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Conversion of a basis-dependent superposition of orbital-angular-momentum states using a q plate
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Stokes parameters play a vital role in the study of photons, electrons, and other elementary particles. Super-
position of phase singularities in an orthogonal polarization basis leads to the creation of Stokes singularities. It
has been established that these phase singularities carry orbital angular momentum of light and hence the study
of Stokes singularities is significant. The superposition of orbital-angular-momentum states, depending on the
chosen basis, leads to the formation of different types of Stokes singularities such as polarization singularities
and Poincaré singularities. These are subsets of Stokes singularities. There is a plethora of applications that
has emerged in recent years for both phase and polarization singularities. Spin to orbital-angular-momentum
conversion is possible by the use of a q plate. In fact, a q plate can convert a scalar beam into a phase or
polarization vortex and a polarization singularity into another polarization singularity. But the process of the
inter- or intraconversion of Stokes vortices has not been reported so far. This article discusses this aspect and the
invariance of various topological parameters that occur in this process.

DOI: 10.1103/PhysRevA.104.033503

I. INTRODUCTION

Photons possess integral spin and they carry spin angular
momentum of ±h̄ per photon. In addition to spin angular
momentum (SAM), photons can possess orbital angular mo-
mentum [1,2]. In light fields, spin angular momentum (SAM)
is attributed to the polarization of light and orbital angular mo-
mentum (OAM) is attributed to the helical phase structure of
the scalar vortices, also called phase singularities. Superposi-
tion of such scalar vortex beams, each in different polarization
state results in the formation of Stokes singularities. In beams
containing Stokes singularities, the polarization distribution
is inhomogeneous but structured, and since they are vortex
superpositions the study of OAM in such beams is important.
Also, there are many ways orthogonal polarization states can
be chosen and superpositions can be realized. If the chosen
basis states are right and left circularly polarized states, the
superposition results in polarization singularities also called
spin-orbit beams. However, a more general formalism is that
of Stokes singularities that are the superposition of orthogonal
polarization and orbital-angular-momentum states. Therefore,
Stokes singularities form a universal set in which polarization,
Poincaré, and phase singularities are subsets. Topological in-
variances such as charge conservation in scalar vortices and
index conservation in polarization singularities have been re-
ported in the literature. Sign rules are stated for both scalar and
polarization singularities [3]. In this article, while presenting
inter- and intraconversion of Stokes singularities, conserva-
tion of Stokes index, angular momentum, and sign rules are
dealt. The subject is developed by providing the required
background in this section.

*bansalsarvesh.s@gmail.com

A. Stokes parameters and Stokes fields

The state of polarization (SOP) of an optical beam can be
represented in terms of four measurable quantities, known as
Stokes parameters [4]:

S0 = Ix + Iy,

S1 = Ix − Iy,
(1)

S2 = ID − IA,

S3 = IR − IL,

where Ix, Iy, ID, IA, IR, and IL are the component intensities
in x, y, diagonal, antidiagonal, right circular, and left circular
states, respectively. The Stokes parameters play a vital role in
the study of photons, electrons, and other elementary particles.
Stokes parameters can also be expressed in terms of Pauli’s
spin matrices [5] as

S0 = [a∗
x a∗

y ]I

[
ax

ay

]
= axa∗

x + aya∗
y ,

S1 = [a∗
x a∗

y ]σz

[
ax

ay

]
= axa∗

x − aya∗
y ,

(2)

S2 = [a∗
x a∗

y ]σx

[
ax

ay

]
= axa∗

y + aya∗
x ,

S3 = [a∗
x a∗

y ]σy

[
ax

ay

]
= i(axa∗

y − aya∗
x ),

where ax and ay are transverse field components. Both ax

and ay are complex quantities. I is a 2 × 2 identity matrix
and σx, σy, and σz are 2 × 2 Pauli spin matrices. We can see
that, for a given SOP, under three commonly employed or-
thogonal decompositions, the component intensity differences
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constitute the Stokes parameters. To include the component
field phase differences, the Stokes field formalism can be
employed, which is explained below.

Using any two Stokes parameters out of S1, S2, and S3,
mathematical fields called Stokes fields can be constructed
[3,6] and they are given as

Sαβ = Sα + iSβ, (3)

where α, β = 1, 2, 3 and α �= β. The phase distribution of
Stokes field Sαβ can be expressed as

φαβ = arctan(Sβ/Sα ). (4)

For homogeneously polarized fields, Sαβ is a phasor,
whereas for the inhomogeneously polarized field this repre-
sents Stokes field. The mathematically constructed S12 Stokes
field is made up of intensity measurements in linear states,
namely Ix, Iy, ID, and IA, but surprisingly S12 Stokes field
provides the information about the phase difference between
circular basis states. Likewise, Stokes fields S23 and S31 also
can be shown to provide the phase difference between corre-
sponding orthogonal basis states [7]:

arg(S1 + iS2) = φ12 = φL − φR,

arg(S2 + iS3) = φ23 = φy − φx,

arg(S3 + iS1) = φ31 = φA − φD. (5)

Stokes phase can be controlled by changing the birefrin-
gence (either circular or linear) of the medium through which
the optical fields propagate. Both the Stokes parameters and
Stokes fields appear in coherency matrix C as diagonal and
off-diagonal elements, respectively,

Cxy =
[

S0 + S1 S∗
23

S23 S0 − S1

]
. (6)

The other Stokes parameters and fields also appear in the co-
herency matrix, expressed under different bases. For diagonal
(DA) and circular bases (LR) the coherency matrices are given
by

CDA =
[

S0 + S2 iS∗
31

iS31 S0 − S2

]
,

CLR =
[

S0 + S3 S∗
12

S12 S0 − S3

]
. (7)

The Stokes parameters and Stokes fields define the ele-
ments of the coherency matrix [8,9], which also corresponds
to the quantum-mechanical density matrix for an ensemble of
photons. Density matrices are useful to represent mixed states,
which offer less than maximum information, normally offered
by pure states. Classical concepts such as Stokes parameters
and Poincaré sphere can also be applied to the quantum world,
but due to the fluctuations in the number of photons the
Poincaré sphere is transformed into Poincaré space, which
is a set of concentric nested spheres. Also, the fluctuations
lead to the description of higher-order moments of the Stokes
parameters, which is absent in the classical picture [10].
Nevertheless, Stokes parameters can be immediately trans-
lated into the quantum realm [11–13], using noncommuting
Stokes operators. Also, while going from pure state to mixed

states, density matrix (coherency matrix) formalism is useful.
Concepts of density or coherency matrix are mentioned here
to bring out the importance of Stokes fields and the Stokes
formalism and we follow a classical approach and stick to
pure states here in this paper. In a pure state, the diagonal
and the off-diagonal elements of the density matrix can be
interpreted as providing intensity and phase information, re-
spectively. This relative phase has been referred to as Stokes
phase in literature [5,7,11,14–18]. For inhomogeneously po-
larized light beams, the Stokes phase is a distribution. The
singularities present in Stokes phase distribution are called
Stokes singularities or Stokes vortices.

B. Singularities: Phase and Stokes singularities

Singularities: Singularity refers to situations where a pa-
rameter defining a physical entity blows up or becomes
indeterminate. Point singularities are ubiquitous and have
their signatures in various physical phenomena around us
[17,18]. It is also associated with circular motion about the
singular point (vortex core) in a two-dimensional field [19]. In
three dimension vortex core draws a curve forming a tube, like
in tornadoes. In this subsection the singularities in complex
fields, phase distributions, and polarization distributions are
introduced. In a two-dimensional complex plane, according
to the Cauchy integral theorem, a singularity is defined by
the contour integral

∮
f (z)dz = 2π iR, being nonzero, where

R is a residue. The complex field does not satisfy Cauchy-
Riemann conditions, indicating that the field is not analytic
and line integrals between any two points have path depen-
dence. The phase singularities are basically the singularities
that appear in the phase distribution of a complex field. This
means that

∮ ∇φ · dl = 2πm, where m is called the winding
number or topological charge of the phase singularity. For
example, among the two complex functions f1(z) = x + iy =
r exp(iφ) and f2(z) = x − iy = r exp(−iφ), function f1 is
analytic, whereas f2 has a singularity at the origin. But both
the functions have a singularity in their phase distribution as∮ ∇φ · dl = 2πm. For the function f1 the topological charge
m is +1, whereas for f2 it is −1. Similarly, polarization
singularities are the locations at which the polarization az-
imuth γ = 0.5 arctan(S2/S1) is undefined and the line integral∮ ∇γ · dl �= 0. The polarization singularity indices are de-
fined later in the introduction. Note that, in these three cases,
the line integral is on complex function f (z), phase gradient
∇φ, and azimuth gradient ∇γ , respectively. In fluids, it is the
velocity vector field where circulations are present if there
are vortices (singularities) [20]. Like the velocity field, in a
phase singularity the phase gradient field and in a polarization
singularity the azimuth gradient field are solenoidal. Hence in
a singularity the parameter under consideration is undefined
at the singular point and, in its neighbourhood, the gradient is
circulating.

OAM and phase singularities: The energy flow in optical
fields can be studied in terms of Poynting vector �S (energy
flux density also called current density j) defined by

�S = 1

μ0

�E × �B, (8)
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where �E and �B are electric and magnetic fields of electro-
magnetic wave and μ0 is the permeability of free space.
The continuity equation for the flow of energy is given by
∂E/∂t = −∇ · �S, where E is the energy density [21]. This
flow can also be expressed in terms of phase gradients [22]
as phase gradient vector gives the propagation vector. Consid-
ering a complex scalar optical field ψ = r exp(iφ) = ζ + iξ ,
the optical current �j is given by

�j = I∇φ, (9)

where I = ψψ∗ is the intensity and ψ∗ is the conjugate of ψ .
The real and imaginary part of the complex field is given by
ζ and ξ , respectively. The phase of the field can be written as
φ = Im[log ψ]. Using this in Eq. (9), the optical current can
be given by

�j = Im[ψ∗∇ψ] = i

2
(ψ∗∇ψ − ψ∇ψ∗) = ζ∇ξ − ξ∇ζ .

(10)
For a plane wave in free space, the optical current is in the

direction of propagation. But for an optical field consisting
of a phase singularity, the transverse component of the phase
gradient is circulating and, together with the longitudinal
component, the flow is helical, winding, and advancing along
the vortex core [23–25]. This circulation is responsible for the
OAM in light beams. In singular optics, it is now well estab-
lished that phase singular beams carry OAM [1]. The OAM in
light beams can also be understood by looking at the analogy
between the paraxial wave equation with the Schrödinger
wave equation [26,27]. The operator corresponding to the z
component of orbital angular momentum is Lz = −ih̄ ∂

∂φ
and

applying this to beams having azimuthal phase dependence
like exp (ilφ) gives an orbital-angular-momentum component
of l h̄ to phase singular beams.

Polarization singularities: Polarization singularities are the
natural extension of phase singularities, as they can be con-
structed by superposition of phase singularities in orthogonal
polarization basis states. Depending on polarization distribu-
tion, polarization singularities are categorized into two types:
(a) ellipse field (C-point) singularities and (b) vector field
(V-point) singularities. For the ellipse field, azimuth pertains
to the orientation of the major axis of the polarization ellipse
and singularity is assigned an index Ic = �γ/2π . For vector
fields, azimuth pertains to the orientation of linear polariza-
tion, and singularity occurring in the vector field is assigned
an index called the Poincaré-Hopf index and is given by
η = �γ/2π . Among polarization singularities C-point singu-
larities have handedness, whereas V-point singularities do not
have handedness.

OAM without vortices is also possible due to spatially
varying polarization distribution [28]. By decomposing the
spatially varying polarization into component distributions the
presence of vortices may show up as Stokes vortices [29].
Even in scalar optics, OAM without helical wave front is
shown possible by locally engineering the wave-front tilts
[30–32]. In such cases, by circular harmonic decomposition
[33,34] of the resultant wave front, the presence of vortices
can be discerned even though the optical field does not openly
reveal the presence of helical phase term [exp(ilφ)], which is
attributed to OAM, in it.

Stokes singularities: Phase distribution of the complex
Stokes fields defined by Eq. (3) can have singularities known
as Stokes vortices [35]. These vortices also obey the sign rules
similar to optical vortices. In the Sαβ Stokes field, the Stokes
vortex lies on the intersection of zero crossing of Sα and Sβ .
Stokes vortices are characterized by Stokes index given as

σαβ = �φαβ

2π
, (11)

where �φαβ is accumulated Stokes phase around the Stokes
vortices and can be given by

�φαβ =
∮

∇φαβ · −→
dl . (12)

The Stokes index σαβ can have positive or negative inte-
gral value. The appearance of all three Stokes vortices are
interlinked as they are representing the same polarization
distribution. So they cannot be inconsistent with each other.
If the polarization distribution undergoes a change, then all
three Stokes vortices have to undergo appropriate changes.
Vortices of S12 are referred to as polarization singularities
[36,37], whereas vortices of S23 and S31 are referred to as
Poincaré singularities. For polarization singularity σ12 �= 0
and if S3 �= 0, then the singularity is ellipse field singularity
also known as C-point singularity that can be represented
by a point on a hybrid order Poincaré sphere (HyOPS). The
C-point index Ic is defined as Ic = σ12/2. When σ12 �= 0 and
S3 = 0, the singularity is vector field singularity also known
as V-point singularity. It is characterized by Poincaré-Hopf
index η defined as η = σ12/2. In S12 Stokes singularities the
azimuth is not defined at the singular points. At S23 and S31

Stokes singularities, apart from satisfying the condition given
by Eq. (11), the handedness is not defined at the singular
points. SOP at S23 is either horizontal or vertical (S1 = ±1)
and SOP at S31 is either diagonal or antidiagonal (S2 = ±1).
Both these singularities are surrounded by polarization of
varying ellipticity and azimuth. Pure vector fields with S3 = 0
do not host S23 and S31 Stokes vortices and hence we restrict
our study here only to S12 fields with no restriction on the S3

parameter. Such beams are called Poincaré beams [38–40] and
they have been studied because of their applications in various
fields [41–48].

Recently, a few studies [29,40] have presented methods to
generate all three Stokes vortices in the same field simulta-
neously. These studies show the generation of Stokes vortices
using two or multiple beams interference. But so far inter- and
intraconversion of Stokes vortices have not been discussed.
In this article we present a method (1) for interconversion
of Stokes vortices, (2) for the intraconversion among Stokes
vortices, (3) to change spatial positions of Stokes vortices,
and (4) to change the number of Stokes vortices embedded in
the beam. Further, (5) the conservation of fundamental quan-
tities or aspects such as Stokes index, sign rule, and angular
momentum are discussed as the beam undergoes a change
during the above listed conversions of Stokes vortices. The
importance of a q plate which couples spin and orbital angular
momentum is studied as it plays a role in interconversion
between and among bright and dark Stokes vortices.
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II. THEORY AND DISCUSSIONS

One of the ways of realizing all three Stokes vortices is by
the superposition of beams in two orthogonal circular bases—
one or both carrying orbital angular momentum and given by
−→
E (r, θ ) = Ar|m|exp(imθ )êL + Br|n|exp[i(nθ + θ0)]êR, (13)

where êL and êR are left and right circular unit basis vectors,
respectively. In Eq. (13), r is radial coordinate, θ is azimuthal
angle, and θ0 is initial phase shift given to one of the beams. m,
n are the topological charges of the phase vortex beams with
amplitude scaling factors A and B, respectively. The intrinsic
orbital angular momentum (OAM) carried by orthogonal
spin angular momentum (SAM) components are mh̄ and nh̄
per photon. Here, left- (right-) handed circularly polarized
light carries SAM equal to +h̄ (−h̄) per photon. The Stokes
singularity index of the singularity presented by Eq. (13) can
be given as (n − m). For |m| �= |n|, Eq. (13) gives Poincaré
beams with C points at the center of the beams. The Stokes
vortex is dark if both m and n are nonzero and is bright if either
m or n is zero [36,40,49]. In Poincaré beams formed in circular
basis superposition, the S23 and S31 Stokes vortices lie on a
closed L line around the C point as shown in Fig. 1. For each
beam with specific SOP distribution, six different attributes
are presented in Fig. 1. They are SOP distribution, zero
contour map, intensity distribution, and three Stokes phase
distributions. Figure 1(a1) depicts the polarization distribution
of the incident beam carrying C point of polarization
singularity index Ic = 1/2 at the center of the beam, which
coincides with origin. Zero contours of S1, S2, and S3 are
given in Fig. 1(a2). The phase distributions of S12, S23, and
S31 Stokes fields are shown in Figs. 1(a3)–1(a5), respectively.
It can be seen from Fig. 1(a3) that S12 Stokes phase is
embedded with a phase singularity of charge +1. Both S23

and S31 Stokes phase distributions as shown in Figs. 1(a4) and
1(a5) are embedded with two phase singularities of charge
±1 which lie on zero contour of S3 (L line). The (SOP) at
S23 (S31) Stokes vortices are horizontal or vertical (+45◦ or
−45◦) linear states that occur when the amplitudes of the
two component vortex beams are the same and the phase
difference between two component vortex beams are pπ for
S23 Stokes vortices [(p + 1/2)π for S31 Stokes vortices],
where p is an integer. Condition on phase for these two (S23

and S31) field vortices on the ring can be written as

(m − n)θ − θ0 = pπ or (p + 1/2)π, (14)

which can be further simplified as

y = x tan

{
pπ + θ0

m − n

}
or y = x tan

{
(p + 1/2)π + θ0

m − n

}
.

(15)
Likewise condition on amplitudes of orthogonal components
can be written as Ar|m| = Br|n| at these singular points.
Amplitude and phase conditions can be used to find the
locations of S23 vortices and are given as

x =
(B

A

)(|n|−|m|)
cos

{
pπ + θ0

m − n

}
,

y =
(B

A

)(|n|−|m|)
sin

{
pπ + θ0

m − n

}
. (16)

FIG. 1. Intraconversion of S12 Stokes vortex: for each beam in
circular basis superposition, there are six different attributes, namely
SOP distribution, intensity distribution, zero contour map [S1 (red
line), S2 (blue line), and S3 (pink line)], and three different Stokes
phase distributions. The input beam is given in the middle row. When
this beam is passed through a q plate with q = 1/2 and q = 1 the
emerging beams are presented in the upper row and bottom row,
respectively. For incident C points (a1) m = 0 and n = 1 and (b1)
m = 3 and n = −1, where m and n are OAM values carried by LCP
and RCP components, respectively, in the superposition. All C points
are generated for A = B and θ0 = 0 in Eq. (8).

Similarly, S31 Stokes vortices can be located at

x =
(B

A

)(|n|−|m|)
cos

{
(p + 1/2)π + θ0

m − n

}
,

y =
(B

A

)(|n|−|m|)
sin

{
(p + 1/2)π + θ0

m − n

}
. (17)

From Eqs. (16) and (17) it can be seen that both S23 and S31

Stokes vortices lie on a ring with radius equal to (B/A)(|n|−|m|)
as shown by the pink line in Fig. 1(a2). If the amplitude
factors A and B are equal then the ring will be always of
unit radius irrespective of OAM content of the beams. We
can increase or decrease the radius of the ring by changing
the amplitude factors A and B. Phase shift θ0 can be used to
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rotate Stokes vortices over the ring. For S23 Stokes vortices
the parameter p can take integer values only for θ = 0
(horizontal) and θ = π (vertical). Therefore, the number of
S23 Stokes vortices on the rings are 2|m − n| or 4|Ic| or 2|σ12|,
which can be verified from Fig. 1. Similarly, for S31 Stokes
vortices the parameter p will have integer values for θ = π/2
and θ = 3π/2. The number of S31 Stokes vortices on the ring
will be 2|m − n| or 4|Ic| or 2|σ12|. The total number of Stokes
vortices on the ring will be 8|Ic| or 4|σ12| and the total number
of Stokes vortices in the optical field will be

T N = 1(S12) + 2|σ12|(S23) + 2|σ12|(S31). (18)

In Fig. 1(a2) zeros of S1, S2, and S3 are shown. The Stokes
vortices of S23 occur at points, at which S2 = 0 contour
crosses S3 = 0 contour. The Stokes index σ23 of these vortices
alternates sign along the S2 = 0 contour or S3 = 0 contour.
A similar sign rule holds good for S31 Stokes vortices along
S3 = 0 contour or S1 = 0 contour. According to the sign
rule, total index of Stokes vortices on the closed zero contour
of Sα is zero. The index of Stokes vortex inside this closed
zero contour (ring) is nonzero, which can be verified from
Fig. 1(a2). There are two S23 Stokes vortices on S3 = 0
contour (pink line) with Stokes index σ23 = ±1. So, net
Stokes index is zero, in compliance with sign rule. Similarly,
there are two S31 Stokes vortices on S3 = 0 contour with
alternate Stokes index sign. The net S31 Stokes index is
zero. In this case, ∇φ12 vector points along S3 = 0 contour
and φ12 varies between zero and (σ12 × 2π ). In general, the
Stokes phase gradient ∇φβγ points along Sα = 0 contour
and the accumulated Stokes phase along a closed Sα = 0
contour equals (σβγ × 2π ), with the condition on indices
that α �= β �= γ . In the next section, the conservation of sign
rule during inter- and intraconversion of Stokes vortices is
discussed.

A. Intraconversion of S12 Stokes vortices using a q plate

A spatially varying half wave plate or a q plate is made
by segments of half wave plates (HWP), with each segment
having different fast axis orientation [50–53]. Also, q plates
can be made by nanostructured metasurface [54] or by ar-
ranging liquid crystals [55,56] in desired formation. A q plate
converts a right (left) circularly polarized plane wave to left
(right) circularly vortex beam [50]. It is also used to generate
cylindrical vector beams from linear polarized light [51,52].
Recent studies have also shown that a q plate acts as a cou-
pler for beams with homogeneous as well as inhomogeneous
polarization [57]. q plates are also used in combination with
a spiral phase plate and spatial light modulator to generate a
HyOPS beam [58–60]. The Jones matrix of a q plate can be
given as

J =
[

cos (2qθ + δ) sin (2qθ + δ)

sin (2qθ + δ) − cos (2qθ + δ)

]
, (19)

where θ (varies from 0 to 2π ) is the azimuthal angle with
respect to some reference axis (say x axis) and δ is the orien-
tation angle of a q plate.

When a q plate given by Eq. (19) is illuminated with a beam
carrying all Stokes vortices represented by Eq. (13), then the

transmitted beam is given as
−→
E ′(r, θ ) = J

−→
E (r, θ )

=
[

cos (2qθ + δ) sin (2qθ + δ)

sin (2qθ + δ) − cos (2qθ + δ)

]−→
E (r, θ )

= Br|n| exp {i[(n − 2q)θ + θ0 − δ]}êL

+ Ar|m| exp {i[(m + 2q)θ + δ]}êR. (20)

The polarization singularity index corresponding to the
transmitted beam [Eq. (20)] is (4q + m − n)/2, where q can
be positive or negative. Negative q plates can be generated
either by orienting fast axis of HWP segments in star for-
mation or by sandwiching a positive q plate between two
HWPs [61]. For |m| �= |n| Eq. (20) gives a C-point polariza-
tion singular beam. Stokes index of S12 Stokes field for the
transmitted beam is equal to σ ′

12 = (4q + m − n) = 4q − σ12.
As aforementioned, the number of S23 and S31 Stokes vortices
around the C point is twice that of the Stokes index of central
singularity. The generated S23 or S31 Stokes vortices from a q
plate are given by the following equation:

N ′ = 2|σ ′
12| = |8q − 2σ12|. (21)

Hence the total number of Stokes vortices in the transmitted
beam through a q plate is

T N ′ = 1(S12) + |8q − 2σ12|(S23) + |8q − 2σ12|(S31). (22)

As can be seen from Eq. (21), the number of S23 and S31

Stokes vortices in the transmitted beam depends on two fac-
tors: (a) value of Stokes index of incident beam and (b) q value
of q plate. So there are two ways of changing the number of
Stokes vortices: (i) by changing the q value keeping incident
beam fixed and (ii) by changing the Stokes index of incident
beam keeping q value fixed.

Figure 1 shows the simulation results that depict the ef-
fect of sending C-point field distributions with Stokes index
σ12 = +1 (left column) and σ12 = −4 (right column) through
a q plate. Two q plates with q = 1/2 and q = 1 are con-
sidered here. In this figure the input beam is shown in the
middle row and two cases of outputs are shown above and
below the middle row. Simulation results corresponding to
an incident beam embedded with C point of Ic = +1/2 are
given in the left column of Fig. 1. Polarization distribution,
zero contour map, and Stokes phases of incident beam are
given in Figs. 1(a1)–1(a5). Polarization distribution, intensity,
and Stokes phases of transmitted beam through q = 1/2 are
shown in Figs. 1(a6)–1(a10). Similarly when the incident
beam is passed through a q = 1 plate the output is shown in
Figs. 1(a11)–1(a15). The change in number of generic Stokes
vortices in the ring and the change in the index of the central
Stokes vortex are discussed only for the case presented in the
right column for brevity (although such a discussion can be
repeated for the left column). Starting from the middle row of
the figure, the polarization distribution of the incident beam
carrying C points at the center of the beam with polarization
singularity index Ic = −2 is shown in Fig. 1(b1). This beam
after passing through a q plate with q = 1/2 results in a
beam whose SOP distribution is given in Fig. 1(b6). Note in
this process the C-point index has changed from Ic = −2 to
Ic = +3. In terms of Stokes index (σ12) this change is from −4
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to +6. Stokes phases embedded with singularities correspond-
ing to the transmitted beam are given in Figs. 1(b8)–1(b10).
According to Eq. (21) the number of S23 or S31 Stokes vortices
generated by a q plate of q value q = 1/2 is equal to 12, which
can be verified from Fig. 1(b9) or Fig. 1(b10). Zero contours
of S1, S2, and S3 corresponding to the transmitted beam are
shown in Fig. 1(b7). From the contour lines in Fig. 1(b7) it
can be seen that the S23 and S31 Stokes vortices are placed
alternatively on the S3 = 0 ring and the S12 Stokes vortex is
located at the center of the beam.

We can further increase the number of Stokes vortices by
changing the q value of the q plate. Simulation results for the
same incident beam but a q plate with q value q = 1 are given
in Figs. 1(b11)–1(b15). Here we discuss the case of sending
the input beam with SOP given in Fig. 1(b1) through a q plate.
Figure 1(b11) depicts the polarization distribution of the trans-
mitted beam. S12, S23, and S31 Stokes phases of transmitted
beam are given in Fig. 1(b13), Fig. 1(b14), and Fig. 1(b15),
respectively. There are sixteen S23 and S31 Stokes vortices
each, as shown in Figs. 1(b14) and 1(b15), respectively, which
can be verified from Eq. (21). From Fig. 1, it is interesting to
note that the S23 and S31 Stokes vortices in the transmitted
beam are generated in pairs (equal number of positive and
negative Stokes vortices) using a q plate. As Stokes vortices
are generated in pair, total angular momentum on the Stokes
ring is conserved during the intraconversion process.

B. Conversion between and among bright
and dark Stokes vortices

Another objective of the article is generation of bright
and dark Stokes vortices and their interconversion (S12 ↔ S23

or S12 ↔ S31) by using a q plate and a QWP. In Eq. (13),
m = 0 and n = 1 correspond to bright C point with Ic = 1/2
[Fig. 1(a1)]. When this beam is passed through a q plate
with q = 1, the transmitted beam is embedded with dark C
point with Ic = 3/2 as shown in Fig. 1(a11). The q plate has
converted a bright C point into a dark C point and, since a C
point is a S12 Stokes vortex, this conversion is a conversion of
a bright Stokes vortex into a dark Stokes vortex.

Now if the transmitted beam [say Fig. 1(a11)] is passed
through a quarter wave plate (QWP), the S12 Stokes vortex
(C point) is converted into either S23 or S31 Stokes vortex
depending on the QWP orientation. But during this conversion
there is a concomitant rotation in the Stokes phase distribu-
tions. The other Stokes vortices on the ring also changed to
different ones. This is shown in Fig. 2. When the fast axis
of the QWP is oriented at 45◦, the C point at the center is
converted into an S23 vortex and other Stokes vortices on the
ring also change their types. When the QWP is oriented at
90◦, the Stokes vortex at the center is of S31 type. One can
also notice that the Stokes vortex that is present on the ring
is always bright and, in the process of interconversion, the
one that comes to the center changes from bright to dark. In
other words, the one that goes from the center to the ring also
has changed from dark to bright. It is interesting to note that,
even as QWP converts the Stokes field from one to another,
the total number of Stokes vortices remains constant, which
means that total angular momentum remains the same during
interconversion.

FIG. 2. Interconversion of Stokes vortices: the beam with SOP
distribution given in Fig. 1(a11) is sent through a QWP oriented at
angle θ . Panels (a1)–(c1) and (a2)–(c2) show the Stokes phases of
S12, S23, and S31 Stokes fields of transmitted beam through QWP
oriented at 45◦ and 90◦, respectively.

C. Rotation of Stokes vortices

The fourth aim is to show the change in the spatial lo-
cations of S23 and S31 Stokes vortices on the ring. When
axis of a q plate is rotated it creates an additional phase
shift between two orthogonal components which in turn ro-
tates the generated beam. Due to this Stokes vortices on
the ring rotate clockwise (for clockwise rotation of a q
plate) or counterclockwise (for counterclockwise rotation
of a q plate). A beam with a S12 Stokes vortex at the
center [Fig. 1(a1)] is now passed through a q plate to ob-
tain the field depicted at Figs. 1(a13)–1(a15). When the q
plate is rotated to three different angles, the changes in
the Stokes phases are shown in the first, second, and third
rows of Fig. 3, respectively. It can be seen that rotating
a q plate by an angle of 45◦ can replace S23 and S31 Stokes
vortices.

In general, in all the intraconversions (S12 ↔ S12) or
(S23 ↔ S23) or (S31 ↔ S31) and interconversion (S12 ↔ S23

or S12 ↔ S31), it can be shown that, using a q plate alone
or in combination with QWP, the Stokes ring around central
singularity carries an even number of Stokes vortices and
the total Stokes index is zero on the ring irrespective of the
type of singularity present. Note that intraconversion includes
all conversions between bright and dark Stokes vortices (and
among dark Stokes vortices) of the same type, where the index
can be the same or raised or lowered.

III. STOKES VORTICES IN x-y AND DIAGONAL BASIS

Stokes vortices can also be generated using the superposi-
tion of two orthogonal components carrying OAM in x-y or
diagonal basis. Mathematical expressions for the superposi-
tion of fields in x-y and diagonal bases for the generation of
Stokes vortices are given as

−→
E xy(r, θ ) = Ar|u|exp(iuθ )êx + Br|v|exp[i(vθ + θ0)]êy,

−→
E DA(r, θ ) = Ar|k|exp(ikθ )ê+45◦ + Br|l|exp[i(lθ + θ0)]ê−45◦ ,

(23)
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FIG. 3. Rotation of Stokes vortices: the beam with SOP distri-
bution given in Fig. 1(a1) is sent through a rotating q plate. Panels
(a1)–(c1), (a2)–(c2), and (a3)–(c3) show the Stokes phases of S12,
S23, and S31 Stokes fields of the transmitted beam when the q plate is
rotated by δ = 0◦, 30◦, and 45◦.

where êx, êy, ê+45◦ , and ê−45◦ are the unit basis vectors along
x axis, y axis, +45◦, and −45◦ rotated axes, respectively.
u, v, k, and l are the topological charges in the respective
components. Relations similar to Eq. (16) and Eq. (17) can
be deduced by using Eq. (23) for these two bases. The only
difference here is that S23 and S31 Stokes vortices are at the
center for x-y and diagonal bases superposition, respectively,
whereas other Stokes vortices will be on the ring around the
central Stokes vortex like in the case of the circular basis.
Simulation results for the Stokes vortices generation in the
x-y basis are given in the left column of Fig. 4. Polarization
distribution of the incident beam in the x-y basis is given in
the middle row [Fig. 4(a1)]. S12, S23, and S31 Stokes phases
for incident beams are given in Figs. 4(a3)–4(a5). It can be
seen from Fig. 4(a4) that the incident beam hosts S23 Stokes
vortex with Stokes index σ23 = −6 at the center. S12 and S31

Stokes phases are embedded with twelve Stokes vortices of
alternate signs. Zero contours of S1, S2, and S3 for the incident
beam are given in Fig. 4(a2). From Fig. 4(a2) it can be seen
that zero contour of S1 makes the closed ring around the center
singularity and S12 and S31 Stokes vortices lie alternatively
on this ring. Figure 4(a6) gives the polarization distribution
of the transmitted beam when the beam given in Eq. (23)
is passed through the q plate of q value q = 1/2. S12, S23,
and S31 Stokes phases for the transmitted beam are given in
Figs. 4(a8)–4(a10). S12, S23, and S31 Stokes phases of trans-
mitted beams become nonsymmetric after passing through a
q plate. Also a V point is generated at the center of the beam
where the zeros of S1, S2, and S3 cross each other. Similarly,
simulation results for Stokes vortices for diagonal basis are
given in the right column of Fig. 4. For intraconversion of the
Stokes index of the S23 or S31 Stokes vortices, a combination
of two QWPs and a q plate can be used. Here referring to
Figs. 4(a11)–4(a15) and 4(b11)–4(b15), the combination of

FIG. 4. Use of a q plate alone does not suffice for the inter-
or intraconversion of S23 and S31 Stokes vortices: this is shown by
passing the field in Figs. 4(a1) and 4(b1) (middle row) through a
q plate with q = 1/2 and the output is shown in the top row. Like
in Fig. 1, each beam obtained by linear basis superposition has six
different attributes. Intraconversion of Stokes vortices is possible by
passing the input beam shown in the middle row through a q plate
sandwiched between two QWPs. The emerging beam is presented
in the bottom row. For incident beam (a1) u = 2 and v = −4 and
(b1) k = −4 and l = 2, where u, v, k, and l are OAM values carried
respective components, in the superposition. All beams are generated
for A = B and θ0 = 0 in Eq. (18).

QWP-q-plate-QWP is useful for intraconversion of S23 ↔ S23

and S31 ↔ S31 Stokes vortices in linear and diagonal bases,
respectively. This is similar to a q plate for intraconversion of
S12 ↔ S12 Stokes vortices. Depending on the angle of QWPs
with a q plate sandwiched in between, the Stokes index of

TABLE I. Different combination of angles of QWPs with a q-
plate sandwich in between, for intraconversion of S23 Stokes vortices.

S. No. QWP1 QWP2 Stokes index

1 +45◦ +45◦ σ23 + 4q
2 +45◦ −45◦ −σ23 − 4q
3 −45◦ +45◦ −σ23 + 4q
4 −45◦ −45◦ σ23 − 4q
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TABLE II. Different combination of angles of QWPs with a q-
plate sandwich in between, for intraconversion of S31 Stokes vortices.

S. No. QWP1 QWP2 Stokes index

1 0◦ 0◦ σ31 − 4q
2 0◦ 90◦ −σ31 + 4q
3 90◦ 0◦ −σ31 − 4q
4 90◦ 90◦ σ31 + 4q

S23 Stokes vortices can have four different values during in-
traconversion of S23, as given in Table I. Similarly different
combination of angles of QWPs with a q plate sandwiched in
between for the intraconversion of S31 are given in Table II.

IV. EXPERIMENTAL SETUP AND RESULTS

Experimental setup for verifying the concepts is shown in
Fig. 5. It has two sections—one that prepares the beams for
carrying out the investigations mentioned in this paper and
the other that consists of a block that allows either a q plate
or a QWP-q-plate-QWP or a QWP to be inserted into the
beam. In the beam generator, a spatially filtered collimated
45◦ polarized light is launched into the Mach Zehnder type
interferometer. This beam is split into two orthogonal polar-
ization components and the two beams follow different arms
of the interferometer. A spiral phase plate is inserted in one or
both of the arms (with different topological charge) to provide
OAM to the respective beam(s) for the generation of bright
or dark C point. These two beams are combined by a beam
splitter and passed through a QWP to realize superposition
in circular basis as given in Eq. (13). The emerging beam
contains the S12 Stokes vortex at the center. Parameters A

FIG. 5. Experimental setup. The Mach-Zehnder type setup in-
side the black color rectangle is the Stokes vortex field generator.
Intra- and interconversion of Stokes vortices are carried out by either
inserting a QWP or by inserting the QWP-q-plate-QWP assembly
(red color rectangle) into the beam. Rotation of Stokes vortices is by
inserting the q plate into the beam and rotating it. SF, spatial filter
assembly; L1, L2, lenses; P, polarizer; PBS, polarizing beam splitter;
M1, M2, mirrors; SPP1, SPP2, spiral phase plates; BS, beam splitter;
QWP, quarter wave plate; HWP, half wave plate; SC, Stokes camera.

FIG. 6. Experimentally obtained polarization distributions and
Stokes phases. Polarization distribution of (a1) incident beam and
(a2) transmitted beam, from a q plate of q = 1/2, embedded with a c
point of Ic = −2 and Ic = +3, respectively. Panels (a3) and (a5) are
the polarization distribution when the beam in (a2) is passed through
QWP at 90◦ and 45◦, respectively. Panels (a4) and (a6) depict polar-
ization when (a3) and (a5) is passed through a QWP-q-plate-QWP
combination. Inset of each figure shows the intensity and Stokes
phases. Here (a1)↔ (a2), (a3)↔ (a4), and (a5)↔ (a6) are intracon-
versions and (a2)↔ (a3) and (a2)↔ (a5) are interconversions.

and B in Eq. (13) can be tuned by rotating a HWP in the
beam before the polarizing beam splitter (PBS), which can
control the radius of the Stokes ring. For the generation of
Stokes vortices due to superposition of beams in the x-y basis,
QWP can be removed. Likewise to change the SOPs of the
interfering beams to a diagonal basis the QWP can be replaced
by a HWP (22.5◦) plate.

The generated beam from the assembly shown inside a
black dashed rectangle (say generator) is passed through the
whole assembly shown in a red dashed rectangle [say con-
verter or element(s) selected from the assembly] for inter-
and intraconversion of Stokes vortices. Stokes parameters of
the beam are recorded in the far field using a Stokes camera
(Salsa Full Stokes camera 1040 × 1040 by Bossa Nova). The
measured Stokes parameters are used to obtain polarization
distribution and Stokes phases of the beam. Experimental
results are given in Fig. 6. Polarization distribution of an
emerging beam from the generator embedded with an S12

Stokes vortex at the center is depicted in Fig. 6(a1). Polar-
ization distribution of a transmitted beam from a q plate of
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q = 1/2 is shown in Fig. 6(a2). Stokes phases and inten-
sity are shown as insets in each figure. It can be seen from
Fig. 6(a1) and Fig. 6(a2) that Stokes index of S12 Stokes vortex
changes upon passing through the q plate. Also, there is an
increase in the number of S23 and S31 Stokes vortices. Sim-
ilarly, polarization distributions of the emerging beam from
the generator embedded with S23 and S31 Stokes vortices at
the center are depicted in Figs. 6(a3) and 6(a5), respectively.
SOP distributions shown in Figs. 6(a3) and 6(a5) are passed
through the combination of QWP-q-plate-QWP assembly and
the corresponding SOP distributions are given in Fig. 6(a4)
and Fig. 6(a6), respectively.

V. CONCLUSION

In conclusion, we have shown that the q plate can be used
for the inter- and intraconversion of Stokes vortices. It is

shown that the number of Stokes vortices embedded in an
optical beam can be changed using a q plate which depends
on both q value of q plate as well as Stokes index of incident
beam; relation for the same is also given. In addition, Stokes
vortices can be converted between and among bright and
dark intensities by appropriately choosing the q value. Spatial
location of Stokes vortices can also be modulated using a q
plate. Simulation and experimental results are given to vali-
date the concept. Conservation of sign rules during inter- and
intraconversion of Stokes vortices is also validated.
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