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Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals
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The effects of gain and loss on the band structures of a bulk topological dielectric photonic crystal (PC)
with C6v symmetry and the PC-air-PC interface are studied based on first-principle calculation. To illustrate
the importance of parity-time (PT) symmetry, three systems are considered, namely the PT-symmetric, PT-
asymmetric, and lossy systems. We find that the system with gain and loss distributed in a PT symmetric manner
exhibits a phase transition from a PT exact phase to a PT broken phase as the strength of the gain and loss
increases, while for the PT-asymmetric and lossy systems, no such phase transition occurs. Furthermore, based
on the Wilson loop calculation, the topology of the PT-symmetric system in the PT exact phase is demonstrated
to keep unchanged as the Hermitian system. At last, different kinds of edge states in Hermitian systems under
the influences of gain and loss are studied and we find that while the eigenfrequencies of nontrivial edge states
become complex conjugate pairs, they keep real for the trivial defect states.
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I. INTRODUCTION

Recently, synthetic non-Hermitian optical systems based
on parity-time (PT) symmetry have attracted considerable at-
tention due to the unique optical effects they provide, which
hold great promise for practical applications not achiev-
able in conventional Hermitian optics [1]. The degeneracies
in parameter space of non-Hermitian optical systems, i.e.,
spectral singularities known as exceptional points [2–5], pos-
sess unconventional features compared to their Hermitian
counterparts, where not only the eigenvalues but also the
corresponding eigenvectors of the underlying system coa-
lesce simultaneously. Optical response around exceptional
points shows counterintuitive phenomena, such as unidirec-
tional invisibility [6,7], single-mode lasing [8,9], enhanced
sensitivity [10,11], and enhanced spontaneous emission [12].
For example, dynamically encircling an EP can lead to chi-
ral behaviors, while encircling the EP in different directions
results in different output states [13]. Also, a recent study
[14] shows that whether or not the dynamics is chiral actually
depends on the starting point of the loop. Exceptional points
have also been studied in high order or higher dimensions,
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for example, two-dimensional (2D) exceptional surfaces [15]
or 3D exceptional hypersurface [16]. Up to now, EPs have
been studied in diverse systems, such as photonic crystals
(PCs) [17], plasmonic waveguides [18], and optomechanical
systems [19].

On the other hand, non-Hermiticity can change the band
topology in topology systems or even induce a topological
phase transition from a trivial system to a topological coun-
terpart [20]. For example, non-Hermitian perturbations can
deform a Dirac cone and spawn a ring of exceptional points
rather than opening up a gap in Hermitian systems [17]. Bulk
Fermi arc and polarization half charge from paired exceptional
points have also been observed [21]. A nontrivial Berry phase
of the eigenstates can be obtained by encircling exceptional
points [22]. Furthermore, edge states around interface be-
tween non-Hermitian topological crystals show new features
[23] and the effect of gain and loss on quantum-spin-Hall
(QSH) edge states has attracted great interest recently [24,25].
It is interesting to see how gain and loss can affect the trivial
and nontrivial edge states in a dramatically different way
and most importantly, to observe their difference (trivial and
nontrivial) in a single system.

In this work, gain and loss are introduced into a dielec-
tric PC with C6v symmetry that has been proved to mimic
the QSH system and show nontrivial topology [26]. We an-
alyze their band structures and topological invariants based
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FIG. 1. (a) Geometry of the 2D PC arranged in a deformed hon-
eycomb lattice with six cylinders in each unit cell, where a1 and a2

are the translation vectors and a0 is the lattice constant. Dielectric
constants of the cylinders εA = 12 + γAi and εB = 12 + γBi, where
γA/B is the strength of the loss or gain in A or B, depending on its
sign. Other parameters are: h = 6 mm, a0 = 2.8h, and the diameter
of the cylinders is 4 mm. (b) The band structure of the TM modes
when εA = εB = 12.

on first-principle calculation. Three systems, namely the
PT-symmetric, PT-asymmetric, and lossy systems, have been
investigated. We provide a comprehensive study on their band
structures and topological invariants for both non-Hermitian
and Hermitian systems. Moreover, we study the evolution of
the trivial and nontrivial edge states under the influence of
gain and loss in a single system.

II. BULK BAND OF NON-HERMITIAN PCS

A 2D PC arranged in a deformed honeycomb lattice with
six cylinders in each unit cell is shown in Fig. 1(a), where
the original positions of the cylinders in a honeycomb lattice
are indicated by the dashed circles. a1 and a2 are the two
translation vectors and a0 is the lattice constant. It has been
shown that expansion of the six cylinders with respect to the
center of the hexagonal unit cell results in a nontrivial topol-
ogy of the PC [26]. In this paper, our aim is to understand how
the introduction of gain and loss can lead to nontrivial phase
transitions in the topological PC structure. We consider two
types of cylinders, A and B, with the same radii but different
dielectric constants. Figure 1(a) shows one type of distribution
of A and B.

We focus on the transverse-magnetic (TM) modes. The
master equation is written as

∇ × ∇ × Ez(r) − k2
0ε(r)Ez(r) = 0, (1)

where k0 is the free-space wave number and ε(r) is the
position-dependent dielectric constant. Due to the periodicity
of the PC, we can restrict the problem to a single unit cell [the
black rhombus in Fig. 1(a)] and as such the field component
Ez(r) could be expressed as Bloch states,

Ek(r) = eik·ruk(r). (2)

Here, uk(r) are periodic functions with the same periodicity
of the lattice, i.e., uk(r) = uk(r + R) for any lattice vector R.
By applying the generalized finite-difference (FD) method,
Eq. (1) could be rewritten in a matrix form, MEz = k2

0Ez.
The eigenequation can then be solved numerically to get the
eigenmodes Ez and eigenvalues k2

0 [27,28]. It should be noted
that M is not Hermitian when lossy and gain materials are

FIG. 2. The complex band structure of the PT-symmetric PC
system when (a) γA = −γB = 0.1, (b) γA = −γB = 1.3, and (c) γA =
−γB = 2.

included. The eigenmodes we defined and calculated are the
right eigenmodes, if not mentioned otherwise.

When the PC structure is Hermitian (γA = γB = 0), the
eigenfrequencies of all the bulk bands are real. There is a com-
plete band gap between two doubly degenerate bands at the �

point [Fig. 1(b)]. When we add gain and loss with the same
strength into A and B which are distributed as in Fig. 1(a), the
PC system preserves the PT symmetry. In Fig. 2, the complex
band structures for three typical cases with different γ are
plotted. With a small γ , as shown in Fig. 2(a), the band gap
remains and the frequencies are still real. The system is in the
PT exact phase. At a specific value of γ , the bands at the lower
and upper edges of the band gap begin to merge. The four
modes coalesce into a single mode at the � point, forming an
exceptional point. As γ increases further, the system enters
the PT broken phase: the bulk gap closes as the frequencies
of the upper and lower bands become “zipping” complex
conjugate pairs near the � point. It should be noticed that
from a tight-binding estimation, the critical γ for the PT phase
transition is equal to the difference of the inter- and intrasite
hoppings, which is roughly 1.3 in our case.

When the dielectric PC is purely lossy, i.e., γA = γB > 0,
we can see from its band structures in Fig. 3(a) that the imag-
inary parts of the frequencies are all positive, indicating that
the eigenstates are all lossy. It is known that scaled dielectric
function ε(r) ∗ s results in scaled mode frequencies ω/

√
s.

Therefore, the added loss introduces a complex scaling factor
so that the imaginary part of the band structure presents the
same trend as in the real part. By distributing the cylinders
in a different manner, the PT-asymmetric PC is analyzed as
shown in Fig. 3(b). Different from the PT-symmetric PC, the
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FIG. 3. The complex band structure of the (a) lossy PC when
γA = γB = 0.1 and (b) PT-asymmetric PC when γA = −γB = 0.1.

eigenfrequencies become complex as soon as the gain and
loss are introduced. Their imaginary parts have positive and
negative values but they are not conjugate pairs.

In Fig. 4, we present the evolution of the imaginary parts
of the frequencies for the PT-symmetric, PT-asymmetric, and
lossy systems as γ increases, where the maximum imaginary
part of the four doubly degenerate bands divided by γ is
shown. From the results, we can see that the PT-symmetric
system exhibits a PT phase transition with a threshold at
around γ = 1.3, while the PT-asymmetric and lossy systems
show a thresholdless transition and continuous evolution as
γ increases. This phenomenon is consistent with the PT-
symmetric quantum spin Hall system [24].

FIG. 4. The evolution of the imaginary part of the band struc-
ture as a function of γ for the PT-symmetric (γ = γA = −γB),
PT-asymmetric, and lossy (γ = γA = γB ) systems.

FIG. 5. (a) The discretized BZ and Wilson loops for the (b) PT-
symmetric, (c) lossy, and (d) PT-asymmetric PC systems.

III. WILSON LOOP CHARACTERIZATION

The Chern number is used as the topological invariant of
non-Hermitian systems with broken time symmetry [29]. For
topological systems with spin degree of freedom, the Wilson
loop classifies their different topological properties [30]. To
calculate the Wilson loop, first, we discretize the first Brillouin
zone (BZ) along the reciprocal lattice vectors, b1 and b2, as
shown in Fig. 5(a). The Wilson loop can be calculated at each
discretized k point, swept from � to �′ or � to �′′.

For isolated bands, the Wilson loop along b2 is obtained
using

W (k(1, j) ) = Im

[
ln

M−1∏
m=1

Uk(m, j)→k(m+1, j)

]
, j = 1, 2, . . . , N.

(3)

Here, Ukα→kβ
= 〈ukα |ukβ

〉
|〈ukα |ukβ

〉| , and 〈ukα
|ukβ

〉 = ∫
ε(r)u∗

kα
(r) ·

ukβ
(r)d2r. uk(r) is calculated by using our FD solver.
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The Wilson loop is gauge invariant. Therefore, in numer-
ical calculation, although an arbitrary phase is added at each
calculated eigenstate, it will not alter the results. For example,
if we discretize the BZ into four plaquettes, the multiplication
in (3) can be written as 〈U R

1 |U R
2 〉〈U R

2 |U R
3 〉〈U R

3 |U R
4 〉〈U R

4 |U R
5 〉.

Here R means we are calculating the right eigenvectors. Ap-
parently, the states within the BZ show up twice during the
multiplication, so their phase factors cancel. Similarly, we can
use left eigenvectors, i.e., 〈U L

1 |U L
2 〉〈U L

2 |U L
3 〉〈U L

3 |U L
4 〉〈U L

4 |U L
5 〉.

Alternatively, combination of right and left eigenvectors
can also be adopted. Since the phases for right and left
eigenvectors are different, for the states at the same lo-
cations, the same eigenvectors should be chosen. For
example, by using 〈U R

1 |U L
2 〉〈U L

2 |U R
3 〉〈U R

3 |U L
4 〉〈U L

4 |U R
5 〉 and

〈U L
1 |U R

2 〉〈U R
2 |U L

3 〉〈U L
3 |U R

4 〉〈U R
4 |U L

5 〉, correct results can also
be obtained. These findings are consistent with the claims in
[5]. Besides the phases of the states within the BZ, the phases
at the two boundaries should also be taken into consideration.
The states at the boundaries are equivalent, i.e., Ek(1, j) (r) =
Ek(M, j) (r). From (2), we have

Ek(1, j) (r) = eik(1, j)·ruk(1, j) (r),

Ek(M, j) (r) = eik(M, j)·ruk(M, j) (r). (4)

Therefore,

uk(M, j) (r) = Ek(M, j) (r)e−ik(M, j)·r

= uk(1, j) (r)ei(k(1, j)−k(M, j) )·r

= uk(1, j) (r)e−ib2·r, (5)

which means the states at the boundaries should vary by
a fixed phase factor in spite of the arbitrary phases added
from the numerical solver. However, when (1) is numerically
solved, the arbitrary phases are different for the boundary
states, where we should implement gauge fixing [31,32]. If
we denote the real calculated eigenstate at k(M, j) as E ′

k(M, j)
(r),

then

u′
k(M, j)

(r) = E ′
k(M, j)

(r)e−ik(M, j)·r. (6)

Combining (5) with (6), we have

uk(M, j) (r) = Ek(M, j) (r)u′
k(M, j)

(r)/E ′
k(M, j)

(r)

= Ek(1, j) (r)u′
k(M, j)

(r)/E ′
k(M, j)

(r). (7)

For degenerate bands, the Wilson loop is calculated using

W (k(1, j) ) = Im

[
ln

M−1∏
m=1

Sk(m, j)→k(m+1, j)

]
, j = 1, 2, . . . , N ;

Skα→kβ
=

⎡
⎢⎢⎢⎢⎢⎣

〈
u1

kα

∣∣u1
kβ

〉 〈
u1

kα

∣∣u2
kβ

〉
. . .

〈
u1

kα

∣∣un
kβ

〉
〈
u2

kα

∣∣u1
kβ

〉 〈
u2

kα

∣∣u2
kβ

〉
. . .

〈
u2

kα

∣∣un
kβ

〉
...

...
. . .

...〈
un

kα

∣∣u1
kβ

〉 〈
un

kα

∣∣u2
kβ

〉
. . .

〈
un

kα

∣∣un
kβ

〉

⎤
⎥⎥⎥⎥⎥⎦ (8)

where the superscript n of un
k indicates the band index. Simi-

larly, a gauge fixing is needed for uk(M, j) .
From Fig. 1(b), we can see that the first two bands are

degenerate at the K point and the second and third bands are

degenerate at the � point. Therefore, we need to compute
the first three bands together by using (8). We find that a
discretization of the BZ along b1 into ten plaquettes can guar-
antee the convergence of the results. The calculated Wilson
loops corresponding to the first three bands are shown in
the Fig. 5. For the Hermitian case, the results are symmetric
about zero, and the Wannier centers of the Wilson loops are
localized at the edge of the unit cell (W = ±π ), which verifies
the topological nature. The same feature is observed for the
PT-symmetric system with small gain and loss [middle panel
of Fig. 5(b)]. When the gain and loss are large enough to close
the band gap, the Wilson loop is disturbed from the � point,
as shown in the right panel in Fig. 5(b). For the lossy system,
as in Fig. 5(c), the Wilson loops move downward compared
with the results in the Hermitian system and the displacement
has a positive correlation with the loss. Except for that, the
lossy system shows similar properties as the Hermitian sys-
tem, which implies that the lossy system has almost the same
topological feature as the original system. Quite different from
the PT-symmetric system, the PT-asymmetric system starts to
show a different topological feature when small gain and loss
are introduced. The Wilson loops are distorted from the �

point, and are fully out of the original shape when gain and
loss are further increased.

IV. EDGE STATES ANALYSIS

The interface between two PCs with different topologies
supports topologically protected edge states. In Hermitian sys-
tems, the edge states have real eigenfrequencies. When gain
and loss are introduced, the edge states are expected to show
additional features resulting from the non-Hermiticity of the
system [24].

We analyze a topological waveguide that is constructed
by introducing an air gap in the topologically nontrivial PC
(Fig. 1) as shown in Fig. 6 [33]. When the system is Hermi-
tian, three bands are identified within the band gap with real
eigenfrequencies. The top and bottom bands in Fig. 6(b), have
large group velocities around kx = 0 with states possessing
even symmetry along the center of the structure, while the
whole middle band has nearly zero group velocities with states
possessing odd symmetry. We can see from the distributions
of Poynting vectors that the energy flows concentrate at the
PC-air interfaces. The net energy flows point to the −x and x
directions for the two states marked by triangles and inverted
triangles, in accordance with their slopes at the band structure.
Interestingly, the energy flows wind along consecutive half-
orbit paths through the dielectric area reversely for the two
states. Hence, the two bands represent two pseudospin chan-
nels, similar to the QSH effect. In contrast, the odd-symmetric
states are just trivial defect states resulting from the symmetry
of the structure.

When gain and loss increase incrementally, only the eigen-
frequencies of the top and bottom bands become complex
conjugate pairs, starting from kx = 0, while the middle band
keeps real [Fig. 6(c)]. The symmetries of the states keep
unchanged as in the Hermitian system, but the energy flows
change. Nevertheless, the orbital directions of the states of the
top and bottom bands along the dielectric area are the same as
in Fig. 6(b). Therefore, in the non-Hermitian system, the two
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FIG. 6. Topological line defect modes. (a) Supercell constructed for the topological waveguide (a0 = 2.8h and g = 16.4 mm). The complex
band structures and corresponding eigenstates (electric fields and time-averaged Poynting vectors) of the waveguide when (b) γA = γB = 0
and (c) γA = −γB = 1.

bands of even-symmetric states can be classified based on the
pseudospin polarizations and the band of trivial defect states
keeps real.

V. CONCLUSION

In conclusion, we have studied the effects of gain and
loss on the band structures of a topological PC structure
and its interface with air using the generalized FD method
[34]. Three cases have been considered, i.e., PT-symmetric,
PT-asymmetric, and lossy systems. We found that while the
PT-asymmetric and lossy systems show no signature of phase
transition when increasing the strength γ of gain and loss, the
PT-symmetric system shows a phase transition from the PT
exact phase to the PT broken phase at around γ = 1.3. More-
over, the method of Wilson loop is adopted to characterize

different PC systems. It has been found that the topological
feature keeps for PT-symmetric and lossy systems when the
band gap is kept. More importantly, the nontrivial edge states
in the PT-symmetric system show complex conjugate pairs
of eigenfrequencies compared to its Hermitian counterparts,
while the trivial defect states always show real eigenfrequen-
cies.
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