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The mechanism of atomic collisions in excited bands plays an important role in both the atomic dynamics
in high bands of optical lattices and the simulation of condensed matter physics. Atoms distributed in an
excited band of an optical lattice can collide and decay to other bands through different scattering channels.
In the excited bands of a one-dimensional lattice there is no significant difference between the cross sections to
different scattering channels, due to the sameness of all of the geometrical couplings. Here, we investigate the
collisional scattering channels for atoms in the excited bands of a triangular optical lattice and demonstrate a
dominant scattering channel in the experiment. A shortcut method is utilized to load Bose-Einstein condensate
of 87Rb atoms into the � point of the first D band with zero quasimomentum in the triangular optical lattice.
After some evolution time, the number of atoms scattering into the S band induced by two-body collisions is
around four times the number that scatter into the second most populated band. Our numerical calculation shows
that the ss scattering channel is dominant, which is roughly consistent with the experimental measurement.
The appearance of dominant scattering channels in a triangular optical lattice is owing to nonorthogonal lattice
vectors. This work is helpful for the research on many-body systems and directional enhancement in optical
lattices.
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I. INTRODUCTION

In many-body systems, collision is one of the most impor-
tant interactions. The investigations of low-energy collisions
in atomic [1–8], ionic [9,10], and electronic systems [11–13]
have been a subject of intense research in recent years. As for
ultracold atoms, the collision rate is one of the major factors
to determine the coherence time of the system [14,15]. The
scattering cross section is defined to describe the collision
rate, which has been extensively studied experimentally and
theoretically [16,17].

The research on ultracold atoms in optical lattices has at-
tracted much attention for their abundant properties especially
in excited bands of lattice, including dynamical superfluidity
in higher lattice orbitals [18–22], staggered orbital currents
[23], and decay mechanisms in excited bands [24,25]. The
collision in optical lattices not only changes the internal state
of atoms [26,27] but also influences the external state [24]. For
instance, two atoms on an excited band in the optical lattice
would jump to other bands owing to two-body collision [28].
The path for atoms scattering from a certain initial state to a
final state is defined as a scattering channel. So far, several
theoretical and experimental works have investigated the ef-
fect of atomic collisions in one-, two-, and mixed-dimensional
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optical lattices [29–33], such as the measurement of the
collision rate for atoms in the P band [33] and the observation
of scattering halos [34], etc. Recently, we have demonstrated
the cross section of excited bands in one-dimensional (1D)
lattice experimentally [35], where the cross sections to each
band have no significant difference and no dominant scatter-
ing channel exists. Different from the situation in 1D lattice,
two-dimensional (2D) lattice has more information on geom-
etry and dimension, whereas the study of scattering channels
in 2D optical lattice has remained unexplored systematically.

Here, we perform theoretical and experimental studies of
scattering channels induced by two-body collisions at the �

point of the first D band (D1 band) in a triangular optical
lattice and demonstrate a dominant scattering channel. Our
experiment starts from a Bose-Einstein condensate (BEC) in
a harmonic trap, and then we use the shortcut method [36]
to load the atoms into the � point of the D1 band in the
triangular optical lattice. After holding the atoms for a certain
time in the optical lattice, we apply a band mapping technique
to get the distribution of atoms in reciprocal space [20,37]. We
quantitatively measure the number of atoms in different bands
through the absorption images obtained after time of flight.
We find that 55.8% of atoms jump to the S band [the first
Brillouin zone (BZ)], while only about 10% of atoms jump to
the two P bands (second and third BZ, respectively) and about
10% of atoms remain in the D1 band (fourth BZ). Meanwhile,
theoretical calculation indicates that the scattering channel
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FIG. 1. (a) Diagram of a triangular optical lattice. The arrows
represent the laser beams with wave vectors �ki, where i = 1, 2, and
3, and �k3 = −( �k1 + �k2). (b) Reduced Brillouin zone of the triangular
lattice corresponding to panel (a). The high symmetry line of the
band K-�-M-K is marked. (c) The time sequence diagram of the
lattice depth for loading atoms into the � point of the D1 band in
the triangular lattice. The four pulses /ton

i /toff
i /, i = 1, 2, 3, and 4,

form a shortcut sequence. After an evolution time T , the lattice beam
intensity decreases to zero adiabatically in tmap = 1 ms. The lattice
depth of the time sequence is V0 = 3.0 Er .

where two atoms jump from the D1 band to the S band is
dominant. By adding up all the scattering channels to the same
final state, we get that the cross section to the S band is 57.3%
of the total cross section, agreeing with experimental results.
The reason for the dominant channel may be nonorthogonal
lattice vectors which produce a term of potential affected by
both positions x and y and decrease the overlapping area of
eigenstates between bands with different parities. This work
contributes to the control of external states of atoms in an
optical lattice, and the dominant scattering channel is possibly
used for realizing directional enhancement.

In Sec. II, we describe the experimental process in the tri-
angular lattice. Section III introduces the collision model and
scattering channels in 2D lattice. Then we calculate the cross
section of scattering channels in the square and triangular
optical lattices, respectively. In Sec. IV, we demonstrate the
experimental result and give the normalized scattering cross
section of each band. Then we compare the experiments with
theoretical calculations. In Sec. V, we compare triangular lat-
tice with bipartite lattices and analyze the connection between
lattice geometry and the dominant scattering channel. Finally,
we give a conclusion in Sec. VI.

II. EXPERIMENTAL DESCRIPTION

Our experiment is carried out in a 2D triangular optical
lattice with tube-shaped lattice sites [19,38–40]. As shown
in Fig. 1(a), the triangular optical lattice is formed by three
intersecting λ = 1064-nm laser beams, which are linearly

polarized perpendicular to the lattice plane (x-y plane). �k1,
�k2, and �k3 are wave vectors of the three laser beams with
120◦ enclosing angles. In the direction perpendicular to the
lattice plane, atoms are weakly confined by an approximately
harmonic potential. Figure 1(b) shows the reduced Brillouin
zone corresponding to the triangular lattice in Fig. 1(a), and it
marks the high-symmetry line K-�-M-K.

We start with a BEC of about 3×105 atoms in the
|F = 2, mF = +2〉 state, which is confined in a hybrid
trap with the harmonic trapping frequencies (ωx, ωy, ωz ) =
2π×(28, 55, 60) Hz. Next, a nonadiabatic shortcut method is
utilized to load the BEC from the harmonic trap into the �

point (the quasimomentum �q = 0) of the D1 band in the trian-
gular optical lattice [18,24,36]. The duration and interval time
sequence of the optical pulses for the shortcut is optimized to
reach the target state with high fidelity. For the lattice depth
V0 = 3.0 Er , after optimizing, we get a four-pulse sequence
as shown in Fig. 1(c), and the on/off time of the lattice is
13.5/11.5/49.0/9.5/8.5/56.5/11.0/11.0 μs. The theoretical
fidelity of the sequence can reach 99.95% (see Appendix B
for more details).

After being loaded into the D1 band, the BEC in the optical
lattice evolves for a certain time T . Then, we apply band
mapping [20,41] by switching off the lattice potential adiabat-
ically in the form e−tmap/τ , where the time constant τ = 200 μs
for the total time tmap = 1 ms, as shown in Fig. 1(c). Atoms
populated in the nth band with quasimomentum �q and energy
E can be mapped to some point of the nth Brillouin zone
with quasimomentum �q. Finally, we take absorption imaging
with the time of flight (TOF) tTOF = 30 ms to measure the
quasimomentum space distribution of atoms in each band.

III. COLLISIONAL SCATTERING PROCESS AND
CALCULATION OF SCATTERING CHANNELS

In the above section, we describe the experimental process
and load the atoms into the � point of the D1 band. To study
the evolution of atoms, in this section, we discuss the colli-
sional scattering process of atoms in the excited bands of 2D
optical lattice and calculate the cross section of the collisional
scattering.

A. Collisional scattering process

The potential of 2D lattice Vlattice can be expressed as

Vlattice = Vx cos( �kx · �r) + Vy cos( �ky · �r)

+
∑
a,b

Vab cos[(a �kx + b �ky) · �r], (1)

where �kx and �ky are the lattice vectors in the x and y directions,
respectively, and �r is the position vector. Vx, Vy, and Vab are po-
tential energy components in the x, y, and oblique directions,
where a and b are any nonzero integers.

The first two terms on the right side of Eq. (1) are inde-
pendent, whereas the last term is related to both the vector x
and the vector y, defined as the x part, the y part, and the x-y
dimensional coupling part, correspondingly. For a 2D lattice,
the appearance of the dimensional coupling part is due to the

033326-2



DOMINANT SCATTERING CHANNEL INDUCED BY … PHYSICAL REVIEW A 104, 033326 (2021)

FIG. 2. Scattering channels of atoms in 2D lattice. Panels (a1) and (a2) show the band structure along the high-symmetry lines in square
and triangular lattices, respectively. The red and yellow spheres represent the atomic initial states and final states during the collision scattering.
Arrows with the same color represent the scattering channel generated by a collision. Here we only draw the first few bands and scattering
channels, and others are not shown in the figure. Panels (b1) and (b2) show the squared modulus of the wave function |u(�q)|2 for the states
at the � points corresponding to bands in panels (a1) and (a2), respectively. The proportions of several main scattering channels are shown in
panels (c1) (square lattice) and (c2) (triangular lattice). The inserts show the diagram of a square optical lattice and a triangular optical lattice.

nonorthogonality of lattice vectors. When Vab = 0, the lattice
potential is independent in the x and y directions, like the
square lattice. Comparably, when Vab �= 0, the lattice potential
is not independent in the x and y directions, like the triangular
optical lattice.

Figures 2(a1) and 2(a2) show the band structure along the
high-symmetry line K-�-M-K of the square and triangular
optical lattices, respectively. For a 2D optical lattice, there
are one S band, two P bands (P1, P2), and four D bands (D1,
D2, D3, D4). For the 87Rb BEC in the optical lattice, the
collisions are mainly low-energy scattering, and the s-wave
approximation is reasonable [34]. Further, during the measur-
ing time (about several microseconds), a three-body collision
could be neglected, of which the characteristic time is several
seconds in the 87Rb BEC. In the following, we just consider
a two-body s-wave collision and assume that the atoms only
undergo one collision during the scattering process.

As shown in Figs. 2(a1) and 2(a2), atoms initially staying at
the � point of the D1 band would jump to other bands because

of collisions, where the red and yellow spheres correspond to
the initial and final states of the two atoms. As shown by the
blue arrows in Figs. 2(a1) and 2(a2), the two atoms both jump
to the S band, and we mark this case as the ss scattering chan-
nel. Similarly, if one of the two atoms jumps to the P2 band
and another one to the D2 band, shown as the yellow arrows,
it is called the p2d2 scattering channel. Different choices of
final states are defined as different scattering channels. Briefly,
we only draw a few typical scattering channels, and in reality
the atoms can jump to any band. However, the probability of
scattering to each band is different, and the strength of the
scattering probability is defined as the scattering cross section.

B. Calculation of scattering channels

In order to study the difference of the scattering process
between a square lattice and a triangular lattice, we use
the scattering theory to calculate the cross section of each
scattering channel in these two types of lattices. Two-body
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collisional scattering cross section for two atoms initially at
the � point [(qx, qy) = (0, 0)] of the D1 band jumping to
bands n1 and n2 can be written as [24] (see Appendix A for
more details):

σ (n1, n2)

= 4πmh̄

va

∫
d �q ×

∣∣∣∣−2π i
4πas

m
ζn1,n2 (0, 0; �q,−�q)

∣∣∣∣
2

, (2)

where va is the atomic velocity, m is the atomic mass, and as

is the atomic s-wave scattering length. And the overlapping
integral of eigenstates ζn1,n2 (0, 0; �q,−�q) is given by

ζn1,n2 (0, 0; �q,−�q) =
∫

d�r

×u∗
n1,�q(�r)u∗

n2,−�q(�r)ud,0(�r)ud,0(�r), (3)

where uni,�q (i = 1, 2, . . .) is the eigenstate at quasimomen-
tum �q in band ni. In the calculation, we assume the periodic
boundary conditions, and consider that |ζn1,n2 (0, 0; �q,−�q)|2 =∫

d�r×|u∗
n1,�q(�r)u∗

n2,−�q(�r)ud,0(�r)ud,0(�r)|2. Figures 2(b1) and
2(b2) show the modulus square of the eigenstates uni,�q at
the � point of each band in square and triangular optical
lattices, which are calculated by secular equations of the opti-
cal lattice, where we choose the wavelength of optical lattice
λ = 1064 nm and the lattice depth V0 = 3 Er (Er = h2

2mλ2 is the
single-photon recoil energy).

To study the proportion of each scattering channel, we
consider the lowest seven bands of the square and triangular
optical lattices, because the scattering channels of higher
bands are weak. Then we calculate the scattering channels, as
shown in Figs. 2(c1) and 2(c2). In the square lattice, the cross
sections of the strongest channels, ss, p1 p1, and p2 p2, are all
around 10% of the total cross section, respectively. Besides,
there are many other smaller channels included in “Others.”
There is no significant difference in scattering cross-section
values among the first six channels, which means that there
is no dominant scattering channel in the square lattice.
By contrast, in the triangular lattice, the proportion of the
scattering cross section of the ss channel is 38.5%, while that
of the second strong channel d1s is only 9.8%. Besides, the
proportions of other channels are much lower than that of
the channel ss. Consequently, the channel ss is dominant in
the two-body scattering process of the triangular optical
lattice.

Further, we study the influence of the lattice depth V0 on the
dominant channel ss in the triangular lattice. Using the same
method, we calculate the normalized scattering cross sections
of each channel with different lattice depths V0, as shown in
Fig. 3(a). Among those lattice depths, the scattering channel
ss is always the dominant scattering channel.

Besides, Eq. (2) can give the differential cross section
d2σ
d �q (�q) of the scattering channel, which denotes the scattering

probability to different quasimomenta. Figure 3(b) shows the
normalized differential cross section of the channel ss in the
triangular optical lattice at V0 = 3 Er . The differential cross
section covers the entire Brillouin zone, and the value of the
differential cross section at the center of the Brillouin zone
is 4% lower than that at the edge. Since this difference is
small, the atoms would approximately uniformly scatter to the
S band, and the 1st BZ almost evenly filled by atoms should
be observed.

FIG. 3. (a) The proportion of each scattering channel for differ-
ent lattice depths V0 = 3, 5, 8, and 10 Er . Several main channels are
shown in the figure, and the sum of the proportion of others is shown
in “others.” (b) Normalized differential cross section of the scattering
channel ss with (qx, qy ) in quasimomentum space, where k = 2π

λ
.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental results

In the experiment, the distribution of atoms in quasimo-
mentum space could be observed after band mapping. The
atomic distribution in the nth band is mapped to the area
within the nth Brillouin zone in extended Brillouin zones.
Figure 4(a) shows the first four extended Brillouin zones of
the triangular lattice, yellow, green, blue, and red areas, cor-
responding to the S, P1, P2, and D1 bands, respectively. And
Fig. 4(b) shows the points with high symmetry, �, K, and M,
in the 1st and 4th extended Brillouin zones.

Figure 4(c) shows the band population of ultracold atoms,
which initially stay at the � point of the D1 band, versus
the different evolution times T in the experiment. When
T = 0 ms, the atoms almost distribute at six points in the 4th
Brillouin zone, where there is the � point of the D1 band. As
the evolution time T increases, the atoms gradually scatter to
other bands. At T = 1.8 ms, a considerable number of atoms
could be observed in the 1st BZ, while atoms populating in
other BZs were few. When T = 4.0 ms, the number of atoms
at the 1st BZ and the six points of the 4th BZ are close.
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FIG. 4. (a) Schematic diagram of the first four Brillouin zones of
a triangular optical lattice. Yellow, green, blue, and red areas repre-
sent the 1st, 2nd, 3rd, and 4th BZ, respectively. (b) The position of
the high-symmetry point in the 1st and 4th extended Brillouin zone.
The yellow area represents the 1st BZ, and the red area represents
the 4th BZ. The corresponding positions of points K, �, and M in the
two areas are marked. (c) Observation of the atomic distribution over
different evolution times. A given color represents the same number
of atoms in each panel, where the maximum number of atoms is
normalized to 1. The red box marks the 1st BZ.

At T = 8.0 ms, a prominent part of atoms at the � point of
the D1 band decay, and the atoms at the 1st BZ are more
numerous than those in any other areas obviously. Finally, at
T = 12.0 ms, atoms distributed at the � point of the D1 band
completely decay, and the 1st BZ is nearly tiled with atoms.
The population of atoms in the 1st Brillouin zone forms a
hexagon with a clear outline, as the red box marks, agreeing
with the calculation of the differential cross section shown in
Fig. 3(b).

B. Comparision between experiments
and theoretical calculation

To quantitatively compare the theoretical and experimental
scattering cross sections, we calculate the proportion of atoms
in each Brillouin zone of Fig. 4(c). We define the proportion
of atoms in each Brillouin zone as

pi = Ni/N0, (4)

where i = S, P1, P2, and D1, and Ni is the number of atoms in
band i. N0 is the total number of atoms.

The proportion of atoms corresponding to Fig. 4(c) is
shown in Fig. 5, where Fig. 5(a) shows the proportion of
atoms in the D1 band and Fig. 5(b) shows the proportion
of atoms in the S, P1, P2, and other higher bands. The error
bar of each data point represents the standard deviation of five
times measurement. The insert of Fig. 5(a) shows our division
of atomic distribution. The six red rectangles mark the � point
of the D1 band, and the number of atoms in those areas is
considered as ND1 . The yellow lines mark the 1st, 2nd, and
3rd BZs, and the numbers of atoms in these three BZs (except

FIG. 5. The normalized proportion of atoms over different evo-
lution times. The proportion of the D1 band over the evolution time
is shown in panel (a), and the proportion of other bands is shown in
panel (b). The green circles in panel (a) denote the atomic proportion
in the D1 band and the blue diamonds (orange down triangles, yellow
up triangles, and purple circles) in panel (b) represent the atomic
proportion in the S band (P1 and P2 bands and others), of which the
solid lines with the same color are fitting lines. The insert in panel
(a) shows the method to extract atom numbers for different Brillouin
zones. The error bars represent the standard deviation of the five
times measurement. The lattice depth is V0 = 3 Er .

the area in the six red rectangles) are defined as NS , NP1 , and
NP2 , respectively. We use the six red rectangles instead of the
4th BZ to make the initial atomic count of the D1 band more
accurate, but it will make the count of atoms at the end of the
evolution smaller.

The green hollow circles in Fig. 5(a) show the proportion
of atoms at the � point of the D1 band. In Fig. 5(b), the blue
(orange and yellow) points indicate the proportion of atoms in
the S (P1 and P2) band, and the purple points reveal the atoms
in other higher bands. The number of atoms in the D1 band at
T = 0 ms is defined as the total atom number. The solid lines
fit the experimental points by functions n0[1 − 1/(1 + KT )]

033326-5



XINXIN GUO et al. PHYSICAL REVIEW A 104, 033326 (2021)

[24], where n0 and K are fitted parameters. At first, the atoms
are loaded into the � point of the D1 band. With time increas-
ing, the atoms at the � point of the D1 band gradually scatter
to other bands. Hence, the proportion pD1 reduces, while the
proportion of atoms in other bands increases. However, the in-
crease rate of ps is much faster than that of the P1 and P2 bands
and the others. At T = 5 ms, the proportion pD1 reduces to
1/e. At the same time, pS raises to 40.7%, and pP1 = 11.8%,
pP2 = 6.7%, and pothers = 1.3%. Finally, at T = 12 ms, when
atoms at the � point in the D1 band almost completely decay,
the proportion of atoms in the S band reaches 55.8%, which
is nearly four times the number that is in the second highest
band, P1.

In order to connect the scattering channels with the pro-
portion of atoms in each band, we add the scattering channels
to the same band and get the theoretical cross section to each
band. Taking the cross section of the S band as an example, the
cross section is equal to twice the proportion of the channel
ss plus the proportion of the channels sp1, sp2, sd1, and so
on. Figure 6(a) shows the final proportions of different bands
obtained in experiments (orange bars) and the normalized the-
oretical cross sections (green bars). The theoretical proportion
of atoms scattering to the S band is 57.3%, which is roughly
consistent with that of the experiment point, 55.8%. Further,
the proportion of atoms in other bands is much lower than that
in S band both in experiment and theory, indicating that the
scattering channel ss is indeed dominant. Besides, we attribute
the higher population of the P1(P2) band in the experiment
than that in the theory to the background in the absorption
imaging and the two or more collisions in the evolution time.

Further, we study the influence of the optical lattice depth
V0 on the dominant scattering channel. Figure 6(b) demon-
strates the experimental and theoretical proportions of the
final proportion of atoms in the S band at different lattice
depths V0. For the lattice depths V0 = 3, 5, 8, and 10 Er ,
the experimental measurements [orange squares in Fig. 6(b)]
are 55.8%, 56.2%, 58.3%, and 62.6%, which are close to the
theoretical points (green diamonds) 57.3%, 61.0%, 58.3%,
and 55.3%, respectively. The dominant scattering channel ss
always exists with different lattice depths, which is roughly
consistent with theoretical calculations in Fig. 3(a).

V. SCATTERING CHANNELS IN BIPARTITE LATTICES

Through the above theoretical calculation and experiments,
we find that the overlap area of eigenstates between bands
with different parities (for example, the D band and the
P band) in lattice with nonorthogonal lattice vectors (like
triangular lattice) is much smaller than that in lattice with
orthogonal lattice vectors (like square lattice). However, the
orthogonality of lattice vectors has little effect on the overlap-
ping area between bands with the same parity (for example,
the D band and the S band). Hence, in the lattice with
nonorthogonal lattice vectors, the scattering channel between
bands with the same parity will be dominant.

For an optical lattice potential, the effect of nonorthogonal
lattice vectors produces the x-y dimensional coupling term,
as shown in Eq. (1). In order to demonstrate the relationship
between the lattice geometry and the dominant scattering
channels, we calculate the scattering cross sections from the

FIG. 6. (a) The proportion of atoms in the S, P1, P2, D1, and
other bands, when atoms initially at the � point of the D1 band
all decay. The experimental points (orange bars) are consistent with
theoretical points (green bars). (b) The proportion of the S band for
different lattice depths V0. Experiment (theory) points are denoted
by orange squares (green diamonds). The error bars represent the
standard deviation of the five times measurement.

� point of the D1 band in other lattices with or without the
x-y dimensional coupling term. In the following calculation,
the first seven bands are considered and the lattice depth is
V0 = 5 Er .

Table I shows the normalized cross section in different
lattices. The proportion for the S̄ band (P̄ band) represents the
average proportion for each S band (P band). The proportion
for the D1 band reflects the atoms scattering to the D1 band.
The RD is defined as

RD = S̄/ max(P̄, D1). (5)

RD denotes the ratio of the cross section between the S band
and the second biggest band, which indicates whether there
exists a dominant scattering channel.

Without the x-y dimensional coupling term, the cross sec-
tions in 1D lattice to the S band, the P band, and the D band are
similar and the ratio RD = 0.50. Hence, there is no dominant
channel, which is also demonstrated in our recent work [35].
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TABLE I. The proportion of the scattering cross section in lattice with different geometric structures with V0 = 5 Er .

S̄ band P̄ band D1 band RD

Lattice (average) (average)

1D lattice 0.174 0.349 0.300 0.50
Triangular lattice 0.610 0.065 0.142 4.30
Square lattice 0.209 0.207 0.187 1.01
Bipartite square lattice 0.382 0.059 0.050 6.47
Honeycomb lattice 0.317 0.092 0.052 3.45

Square lattice and triangular lattice have been discussed
in Sec. II. The lattice vectors of the triangular lattice are
nonorthogonal and those of the square lattice are orthogonal.
The RD for the square lattice is 1.01, which indicates there is
no dominant scattering channel. In the triangular lattice, the
RD is 4.30, which shows the cross section to the S band is
dominant.

Bipartite square lattice and honeycomb lattice are both
bipartite lattices, which are easily achieved in experiments by
changing the polarizations of beams [40]. The potential of the
bipartite lattice is composed of two sets of simple lattice, and
the potential of the bipartite square lattice is written as

V = V0 cos( �kx · �r) + V0 cos( �ky · �r)

+V0 cos[( �kx + �ky) · �r] + V0 cos[( �kx − �ky) · �r]. (6)

The third and fourth terms of the potential V0 cos[( �kx + �ky) ·
�r ] + V0 cos[( �kx − �ky) · �r ] are x-y dimensional coupling terms.
Similarly, honeycomb lattice also has an x-y dimensional
coupling term. As shown in Table I, for these two types of
lattices, over 30% of atoms scatter to each S band (there
are two S bands), while only a few atoms jump to P bands.
The RD of the bipartite square lattice is 6.47, and that of the
honeycomb lattice is 3.45, which are both much larger than 1.
This indicates that the scattering cross sections to the S bands
are dominant in these two types of lattices.

From the calculation, we demonstrate that the scattering
channels in lattice without the x-y dimensional coupling term
have no significant difference. However, for lattice with the
x-y dimensional coupling term, the overlapping areas between
bands with different parities are greatly reduced. For example,
the ratio of the channel p1 p1 (ratio of absolute strength) in
the triangular lattice to that in the square lattice is 0.29, while
the ratio of the channel ss is 0.75. Hence, in lattice with x-y
dimensional coupling terms, the decrease of the scattering
cross section between energy bands with different parity sym-
metries is more than that between bands with the same parity
symmetry, which induces the channel between the same parity
symmetry to be dominant.

VI. CONCLUSION

In conclusion, our experimental measurements and the-
oretical calculations unveil a dominant scattering channel
in the excited bands of triangular optical lattice. After the
atoms evolve in the D1 band of triangular lattice for a cer-
tain time, the proportion of atoms scattering to the S band
reaches 55.8%, which is around four times the proportion of
the second largest band. Our further analysis of the different

configuration lattices demonstrates that the x-y dimensional
coupling term is the key factor for the dominant scattering
channel. This work demonstrates scattering cross sections in
2D optical lattice and paves the way to investigate the col-
lisions in optical lattices, which is important for control of
atoms in excited bands. Furthermore, the dominant scattering
channel contributes to achieving directional enhancement.
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APPENDIX A: CALCULATION OF SCATTERING
CROSS SECTION

We consider the two-body s-wave collision, and we use
scattering theory to calculate the scattering cross section. For
87Rb, the higher order of d-wave scattering can be ignored
when the temperature is below 200 μK [34]. Hence the s-wave
approximation is reasonable for BEC around 80 nK in our
experiment.

The incident wave packet can be written as

|	a,b〉 =
∫

dkzd �q1d �q2 exp[−i(aêa + bêb) · �K]

×φ(�)|�, d, d〉, (A1)

where êa and êb are unit vectors of the cross section. � =
(kz, �q1, �q2) and �K = [(�q1 − �q2)/2, kz] are composed of the
momentum kz and the quasimomenta �q1 and �q2 of two states.
a and b can choose any integer. φ(�) is a wave packet, which
peaks at �. The |�, n1, n2〉 are eigenstates of two atoms given
as

|�, n1, n2〉 = exp(ikzz + i �q1 · �r1 + i �q2 · �r2)

× un1,�q1 (�r1)un2,�q2 (�r2), (A2)

where un1,�q1 (�r1) and un2,�q2 (�r2) are eigenstates of a single atom
on n1 and n2 bands and are calculated by a secular equation.

According to scattering theory, the scattering cross section
of atoms jumping to bands n1 and n2 is [24]

σ (n1, n2) = |êa||êb|
∑
a,b

∫
dk′

zd �q ′
1d �q ′

2

× |〈�′, n1, n2|Ŝ − 1|	a,b〉|2, (A3)
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TABLE II. The shortcut sequences to load atoms into the � point of the D1 band in the triangular optical lattice with different lattice depths.

V0 ton
1 toff

1 ton
2 toff

2 ton
3 toff

3 ton
4 toff

4 (μs) Fidelity

3 Er 13.5 11.5 49.0 9.5 8.5 56.5 11.0 11.0 0.9995
5 Er 29.5 15.5 16.5 29.5 6.5 31.0 18.0 12.5 0.996
8 Er 10.5 24.5 18.5 13.0 10.5 55.5 12.5 10.0 0.993
10 Er 59.5 2.5 20.5 33.5 12.0 13.0 13.5 6.0 0.975

where �′ is the parameter of the final state of scattering, and Ŝ
is the scattering operator. Using the Born approximation, the
scattering operator Ŝ can be calculated as follows:

〈�′, n1, n2|Ŝ − 1|	a,b〉
= −2π iδ(E�′,n1,n2 − E	a,b )〈�′, n1, n2|U (�r)|	a,b〉, (A4)

where

U (�r) = 4πas

m
δ(�r)

∂

∂r
(�r·) (A5)

is the interaction operator. For the F = 2, mF = +2 87Rb
atoms, the s-wave scattering length as = 90 aB, where aB

is the Bohr radius. We defined the overlapping integral
ζn1,n2 (�q1, �q2; �q ′

1, �q ′
2) as

ζn1,n2 (�q1, �q2; �q ′
1, �q ′

2) =
∫

�r
d�r

× u∗
n1,�q ′

1
(�r)u∗

n2,�q ′
2
(�r)ud,�q1 (�r)ud,�q2 (�r),

(A6)

where �q1, �q2, �q ′
1, and �q ′

2 are the quasimomenta of the initial
and final states of two atoms.

Using the overlapping integral (A6), Eq. (A4) is simplified
as

〈�′, n1, n2|Ŝ − 1|	a,b〉
∝ ζn1,n2 (�q1, �q2; �q ′

1, �q ′
2). (A7)

In our experiment, atoms initially distribute at the � point
of the D1 band (�q1 = �q2 = 0). The system obeys the conser-

vation of momentum, and it causes �q ′
1 = −�q ′

2 = �q. Hence, the
scattering cross section

σ (n1, n2) ∝
∫

d �q |ζn1,n2 (0, 0; �q,−�q)|2. (A8)

We use the periodic boundary approximation and
reduce the right side of the above formula to∫

d �q
∫

d�r×|u∗
n1,�q(�r)u∗

n2,−�q(�r)ud,0(�r)ud,0(�r)|2. By calculating
the overlapping integral, we can get the proportion of each
scattering channel and the differential scattering cross section,
as shown in Figs. 3(a) and 3(b).

APPENDIX B: SHORTCUT SEQUENCES

Shortcut is a robust method to load BEC from the harmonic
trap into the optical lattice. In our previous work [18,24,36],
we have used the method to load atoms into the S band and
higher bands of 1D or 2D lattice. The basic principle of
the shortcut method is that the evolution operators U�k (t ) of
momentum states |�k〉 are different between the lattice on and
off. As shown in Fig. 1(c), after several laser pluses, the final
state of atoms is

|ψ f 〉 =
∑

�k

1∏
i=n

U off
�k

(
toff
i

)
U on

�k
(
ton
i

) × |�k〉, (B1)

where n is the number of pulses, and U on/off
�k (t ) is the evolution

operator when the lattice is on/off.
By choosing the number of pulses and pulse length, we can

optimize the final state |ψ f 〉 to aimed state |ψa〉. The fidelity
is defined by |〈ψ f |ψa〉|2 to describe the loading efficiency. In
the experiment, the optimized sequence has four pluses to load
atoms into D1 band of triangular optical lattice, and the pulse
sequences of different lattice depth are shown in Table II.
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