introduced within the standard
Markovian limit [61]. Being interested in the probe trans-
mission and phase dispersion characteristics, we discard the
thermal and quantum fluctuations of the variables by replacing
the operators with their mean values ℵ̂(t ) → 〈ℵ̂(t )〉 ≡ ℵ(t )
[62]. Thereupon, our analysis essentially focuses on classical
phenomena.

The steady-state solution of this set of equations is given
by

ā =
√

ηκεl

i� + κ
2 − ig1(b̄∗

1 + b̄1) − i(g2b̄∗
2 + g∗

2b̄2)
, (5)

b̄1 = [ig1(iωm + γ2/2) − μg2]|ā|2
(iωm + γ1/2)(iωm + γ2/2) + μ2

, (6)

b̄2 = ig2|ā|2 + iμb̄1

iωm + γ2/2
. (7)

The Heisenberg-Langevin equations are linearized around
the steady-state values as ℵ(t ) = ℵ̄ + δℵ(t ) by ignoring the
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nonlinear terms [31,62], and the following equation of mo-
tions for perturbation terms δℵ(t ) are found:

dδa

dt
= −i�δa − κ

2
δa + iδag1(b̄∗

1 + b̄1)

+ iāg1(δb∗
1 + δb1) + iδa(g2b̄∗

2 + g∗
2b̄2)

+ iā(g2δb∗
2 + g∗

2δb2) + √
ηκεpe−iωt , (8)

dδb1

dt
= −iωmδb1 − γ1

2
δb1 + ig1(āδa∗ + ā∗δa) + iμδb2,

(9)

dδb2

dt
= −iωmδb2 − γ2

2
δb2 + ig2(āδa∗ + ā∗δa) + iμδb1.

(10)

These equations can be solved by imposing the first-order
sidebands only (in the rotating ωl frame) as

δa = A1+eiωt + A1−e−iωt , (11)

δb1 = B1+eiωt + B1−e−iωt , (12)

δb2 = C1+eiωt + C1−e−iωt . (13)

When the frequency ω becomes resonant with ωm the system
starts to oscillate coherently and it creates first-order side-
bands, i.e., Stokes and anti-Stokes fields with frequencies (in
the nonrotating frame) ωl − ω and ωl + ω, respectively [63].
Under red-detuned pumping (� = ωm), the Stokes field is
off-resonance with the cavity mode and it is the anti-Stokes
field with frequency ωl + ω that falls into the relevant cavity
resonance [9,63]. The amplitude of the latter is given by

A1− =
√

ηκεp

�(ω) − |ā|2�(1 − 
)
, (14)

where

�(ω) = i� + κ

2
− iω − ig1(b̄∗

1 + b̄1) − i(g2b̄∗
2 + g∗

2b̄2),

(15)

� = ig1
−ig1α2(ωm) − μg∗

2

f2(α1, α2)
+ ig1

ig1α2(−ωm) − μg2

f1(α1, α2)

+ ig2
−ig∗

2α1(ωm) − μg1

f2(α1, α2)
+ ig∗

2
ig2α1(−ωm) − μg1

f1(α1, α2)
,

(16)


 = |ā|2�
�∗(−ω) + �|ā|2 , (17)

with

α1(ωm) = −iω − iωm + γ1

2
, (18)

α2(ωm) = −iω − iωm + γ2

2
, (19)

f1(α1, α2) = α1(−ωm)α2(−ωm) + μ2, (20)

f2(α1, α2) = α1(ωm)α2(ωm) + μ2. (21)
To obtain transmission of the probe, we use the stan-

dard input-output relationship Sout = Sin − √
ηκ〈â〉, where

〈â〉 = ā + δa [9,31]. The input field Sin comes from the driv-
ing field in the rotating frame as Sin = εl + εpe−iωt . The
amplitude of the anti-Stokes field is found from the out-
put field as εp − √

ηκA1− where Sout = εl − √
ηκ ā + (εp −√

ηκA1−)e−iωt − √
ηκA1+eiωt . Its division by εp gives the

probe transmission amplitude as

tp = 1 − ηκ

�(ω) − |ā|2�(1 − 
)
. (22)

The derivative of the transmission phase dispersion with re-
spect to the probe frequency determines the group delay

τg = dψ (ωp)

dωp
, (23)

where the phase dispersion is ψ (ωp) = arg[tp(ωp)] [31,38].
Next we find the stability matrix to analyze where the

coupling of the mechanical gain mode to the cavity intro-
duces instability. Linearized Heisenberg-Langevin equations
can be cast in a matrix form δẋn = Mnδxn(t ) + dn, where
the subscript n indicates the number of associated dynamical
variables (here n = 6; for a different choice see Appendix
B) given by the vector δx6(t ) = (δa, δa∗, δb1, δb∗

1, δb2, δb∗
2)T

and the vector d6 = (
√

ηκεpe−iωt ,
√

ηκεpeiωt , 0, 0, 0, 0)T de-
notes the driving terms. The explicit form of the stability
matrix is given by

M6 =

⎛
⎜⎜⎜⎜⎜⎝

−i�a − κ/2 0 iāg1 iāg1 iāg∗
2 iāg2

0 i�a − κ/2 −iā∗g1 −iā∗g1 −iā∗g∗
2 −iā∗g2

iā∗g1 iāg1 −iωm − γ1

2 0 iμ 0
−iā∗g1 −iāg1 0 iωm − γ1

2 0 −iμ
iā∗g2 iāg2 iμ 0 −iωm − γ2

2 0
−iā∗g∗

2 −iāg∗
2 0 −iμ 0 iωm − γ2

2

⎞
⎟⎟⎟⎟⎟⎠, (24)

where

�a = � − g1(b̄∗
1 + b̄1) − g2b̄∗

2 − g∗
2b̄2. (25)

The system becomes stable when all eigenvalues of the matrix
M6 have negative real parts [64,65].

Finally, as we derive under certain approximations in Ap-
pendix B, for the given g1, g2, and other parameters, the

intermechanical coupling constant μ, which places the op-
tomechanical system right on the EP, is governed by the
analytical expression

μEP 	
√∣∣∣∣2ā2g1g2

κ

∣∣∣∣
2

+
[ |ā|2(g2

1 − |g2|2)

κ
+ γ1 − γ2

4

]2

.

(26)
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This analytical expression agrees very well with the numeri-
cal or exact solution for the parameter range of interest (see
Fig. 10 in Appendix B).

III. PARAMETER SET

To investigate both PT -broken and -unbroken phases, μ

needs to vary from below to above the EP value μEP. As
seen in Eq. (26), μEP explicitly depends on g2 among other
variables. The magnitude of g2 is to be determined using
the stability analysis, and its phase plays the main role in
the control of OMIT, as will be shown below. To ensure
the practical relevance of our work, the common parame-
ter set closely follows two ground-state cooling experiments
[66,67] and consists of g1/2π = 1 MHz, ωm/2π = 3.68 GHz,
γ1 = −γ2 = 0.5 × 10−2ωm, κ = 0.1ωm, and the wavelength
of the control laser λ = 1537 nm. Notably, with this choice
of g1 
 κ , the optomechanical system operates within the
weak-coupling limit. We also remark that we did not elaborate
on breaking the balanced gain and loss within the mechanical
sector, even though a more optimal choice is highly likely
[68]. Considering the cavity loss as well, the system has
overall loss. However, under a simple gauge transformation,
the underlying PT symmetry can be manifested [25]. The
remaining parameters are taken as η = 1

2 and Pc = 7.96 μW.
The latter directly determines the mean number of photons
and phonons in the resonators; it will be reduced fivefold
in the slow light discussion. We should note that none of
the parameters are critical and a different set serving similar
purposes is also conceivable.

IV. RESULTS

A. Stability

First, under the chosen common parameter set we search
over the g2-μ space to find where the closed-contour interac-
tion gives a stable response to the anti-Stokes transmission.
Solving the eigenvalues of Eq. (24) numerically, we iden-
tify the stable and unstable regions in both PT -broken and
-unbroken phases as a function of magnitude and phase of g2

for a fixed coupling constant g1 as displayed in Fig. 2. There
is a slight vertical shift between the estimations based on
exact and analytically found eigenvalues [see Appendix B, in
particular Eq. (B17)] under adiabatic elimination, as marked
by the narrow darker shaded regions. The origin of instability
in the system is the active mechanical resonator (gain mode)
with γ2 < 0. Increasing its coupling to the lossy cavity via
g2 and/or mechanical resonator via μ (see Fig. 1) instate the
stability. As a matter of fact, in Fig. 2(b), the limit |g2| →
0 becomes unstable, though it is not visible in this scale.
Likewise, instability is less prevalent in the PT -unbroken
phase (μ > μEP), as it has a larger intermechanical resonator
coupling than the PT -broken phase (μ < μEP). Based on
Fig. 2, for the remainder of our analysis we choose |g2| = 2g1

(shown by dashed lines) so that the system becomes stable for
all values of φ
 in both phases.

(a) (b)

FIG. 2. Stability analysis as a function of the magnitude and
phase of g2 for g1/2π = 1 MHz and (a) μ = 0.2(γ1 − γ2) and
(b) μ = 0.5(γ1 − γ2). Magenta designates stable and turquoise un-
stable regions of the closed-contour interaction. The semitransparent
narrow interface region is where the adiabatic elimination estimation
(B17) disagrees with the exact 6 × 6 solution. Dashed lines in both
panels mark the trajectory used in the following figures.

B. Root loci

To further shed light on how to control the behavior of the
probe transmission, we study the trajectory of the eigenvalues,
also known as the root loci of the system, as a function of φ


for four different values of μ chosen below, around, and above
the EP. In Fig. 3 we solely track the two roots on the upper

FIG. 3. Root loci of the mechanical sector eigenvalues as a
function of φ
 ∈ [0, π ] where the limit values are marked in each
panel. Gray dashed lines are the analytically found upper-half-plane
eigenvalues as a result of adiabatic elimination [Eq. (B11)]. The
other coupling parameters are |g2| = 2g1 and (a) μ/(γ1 − γ2) = 0.2,
(b) μ 	 μEP, (c) μ/(γ1 − γ2) = 0.28, and (d) μ/(γ1 − γ2) = 0.5.
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FIG. 4. Plot of log10 of transmission amplitudes as a function of
probe detuning (normalized to ωm) versus mechanical coupling co-
efficient μ (normalized to γ1 − γ2) for |g2|/2π = 2g1/2π = 2 MHz
and (a) φ
 = 0, (b) φ
 = π/2, (c) φ
 = π , and (d) φ
 = 3π/2.

half plane originating from the mechanical resonators which
display the characteristic traits around the EP. Only the range
φ
 ∈ [0, π ] is considered, since the roots simply backtrack
over [π, 2π ]. For μ < μEP, the active and passive mechanical
modes largely preserve their individual loss behaviors when
φ
 is swept from 0 to π , while in frequency they traverse
in opposite directions from above to below ωm. For future
reference, it needs to be mentioned that φ
 in any case affects
both the frequency and the loss of these modes.

Around the EP μ ∼ μEP we see in Fig. 3(b) a drastic
change from the previous vertical migration of the roots as φ


varies. Coalescence of the eigenvectors occurs, which is the
hallmark of PT symmetry at this special type of the degen-
eracy point of the eigenvalues [69,70]. Analytical expressions
for the eigenvalues [cf. Eq. (B11)], marked by dashed lines,
display trajectories very close to the exact (numerical) ones.
However, due to the approximation involved, the analytic
μEP [see Eq. (26)] slightly differs from the exact value when
|g2| = 2g1 and φ
 = π/2. This is the reason for the deviation
in the two sets of eigenvalues in, e.g., Fig. 3(b).

Above the EP μ > μEP in Figs. 3(c) and 3(d) the less- and
more-lossy modes swap their damping characters as φ
 goes
from 0 to π , so the upper band enhances loss while the lower
band acquires relative gain by moving to the right. During this
course of character exchange with respect to φ
, midway we
expect equal amounts of probe transmission for the φ
 = π/2
and 3π/2 cases, as will be verified in the transmission spectra.

C. Single and double OMIT

In the light of the analysis of the root loci, we examine the
two-dimensional probe transmission spectrum as a function
of ω and μ. In Fig. 4 this is plotted for four different values
of φ
. First, setting g2 real (φ
 = 0) yields an asymmetrical
spectrum which favors the main transmission in the upper
band (ω > ωm). The symmetry in the spectrum can be restored
by purely imaginary g2 (i.e., φ
 = π/2 and 3π/2), which also

clearly displays the transition from single to double OMIT
when μ changes from μ < μEP to μ > μEP, respectively. The
lower band transmission is enabled for φ
 = π . In this way
the transmission can be steered with φ
 by controlling the
phase relations and the interference between the direct probe
transition and the indirect anti-Stokes field [63]. To ensure that
this is a phase-driven effect, we checked that the change in
the mean populations of all three resonators remains within
15% over the full range of φ
 (not shown). Here our interest is
focused on controlling the main transmission within the lower
and upper bands through the closed-loop phase φ
, whereas
previous OMIT studies having photonic-sector PT symmetry
aimed to control the transmission amplitude at a fixed band
through the temperature, power of the control field, gain-to-
loss ratio, and phase of the phonon pump [38,39].

To gain better insight, we examine separately the PT -
broken and -unbroken phases. Starting with the former, in
Figs. 5(a), 5(c), and 5(e) we plot again the probe transmission
for the three φ
 values considered above. Recall from Fig. 3(a)
that there are two modes, one more lossy than the other,
and they are swapped in frequency while retaining their loss
rankings under φ
. Thus, we have a single OMIT at ωm having
a broad width for both φ
 = π/2 and 3π/2. The peak can
be marginally moved above or below ωm with φ
; thereby,
even for the PT -broken case there is to some extent control
over the transmission of the probe. In the PT -unbroken phase
shown in Figs. 5(b), 5(d), and 5(f), two supermodes, namely,
dressed states, are responsible for the double transmission
peaks [31]. This double OMIT is clearly seen in Fig. 5(d)
for φ
 = π/2, whereas in the PT -broken phase we have a
single peak in Fig. 5(c). In accord with the root loci in Fig. 3,
for above the EP, as the roots develop a frequency gap, the
transmission peaks are well separated, and the phase steering
of the transmission from the upper to the lower band is well
resolved in the PT -unbroken phase as in Figs. 5(b) and 5(f).
We should note here that when g2 = 0 there is still a transition
from single to double OMIT via the EP [31]; however, this
comes without the ability to switch within the lower and upper
bands. The dashed lines plotted in Figs. 5(a)–5(f) indicate the
zero-pump cases, i.e., εl = 0, where the direct absorption of
the probe peak is observed at ωm, which simply verifies that
it is the nonlinear radiation-pressure interaction that endows
both single and double OMIT. Finally, Figs. 5(g) and 5(h)
summarize these in the form of two-dimensional density plots.

In the discussion above we used the phase of g2 as the
exemplary spectral control parameter. We also checked that
identical results are obtained if instead the intermechanical
coupling constant μ = |μ|eiφμ is taken as complex and φμ

is swept from 0 to π . This ensures that the phase-dependent
control is not specific to the coupling constant g2. As a matter
of fact, in Appendix A we show that individual phases of g1,
g2, and μ forming the closed-loop interaction can be lumped
into any one of them, say, g2, via a gauge transformation. In
this way it constitutes a synthetic gauge field, where the so-
called gauge-invariant phase sum [71] φ
 = −φ1 + φ2 + φμ

(see Fig. 1) gives rise to an observable effect, namely, the
spectral tunability in the system. This phase discriminates
the counterclockwise and clockwise traversals over the closed
contours encountering gain and loss sections in different
order, which amounts to the breaking of time-reversal
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FIG. 5. Transmission amplitudes as a function of probe detuning
(normalized to ωm) for |g2|/2π = 2g1/2π = 2 MHz in (a), (c), (e),
and (g) PT -broken and (b), (d), (f), and (h) PT -unbroken phases.
Red dashed lines correspond to the zero pump case i.e., εl = 0. Plots
(g) and (h) display the log10 of transmission amplitudes as a function
of the phase of g2 and probe detuning (normalized to ωm).

symmetry in the PT -symmetric system [72]. Moreover, as
noted in Appendix A, φ
 = 0 and π correspond to cases where
the time-reversal symmetry is restored and the double OMIT
spectrum is dominated by one of the bands.

D. Gain-bandwidth product

Figures 5(a)–5(f) also reveal that peak transmission ac-
companies the narrower of the bands. To investigate this
quantitatively, first we consider the gain-bandwidth product
in the PT -unbroken phase. Figure 6 displays both the trans-

FIG. 6. Gain-bandwidth product at μ = 0.5(γ1 − γ2) in the PT -
unbroken phase. The bandwidth (BW) is in units of ωm. The lower
band (ω < ωm) is shown in red and the upper band (ω > ωm) in blue.
In (c) the black line shows the sum of both bands together.

mission peak and the half-width at half maximum (HWHM)
bandwidth for the lower (in red) and upper (in blue) bands sep-
arately. The total gain-bandwidth product which accounts for
both bands (shown in black) in Fig. 6(c) remains constant over
the full span of the tuning phase φ
. Such a gain-bandwidth
tradeoff is commonly displayed in other optomechanical sys-
tems [61] and optical amplifiers [73]. In the case of the
PT -broken phase (see Fig. 7), due to the lack of a clear
peak separation, we cannot discriminate between lower and
upper bands. Here the inverse behavior of the gain versus
the bandwidth is still observed; however, their product rather
significantly varies with respect to φ
.

E. Group delay

Next we would like to demonstrate the slow light behavior
in the transmission windows of double OMIT in the PT -
unbroken phase. To somewhat enhance the effect, in this case
we reduce the pump power to Pc = 1.59 μW. In Fig. 8, group
delays corresponding to φ
 = 0 and π are plotted as a function
of probe detuning in both PT -broken and -unbroken phases.
The figure clearly reveals that the band in transmission also
exhibits a slow light character. Once again, this is continu-
ously tunable by φ
. Note that we did not aim to optimize
the value of the group delay. Typically, it lies around the
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FIG. 7. Gain-bandwidth product for μ = 0.2(γ1 − γ2) in the
PT -broken phase. The BW is in units of ωm.

submicrosecond range, but as shown theoretically it can be
extended to a few milliseconds [28]. We also remark that for
the PT -broken phase μ < μEP, designated with dashed lines
in Fig. 8, a small group advance (i.e., fast light) is observed in
the passbands. In comparison, previous studies demonstrated

FIG. 8. Group delay as a function of probe detuning (nor-
malized to ωm) for |g2|/2π = 2g1/2π = 2 MHz in PT -broken
[μ = 0.2(γ1 − γ2) < μEP] and unbroken [μ = 0.5(γ1 − γ2) > μEP]
phases where Pc = 1.59 μW and φ
 = 0, π . Positive and negative τg

correspond to slow and fast light propagation, respectively.

FIG. 9. Delay-bandwidth product for |g2|/2π = 2g1/2π =
2 MHz, μ = 0.5(γ1 − γ2) > μEP in the PT -unbroken phase, and
Pc = 1.59 μW. The BW is in units of ωm. The lower band (ω < ωm)
is shown in red and the upper band (ω > ωm) in blue. In (c) the black
line shows the sum of both bands together.

either the same character in both PT -broken and -unbroken
phases [37] or switching between slow and fast light behaviors
by adjusting the gain-to-loss ratio, power of the control field,
and the amplitude and phase of the phonon pump [38].

Finally, Fig. 9 illustrates that a delay vs bandwidth tradeoff
similar to that in the case of gain vs bandwidth applies. This
is reminiscent of passive optomechanical systems possessing
a constant delay-bandwidth product [74]. Because of its in-
significant group advance value, the associated bandwidth of
the PT -broken phase is not considered here.

V. EXPERIMENTAL ASPECTS

Finally, we would like to discuss some experimental as-
pects of our theoretical framework. We begin by recalling that,
as mentioned above in Sec. III, our parameter set is specifi-
cally chosen to ensure the experimental feasibility [66,67]. A
key concern is how to achieve the required mechanical PT
symmetry in practice. Hitherto, a critical innovation has been
the phonon laser, in which an originally lossy mechanical
mode of, say, a microtoroidal resonator can be brought to
the phonon lasing regime by the effective mechanical gain
induced by optical modes [75,76]. Unlike a coherent phonon
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pump, the phonon laser avails modeling the overall cavity
with a simple gain term above its transparency [77]. This
grants a further advantage compared to photonic counterparts,
namely, in experimentally spotting the EP. Indeed, optical
lasing modes have the undesirable susceptibility to become
unstable in the vicinity of an EP [78], making it rather
formidable to explore the parameter space around the EP. On
the other hand, the EP associated with the mechanical degrees
of freedom offers an easier route to circumvent this problem,
as experimentally demonstrated using phonon lasers, where,
for instance, an additional tip-induced loss enables one to steer
the phonon laser around the mechanical EP [77]. We men-
tion yet another proposal for introducing balanced gain and
loss to two mechanical resonators by driving the associated
optomechanical cavities with red- and blue-detuned optical
lasers [79].

Another crucial aspect of our scheme is the necessity for
coupling the two mechanical modes. Due to the rapid progress
made in nanoelectromechanical fabrication techniques, this
is no longer a technical obstacle [80–83]. Nevertheless, a
simpler alternative to two distinct mechanical resonators
is using a single square-shaped silicon nitride membrane’s
twofold-degenerate vibrational modes, with their coupling
being achieved via the radiation pressure when placed in a
high-finesse optical cavity [32]. The power and the detun-
ing of the driving laser enable one to experimentally map
out the complex eigenvalues of the mechanical modes of
the membrane by monitoring its heterodyne response signal.
The location of the EP is unambiguously resolved in agree-
ment with the characteristic features displayed depending on
whether the EP is encircled or not [32]. Additionally, our
model demands the continuous tunability of the loop cou-
pling phase. This has been experimentally demonstrated, for
instance, in a superconducting circuit optomechanical system
in which mechanical motion is capacitively coupled to a mul-
timode microwave circuit, where the microwave pump’s phase
is linked to the coupling phase by a constant offset [21].

As in the case of phonon laser [76,84] and PT -symmetric
optomechanical [27–29,31,85] studies, in our model we use a
fixed gain rate γ2. This leaves out gain instability and satura-
tion considerations which have been specifically addressed in
photonic [86–90] and recently in optomechanical PT systems
[91,92].

VI. CONCLUSION

The synthetic gauge field concepts have proved to be very
fruitful especially in photonics. In this work we demonstrated
this on an optomechanical system involving a PT -symmetric
mechanical pair of resonators. Introducing a closed-contour
interaction in this setting breaks the time-reversal symme-

try and imparts tunability through the gauge-invariant phase
sum. Specifically working in the stable region, we showed
that in the PT -unbroken phase it enables the steering of the
transmission and slow light characteristics within the double
OMIT bands while keeping the bandwidth products essen-
tially constant. In the PT -broken phase it again provides up to
50% variation of the OMIT bandwidth. The rationale behind
these phenomena can be simply understood by the loci of the
mechanical supermodes over the complex plane as a function
of the loop coupling phase. This work was confined to the
mean properties of the dynamical variables. An interesting
extension can be the investigation of synthetic gauge field
control in the quantum regime of optomechanical systems
[30].

Note added. Recently, we became aware of the work of
Jiang et al. based on a similar optomechanical setting re-
porting the ground-state cooling of mechanical resonators
mediated by a phononic gauge field [93].
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APPENDIX A: GAUGING OUT INDIVIDUAL
COUPLING PHASES

In this Appendix we would like to show how the individual
coupling phases of μ and g1 can be gauged out leading to
the form in Eq. (1) [71]. We begin by first restoring all the
phases of the coupling coefficients in this Hamiltonian while
dropping the free and the drive terms

Ĥc = −h̄μeiφμ b̂†
1b̂2 − h̄g1eiφ1 â†âb̂†

1 − h̄|g2|eiφ2 â†âb̂†
2 + H.c.,

(A1)
where μ, g1 ∈ R and H.c. stands for the Hermitian conjugate.
The phase of the photonic cavity mode operator â has no
importance in Ĥc. We can cancel the phases μ and g1 by
the following gauge transformation of the mechanical mode
operators:

b̂†
1 → b̂†

1e−iφ1 , (A2)

b̂†
2 → b̂†

2eiφμ−iφ1 . (A3)

This transforms Eq. (A1) to

Ĥc = −h̄μb̂†
1b̂2 − h̄g1â†âb̂†

1 − h̄|g2|eiφ
 â†âb̂†
2 + H.c., (A4)

where φ
 = −φ1 + φ2 + φμ, so that we obtain the field cou-
pling terms of Eq. (1) by defining g2 ≡ |g2|eiφ
 . Thus, we can
gauge out the individual coupling phases and only a single
closed-loop overall phase φ
 remains. Also note that time-
reversal symmetry is attained for φ
 ∈ 0, π .

APPENDIX B: ADIABATIC ELIMINATION OF THE CAVITY MODE

The analytical solution of the characteristic polynomial of 6 × 6 stability matrix (24) is not possible. Therefore, we first
eliminate the cavity modes adiabatically and reduce the matrix size to 4 × 4. We owe this adiabatic elimination approximation
to the fact that the cavity decay rate is much greater than the loss and gain of mechanical oscillators (κ 
 |γ1,2|) [79]. We begin
by integrating Eq. (9) by ignoring the δbi and δb∗

i dependences and dropping the probe excitation term since it has no effect on

033504-8



STATIC SYNTHETIC GAUGE FIELD CONTROL OF … PHYSICAL REVIEW A 104, 033504 (2021)

the stability or root loci of the system, yielding

δa(t ) = e−(κ/2+i�a )t

[
δa(0) +

∫ t

0
iā(g1δb∗

1 + g1δb1 + g2δb∗
2 + g∗

2δb2)e(κ/2+i�a )τ dτ

]
. (B1)

Next, assuming that δbi(t ) and δb∗
i (t ) are not affected by δa for t 
 κ−1, we obtain

δbi(τ ) = δbi(0)e−(γi/2+iωm )τ , (B2)

δb∗
i (τ ) = δb∗

i (0)e−(γi/2−iωm )τ . (B3)

Inserting Eqs. (B2) and (B3) into Eq. (B1) and carrying out the integration, we get

δa(t ) = iā

[
g1δb∗

1(t )(
κ
2 − γ1

2

) + i(�a + ωm)
+ g1δb1(t )(

κ
2 − γ1

2

) + i(�a − ωm)
+ g2δb∗

2(t )(
κ
2 − γ2

2

) + i(�a + ωm)
+ g∗

2δb2(t )(
κ
2 − γ2

2

) + i(�a − ωm)

]
. (B4)

The next step is to insert Eq. (B4) and its complex conjugate into Eqs. (9) and (10) to eliminate the δa terms. Dropping the
γ1,2 terms compared to κ in the denominators, we get

δb1

dt
= −

(γ1

2
+ iωm

)
δb1 + iμδb2 + i2�a|ā|2

κ2

4 + �2
a − ω2

m − iκωm

(
δb1g2

1 + δb2g1g∗
2

)

+ i2�a|ā|2
κ2

4 + �2
a − ω2

m + iκωm

(δb∗
1g2

1 + δb∗
2g1g2), (B5)

δb2

dt
= −

(γ2

2
+ iωm

)
δb2 + iμδb1 + i2�a|ā|2

κ2

4 + �2
a − ω2

m − iκωm

(δb2|g2|2 + δb1g2g1)

+ i2�a|ā|2
κ2

4 + �2
a − ω2

m + iκωm

(
δb∗

2g2
2 + δb∗

1g2g1
)
, (B6)

δb∗
1

dt
= −

(γ1

2
− iωm

)
δb∗

1 − iμδb∗
2 − i2�a|ā|2

κ2

4 + �2
a − ω2

m + iκωm

(
δb∗

1g2
1 + δb∗

2g1g2
)

− i2�a|ā|2
κ2

4 + �2
a − ω2

m − iκωm

(
δb1g2

1 + δb2g1g∗
2

)
, (B7)

δb∗
2

dt
= −

(γ2

2
− iωm

)
δb∗

2 − iμδb∗
1 − i2�a|ā|2

κ2

4 + �2
a − ω2

m + iκωm

(δb∗
2|g2|2 + δb∗

1g∗
2g1)

− i2�a|ā|2
κ2

4 + �2
a − ω2

m − iκωm

(
δb2g∗

2
2 + δb1g∗

2g1
)
. (B8)

This set of equations can be cast into a 4 × 4 stability matrix form δẋ4 = M4δx4, where δx4 = [δb1, δb2, δb∗
1, δb∗

2]T , as

M4 =

⎛
⎜⎜⎜⎜⎝

−iωm − γ1

2 + iQ∗g2
1 i(Q∗g1g∗

2 + μ) iQg2
1 iQg1g2

i(Q∗g1g2 + μ) −iωm − γ2

2 + iQ∗|g2|2 iQg1g2 iQg2
2

−iQ∗g2
1 −iQ∗g1g∗

2 iωm − γ1

2 − iQg2
1 −i(Qg1g2 + μ)

−iQ∗g1g∗
2 −iQ∗g∗

2
2 −i(Qg1g∗

2 + μ) iωm − γ2

2 − iQ|g2|2

⎞
⎟⎟⎟⎟⎠, (B9)

with Q ≡ 2�a|ā|2
κ2
4 +�2

a−ω2
m+iκωm

. A highly instrumental approximation is to neglect the coupling between conjugate variable pairs,

which leads to the 2 × 2 block-diagonal form

M4 	

⎛
⎜⎜⎜⎜⎝

−iωm − γ1

2 + iQ∗g2
1 i(Q∗g1g∗

2 + μ) 0 0

i(Q∗g1g2 + μ) −iωm − γ2

2 + iQ∗|g2|2 0 0

0 0 iωm − γ1

2 − iQg2
1 −i(Qg1g2 + μ)

0 0 −i(Qg1g∗
2 + μ) iωm − γ

2 − iQ|g2|2

⎞
⎟⎟⎟⎟⎠. (B10)

The upper-half-plane eigenvalues can be solved as

λ1,2 = λm1 + λm2

2
±

[
(λm1 + λm2)2

4
− (λm1λm2 + P)

]1/2

, (B11)
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where

λm1 = i
(
ωm − Qg2

1

) − γ1

2
, (B12)

λm2 = i(ωm − Q|g2|2) − γ2

2
, (B13)

P = (Qg1g2 + μ)(Qg1g∗
2 + μ). (B14)

At the EP, eigenvalues coalesce, and for this we set φ
 = π
2

so that g2 = i|g2|. Choosing the positive root we get

μEP =
{[ iQ

2

(
g2

1 − |g2|2
) + γ1 − γ2

4

]2

− (Qg1g2)2

}1/2

.

(B15)
Note that for �a ≈ ωm we can make another approximation
Q 	 − i2|ā|2

κ
, which renders μEP ∈ R, and we obtain

μEP 	
√∣∣∣∣2ā2g1g2

κ

∣∣∣∣
2

+
[ |ā|2(g2

1 − |g2|2
)

κ
+ γ1 − γ2

4

]2

.

(B16)
Figure 10 compares the μEP under the exact (numerical) and

approximate (analytic) treatments. They can be observed to be
in very good agreement up to |g2| = 2g1, which is the value
used in showcasing our results.

For the stability condition of the optomechanical system
an analytical expression is obtained within the validity of the
aforementioned approximations,

Re(λ1,2) < 0, (B17)

FIG. 10. Comparison of analytic and numerical μEP (normalized
to γ1 − γ2) as a function of magnitude of g2. Blue solid, red dashed,
and black star marked lines correspond to the exact 6 × 6 case
(numerical), the 4 × 4 adiabatic elimination (numerical) case, and
the 4 × 4 block-diagonal (analytic) adiabatic elimination case with
further approximations, respectively.

where

λ1,2 	 λm1 + λm2

2
± λm1 − λm2

2

√
1 − 4P

(λm1 − λm2)2
. (B18)

Here Q ≡ 2�a|ā|2
κ2
4 +�2

a−ω2
m+iκωm

needs to be used in obtaining P

because its approximate form (Q 	 − i2|ā|2
κ

) does not perform
as well as the one shown in Fig. 2.

[1] S. E. Harris, J. E. Field, and A. Imamoğlu, Nonlinear Opti-
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and Y.-x. Liu, Controllable optical response by modifying the
gain and loss of a mechanical resonator and cavity mode in an
optomechanical system, Phys. Rev. A 95, 013843 (2017).

[29] H. Lü, C. Wang, L. Yang, and H. Jing, Optomechanically In-
duced Transparency at Exceptional Points, Phys. Rev. Appl. 10,
014006 (2018).

[30] W. Li, C. Li, and H. Song, Theoretical realization and applica-
tion of parity-time-symmetric oscillators in a quantum regime,
Phys. Rev. A 95, 023827 (2017).

[31] B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, Mechani-
cal exceptional-point-induced transparency and slow light, Opt.
Express 27, 8069 (2019).

[32] H. Xu, D. Mason, L. Jiang, and J. Harris, Topological energy
transfer in an optomechanical system with exceptional points,
Nature (London) 537, 80 (2016).

[33] H. Zhang, F. Saif, Y. Jiao, and H. Jing, Loss-induced trans-
parency in optomechanics, Opt. Express 26, 25199 (2018).

[34] H.-K. Lau and A. A. Clerk, Fundamental limits and non-
reciprocal approaches in non-Hermitian quantum sensing, Nat.
Commun. 9, 4320 (2018).

[35] L.-Y. He, Parity-time-symmetry–enhanced sideband genera-
tion in an optomechanical system, Phys. Rev. A 99, 033843
(2019).

[36] W. Li, Y. Jiang, C. Li, and H. Song, Parity-time-symmetry
enhanced optomechanically-induced-transparency, Sci. Rep. 6,
31095 (2016).

[37] X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, Dou-
ble optomechanically induced transparency and absorption in
parity-time-symmetric optomechanical systems, Phys. Rev. A
98, 033832 (2018).

[38] C. Jiang, Y. Cui, Z. Zhai, H. Yu, X. Li, and G. Chen,
Tunable slow and fast light in parity-time-symmetric optome-
chanical systems with phonon pump, Opt. Express 26, 28834
(2018).

[39] X.-H. Lu, L.-G. Si, B. Wang, X.-Y. Wang, and Y. Wu, Tunable
optomechanically induced transparency in a gain-assisted op-
tomechanical system, J. Phys. B 52, 085401 (2019).

[40] E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L.
Windholz, Phase-dependent electromagnetically induced trans-
parency, Phys. Rev. A 59, 2302 (1999).

[41] A. Joshi, Phase-dependent electromagnetically induced trans-
parency and its dispersion properties in a four-level quantum
well system, Phys. Rev. B 79, 115315 (2009).

[42] J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, Elec-
tromagnetically Induced Transparency with Amplification in
Superconducting Circuits, Phys. Rev. Lett. 105, 073601 (2010).

[43] D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, Coher-
ent population trapping: Sensitivity of an atomic system to
the relative phase of exciting fields, Opt. Commun. 85, 209
(1991).

[44] D.-G. Lai, J.-F. Huang, X.-L. Yin, B.-P. Hou, W. Li, D. Vitali,
F. Nori, and J.-Q. Liao, Nonreciprocal ground-state cooling of
multiple mechanical resonators, Phys. Rev. A 102, 011502(R)
(2020).

[45] D.-G. Lai, X. Wang, W. Qin, B.-P. Hou, F. Nori, and J.-Q. Liao,
Tunable optomechanically induced transparency by controlling
the dark-mode effect, Phys. Rev. A 102, 023707 (2020).

[46] M. Onoda, S. Murakami, and N. Nagaosa, Hall Effect of Light,
Phys. Rev. Lett. 93, 083901 (2004).

[47] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78, 033834
(2008).

[48] F. D. M. Haldane and S. Raghu, Possible Realization of Di-
rectional Optical Waveguides in Photonic Crystals with Broken
Time-Reversal Symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[49] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field
for photons by controlling the phase of dynamic modulation,
Nat. Photon. 6, 782 (2012).

[50] S. Walter and F. Marquardt, Classical dynamical gauge fields in
optomechanics, New J. Phys. 18, 113029 (2016).

[51] P. Zapletal, S. Walter, and F. Marquardt, Dynamically generated
synthetic electric fields for photons, Phys. Rev. A 100, 023804
(2019).

[52] K. Fang, Z. Yu, and S. Fan, Photonic Aharonov-Bohm Effect
Based on Dynamic Modulation, Phys. Rev. Lett. 108, 153901
(2012).

[53] M. Hafezi and P. Rabl, Optomechanically induced non-
reciprocity in microring resonators, Opt. Express 20, 7672
(2012).

033504-11

https://doi.org/10.1103/PhysRevA.90.023817
https://doi.org/10.1364/OE.23.011508
https://doi.org/10.1364/OE.25.018907
https://doi.org/10.1103/PhysRevA.98.063845
https://doi.org/10.1038/s41467-017-00447-1
https://doi.org/10.1103/PhysRevA.102.033526
https://doi.org/10.1103/PhysRevA.102.033721
https://doi.org/10.1103/PhysRevApplied.15.024056
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/srep09663
https://doi.org/10.1103/PhysRevA.95.013843
https://doi.org/10.1103/PhysRevApplied.10.014006
https://doi.org/10.1103/PhysRevA.95.023827
https://doi.org/10.1364/OE.27.008069
https://doi.org/10.1038/nature18604
https://doi.org/10.1364/OE.26.025199
https://doi.org/10.1038/s41467-018-06477-7
https://doi.org/10.1103/PhysRevA.99.033843
https://doi.org/10.1038/srep31095
https://doi.org/10.1103/PhysRevA.98.033832
https://doi.org/10.1364/OE.26.028834
https://doi.org/10.1088/1361-6455/ab0e4c
https://doi.org/10.1103/PhysRevA.59.2302
https://doi.org/10.1103/PhysRevB.79.115315
https://doi.org/10.1103/PhysRevLett.105.073601
https://doi.org/10.1016/0030-4018(91)90396-U
https://doi.org/10.1103/PhysRevA.102.011502
https://doi.org/10.1103/PhysRevA.102.023707
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1088/1367-2630/18/11/113029
https://doi.org/10.1103/PhysRevA.100.023804
https://doi.org/10.1103/PhysRevLett.108.153901
https://doi.org/10.1364/OE.20.007672
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