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Gravity effect on quantum resonance ratchet transport of cold atoms
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A quantum resonance model is prepared by periodically kicking cold atoms exposed to an optical ratchet
potential in the direction of the gravitational field. Within tailored parameters, intriguing phenomena emerge
including absolute negative mobility, in which the atom surprisingly moves against the bias (gravity). In its
upward motion, the particle current can be less or greater than or equal to the zero-gravity case, for which
current reversal may prevail. Contrary to its associated zero-gravity case, the particle can be fully trapped or can
slowly move downward. These phenomena occur when the classical counterpart is chaotic. With the present-day
optical-lattice setup, it will be interesting to observe all these phenomena and, in particular, to see how the atom
flies uphill.
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I. INTRODUCTION

Directed transport in periodic unbiased systems with bro-
ken spatiotemporal symmetries, or ratchet transport, has
continued to draw interest since it was first proven as a
good candidate for understanding molecular motors [1]. Early
works focused on the role of noise [2], which was later
replaced by deterministic chaotic dynamics with dissipation
[3,4]. Ratchet models in quantum regimes with noise and
dissipation have also been studied [5,6]. Purely Hamiltonian
dynamics have demonstrated ratchet effects [7–11], includ-
ing those exhibiting both regular and chaotic phase-space
structures [12] and complete chaos [8,13], and a recent and
topical review on quantum resonance ratchets with ultracold
atoms [9].

A class of these quantum systems whose classical coun-
terparts may be chaotic [13] has received great interest quite
recently. The so-called quantum δ-kicked rotor or kicked rotor
has ever since become an excellent testing ground for both
theoretical and experimental studies of these systems. Their
experimental study has gained new impetus through its real-
ization using cold atoms exposed to a kicked optical-lattice
potential from off-resonant standing light [14]. These systems
have revealed a rich variety of effects including dynamical
localization [15,16], quantum resonance [14,15,17–20], tun-
neling [5,21], and the quantum δ-kicked accelerator or kicked
accelerator [22–26]. The latter can be realized by taking a
kicked rotor and adding a linear potential along the direction
of the standing wave [27,28]. This is in general character-
ized by a linear gain in momentum as the number of kicks
increases, and the mechanism behind this phenomenon can
be understood as a resonant rephasing effect of the system
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wave function that depends on the time interval between
kicks [24,26,29]. In addition, the freshly introduced ”quantum
ratchet accelerator” was studied in a modified kicked rotor and
in a Karper model [30].

In this paper, we consider a cold atom initially released
from a magneto-optical trap and δ-kicked with a vertically
oriented off-resonant optical-lattice potential of the ratchet
type, recently achieved experimentally [31,32]. When the
kicked potential is symmetric [14], the model constitutes the
so-called kicked accelerator, equivalent to a kicked rotor with
an additional linear potential due to gravity. Kicked accelera-
tors have been used to investigate aspects of the transition to
chaos in both classical and quantum regimes [22] and repre-
sent systems in which quantum accelerator modes (QAMs)
have been observed [23,24]. However, the model consid-
ered here has demonstrated fascinating quantum phenomena
when atoms are driven in the horizontal direction, for which
gravity is negligible [7,8,10,11]. The question that naturally
arises is how sensitive these transport characteristics are under
gravity.

Our goal is to explore the influence of gravity on ratchet
transport in this kicked accelerator system within quantum
resonance regimes, that is, when the quantum accelerator
mode, for which the initial velocity of the particle does not
meet the condition of a momentum gain after each kick, is not
possible. Solving the time-dependent Schrödinger equation of
this system at quantum resonance, intriguing departures have
been revealed. Compared to the zero-gravity case, the particle
can unexpectedly be slowed down, fully trapped, or even
accelerated upward. Interestingly, the mechanisms underlying
these phenomena have been unraveled.

The paper is organized as follows. We describe the model
and analyze phenomena likely to occur under gravity in
Sec. II. In Sec. III, our results are presented and discussed
within quantum resonance regime. Section IV is devoted to
conclusions.
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II. DESCRIPTION OF THE QUANTUM RESONANCE
RATCHET MODEL

The Hamiltonian of the system under consideration here,
the kicked accelerator, can be written for an atom with
mass m as

Ĥ ′ = p̂′2

2m
+ mgx̂′ + V (x̂′)

N∑

n=1

δ(t ′ − nT ), (1)

where t ′ is the time variable, x̂′ the vertical position operator
and p̂′ its associated momentum operator, m the mass of the
cold-atom particle, and g the earth’s gravitational acceleration
in the vertical direction of the standing wave represented
by the ratchet potential, V (x̂′) = V0v(x̂′) = V0(sin(2kLx̂′) +
α sin(4kLx̂′)), of depth V0. This potential is realized with a
laser of wave number kL = 2π/λL, that is, of wavelength λL,
resulting from the superposition of two counterpropagating
lasers of spatial periodicity λL/2 and λL/4. Such a dissipa-
tionless ratchet potential has been successfully engineered
[31,32]. When α = 0, the system becomes the standard kicked
accelerator [14]. Note that the time dependency is due to the
excitation of the potential by a train of δ kicks of period T ,
where n is an integer that counts the number of kicks.

The dynamics of the system is governed by the scaled time-
dependent Schrödinger equation

i ˜̄h
∂ψ

∂t
= −

˜̄h
2

2

∂2ψ

∂x2
+ ηxψ + Av(x)

N∑

n=1

δ(t − n)ψ (2)

with the dimensionless variables x̂ = 2kLx̂′, t = t ′/T , where
T = 1/ω is the kicking period, p̂ = 2kL p̂′/mω, Ĥ =
(4k2

L/mω2)Ĥ ′, and A = P ˜̄h, where P = V0/h̄ is the poten-
tial strength. The relation [x̂, p̂] = i ˜̄h defines the effective
Planck constant ˜̄h, which is related to the recoil frequency
of the atom ωr = h̄k2

L/2m as ˜̄h = 8ωrT . Here, ˜̄h changes if

one adjusts T , and η = G ˜̄h
2

is the effective gravity constant,
with G = mg2/(8k3

Lh̄2). It turns out from Eq. (2) that the
quantum map attached to this δ-kicked model, for the evolu-
tion operator of the particle between two successive kicks, is
governed by the Floquet operator [27] Û = exp(−i ˜̄h(k̂2/2 +
Gx̂)) exp(−iPv(x̂)), where x̂ and k̂ = −i ∂

∂ x̂ are the position
and the wave-number operators, respectively.

In general, if η = 0, Eq. (2) is formally similar to that
of a kicked rotor whose motion is in a circle. This model
differs from that of a kicked particle, which moves in a line
instead. The link between the two models is established by the
spatial periodicity of the kicking potential, with the associated
evolution operator Û , which commutes with spatial transla-
tions by multiples of the spatial period. As is well known
from the Bloch theory, this enforces conservation of quasi-
momentum β, which is the fractional part of the momentum
p (p = q + β, q being the integer part). Along these lines,
a family of fictitious rotors parametrized by β ∈ [0, 1), with
angle coordinate θ , can be introduced in order to define the
state of β rotors. The dynamics of an atom thus corresponds
to that of a whole bundle of these β rotors which evolve
independently of one another, according to their respective
Hamiltonians. The energy of such an atom is expected to
grow linearly rather than quadratically in time, as reported in
Refs. [24,33,34]. In particular, the particle dynamics corre-

sponds to that of a single rotor only if this particle has a
sharply defined quasimomentum, including the case of the
standard rotor with β = 0. This picture can be experimentally
realized with states involving a narrow distribution of quasi-
momenta for which the dynamics may indeed be rotorlike on
some finite time scale.

In the case of nonzero gravity, however, the quasimomen-
tum is no longer conserved because the spatial periodicity of
the evolution operator Û is destroyed, as is the case in this
work, except when G is rational. Thus direct application of
the Bloch theory is no longer possible, thereby preventing the
reduction of the atomic dynamics to that of rotors, which is the
keystone of the theory in the absence of gravity. This difficulty
is circumvented by a gauge transformation, which amounts to
measuring in a momentum in a freely falling frame. This leads
to a Hamiltonian which is periodic in space though not in time.
Hence the quasimomentum β is constant in time, allowing
reduction to β-rotor dynamics. In this framework, the β-rotor
dynamics at resonant values ˜̄h is a nontrivial mathematical
problem which may give rise to different types of quantum
transport depending on the arithmetic type of G as clearly
demonstrated in Ref. [24]. It turns out that quantum reso-
nancelike motion is only possible for specific values of quasi-
momentum β and gravity G. Focusing here on main quantum
resonances, our calculations are subsequently performed in
the laboratory frame by solving Eq. (2) straighforwardly.

The current, defined as 〈k̂〉 = 〈ψ (t )|k̂|ψ (t )〉, is numerically
computed from the time-evolved wave function 〈x|ψ (t )〉 =
〈x|Û |ψ (t − 1)〉, implemented with the fast Fourier split oper-
ator method [35]. The initial state is taken as a homogeneous
wave packet (with zero momentum; this is also a good approx-
imation for a wave packet that extends over many lattice sites)
and parameters of the cesium atom are used, thereby leading
to the value of G = 0.0217. A comprehensive discussion of
this initial state is given in Ref. [7], where an eigenstate of the
static ratchet potential (inhomogeneous) could also be a good
candidate. Two major effects are likely to occur here, namely,
a QAM and quantum resonance. Recall that a QAM is pro-
duced at values of the driving frequency close to (but not at)
those at which quantum resonance occurs in the δ-kicked rotor
or ratchet [7,8]. A QAM is characterized by the asymmetric
transfer of a fixed momentum impulse per kick which is about
20% of the initial ensemble of laser-cooled atoms [24,25].
Quantum resonance, however, occurs when the flashing pe-
riod is commensurate with the recoil frequency and is related
to the arithmetic nature of ˜̄h, which satisfies ˜̄h = 4πr/s, where
(r, s) are mutual prime numbers. Here the particle is always
kicked at the right time, thereby rephasing the system (re-
vival); this leads to linear growth in the width of the momen-
tum distribution [7,8]. Remarkably high-order quantum res-
onance (s > 16), which led to large currents and unexpected
current reversals, has been demonstrated in Ref. [8]. The wave
function here is reconstructed via fractional revivals. It was
also shown that whenever such high-order quantum resonance
occurs, the classical counterpart is always fully chaotic. In
what follows our numerical experiment is precisely carried
out within the quantum resonance regime. Furthermore, the
potential is prepared and leaned in such a way to favor the
typical ratchet motion, for which η = 0, downward (x < 0);
any current reversal [8] that may occur here would thus lead
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to upward motion(x > 0). If such a current reversal occurs in
the presence of gravity, one will instead speak of absolute neg-
ative mobility (ANM), a counterintuitive phenomenon which
has been attracting growing interest [36–44]. Here the particle
subject to ANM surprisingly moves against the bias (gravity
force). This phenomenon was orignally perceived as being
solely due to quantum mechanics effects [36] and was later
found in classical systems as a result, for instance, of noise
or phase modulation of the driving force ([42] and references
therein). For consistency of our numerical simulations, we
checked that our calculations do not suffer from any artifact
that may be due to the nonspatial periodicity of the quantum
map. This is essentially attributable to the small value of
G ≈ 0.0217 and to the small number of kicks (100 kicks; a
limit difficult to reach in present-day experiments).

III. RESULTS AND DISCUSSIONS

A. Classical mapping

Mechanisms of phenomena found here can be underpinned
with the knowledge of the dynamics of the classical coun-
terpart of the system, Eq. (2), in the laboratory frame. Such
a dynamics can be described in discrete steps corresponding
to successive application of kicks that lead to a kick-to-kick
mapping. With the momentum variable pn associated with
position xn, after the nth kick, the corresponding classical map
reads pn+1 = pn − η − P(cos(xn) + 2α cos(2xn)) and xn+1 =
xn + pn+1, where P stands for the classical stochasticity pa-
rameter. For η = 0, the standard map is recovered. It is found
that the threshold value of P, Pthr ≈ 3/4π , which separates the
regime of regular islands in a chaotic sea and that of the full
chaotic sea obtained in Ref. [8], is slightly displaced to the
upper limits, and the Poincaré cross sections (not shown) are
qualitatively similar. Specifically, P̄thr ≈ 0.8π > Pthr, where
P̄thr is the threshold for η �= 0.

B. Exploration of emerging quantum phenomena

Figure 1 illustrates how gravity actually affects the ratchet
current 〈k〉 displayed as a function of the number of kicks, for
specific values of P and ˜̄h at quantum resonance. Each panel
highlights a typical scenario likely to appear in this model
for η = 0 (black curves) and for η �= 0 (red curves). While
one would expect the particle to accelerate downward due to
gravity as in Fig. 1(a), it is not obvious to predict the scenarios
depicted in the other panels, typically the trapping of the parti-
cle and, especially, its upward motion. Though the mechanism
of current reversal in this model has hitherto not been theoret-
ically investigated, its manifestation is crucial. Much like the
effect of current reversal in [8], we have numerically checked
that ANM also goes hand in hand with full chaos, with P̄thr

the corresponding threshold. Taking into account the gravity
for a particle undergoing a current reversal, these phenomena
may occur: (i) The particle is decelerated in its upward motion
[Fig. 1(b)]. (ii) The particle continues to move upward as there
is no gravity at all [Fig. 1(c)]. (iii) In Fig. 1(d), the current
is stronger, with the gravity thereby accelerating the particle
more upward; the gravity clearly enhances the uphill motion.
This additional effect will be scrutinized further. Still, in this
current reversal regime, the gravity effect can be strong in

FIG. 1. Current as a function of time t , for given P and ˜̄h. Each
panel, with (P, ˜̄h/π ) as indicated, represents a typical phenomenon
emphasized in the absence (black curves) and in the presence (red
curves) of gravity: (a) normal, (b) ANM, (c) ANM as there is no
gravity, (d) enhanced ANM, (e) current reversal (CR) eradication,
(f) trapping, (g) ANM activation, and (h) normal.

such a way that (iv) the particle completely reverses its motion
[Fig. 1(e)], a sort of ANM rectifier, or (v) the particle can be
simply trapped [Fig. 1(f)]. In the latter two cases, ANM is
eradicated, thereby leaving room for the normal downward
acceleration of the particle or its trapping. Finally, in cases
where quantum resonance is not resolved, in general because
of the weakness of the potential strength, the gravity affects
the system as follows: (vi) upward motion is unexpectedly
turned on [Fig. 1(g)], or (vii) downward motion is activated
[Fig. 1(h)].

At this stage, it turns out that ANM alone is not enough
to fully explain some of the phenomena observed here, in
particular, when the particle is accelerated more upward com-
pared to the zero-gravity case [Fig. 1(d)] or when gravity has
no effect [Fig. 1(c)]. This can be understood by noting that the
dynamics of the particle has now been performed in the tilted
ratchet potential v̄(x) = G ˜̄hx + Pv(x), whose effect is to in-
duce an additional momentum kick �p that may contribute to
reducing or increasing the particle current.
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FIG. 2. Quantum resonance transport scenarios of an on-off opti-
cal ratchet particle (filled circle), subject to gravity, initially released
at zero velocity at time t0 from position x0 and pictured at a later time,
t1, at positions (xa)–(xd ), associated with the velocities ( �Va)–( �Vd ),
respectively. (a) Free fall, (b) downward motion, (c) trapping, and
(d) upward motion.

The key scenarios emerging from the dynamics of the
particle, subject to gravity, are sketched in Fig. 2. While free
fall [Fig. 2(a)] occurs at zero potential, downward motion
[Fig. 2(b)], trapping [Fig. 2(c)], and upward motion [Fig. 2(d)]
are induced by the on-off excitation of the potential. Here the
particle is initially released from the magneto-optical trap at
t0 with zero velocity and is pictured at a later time t1 with
velocities �Va, �Vb, �Vc, and �Vd , associated with different motions
as indicated in Fig. 2. We note in passing that the dynamics
of the kicked ratchet may be restored if the gravity effect is
counteracted by appropriately shifting the potential as dis-
cussed in Ref. [27], where the decoherence due to noise can
affect the phenomena expected here.

A global trend of such a rich transport would be crucial,
especially as far as experiments are concerned. This picture
can be obtained by computing, at a given quantum resonance,
the acceleration rate (t ), defined as

(t ) = �〈k〉(t )

�t
= 〈k〉(t ) − 〈k〉(t0)

t − t0
, (3)

where 〈k〉(t ) is the current evaluated at time t . Figure 3 dis-
plays (t = t1), after t1 = 100 kicks, as a function of P and
for some values of ˜̄h satisfying quantum resonance. As in
Fig. 1, the black and red curves stand for the zero-gravity and
nonzero-gravity cases, respectively, and for these values of
˜̄h at quantum resonance: 3.3π [Fig. 3(a)], 1.5π [Fig. 3(b)],
1.125π [Fig. 3(c)], and 1.55π [Fig. 3(d)]. These results
are consistent with the phenomena found above for which
the motion of the particle is downward ( < 0.0), upward
( > 0.0), or fully trapped ( = 0.0). Besides standard current
reversal and ANM, other unexpected effects clearly occur:
(i) Gravity has no effect and the gravity and no-gravity rates
are identical; this is clearly shown in Fig. 3(b) for values of
P ∈ [4.25, 6.45]. (ii) The particle moves faster or slower than
that under zero gravity; examples of such cases are shown, for
instance, in Fig. 3(c) for P ∈ [7.0, 7.5] and in Fig. 3(d) for
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FIG. 3. Acceleration rate (t1) as a function of P, evaluated after
t1 = 100 kicks and for given values of ˜̄h at quantum resonance:
(a) ˜̄h = 3.3π , (b) ˜̄h = 1.5π , (c) ˜̄h = 1.125π , and (d) ˜̄h = 1.55π .
Throughout, various regimes of current reversal, ANM, enhanced
ANM, trapping, and no effect of gravity are well resolved.

P ∈ [6.0, 6.75]. These plots are potentially good guides that
could help in choosing parameters for a desired transport type.
In addition, we have computed the momentum distribution
wave function |〈k|ψ〉|2 after 100 kicks at quantum resonance
for a few values of (P, ˜̄h/π ) taken from Fig. 3. The values
of (P, ˜̄h/π ) indicated in each panel describe these cases: the
current is zero for no gravity and nonzero for gravity (0.4,3.3)
[Fig. 3(a)], the current is zero for no gravity and zero for
gravity (2.9833,3.3) [Fig. 3(a)], the currents are nonzero and
identical for both no gravity and gravity (5.6,1.5) [Fig. 3(b)],
and the currents are nonzero and nonidentical (4.0,3.3)
[Fig. 3(a)]. As is clearly shown, apart from the distributions
in Fig. 4(a) (no gravity) and Fig. 4(b) (gravity), which are

FIG. 4. Momentum distribution wave function |〈k|ψ〉|2 as a
function of k computed after 100 kicks at quantum resonance for
(P, ˜̄h/π ) indicated in each panel as in Fig. 1. As detailed in the text,
symmetry and asymmetry distributions are fingerprints of Trapping
[(a) black curve, (b) red curve] and directed transport (other curves),
respectively.
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symmetric as their associated currents are zero, the remaining
cases are asymmetric, corresponding to the nonzero currents.

IV. CONCLUSIONS

To sum up, a transport phenomenon is identified in a
system made by δ-kicking cold atoms exposed to an optical
lattice ratchet potential prepared in the vertical direction and
subject to gravity. Within tailored parameters and at quantum
resonance, a number of interesting phenomena have emerged
including current reversal (zero gravity), full trapping of the
particle, and absolute negative mobility, in which the particle
paradoxically flies uphill, that is, against the bias (gravity).
Besides, compared to the zero-gravity case, it is also found
that the particle in its uphill motion can be either faster
or slower or identical, while the particle in its downward
motion can be surprisingly slower. ANM as well as other
fascinating ANM-related phenomena all go hand in hand
with the classical counterpart chaos, thereby suggesting its
theoretical analysis. Remarkably, these predictions should be

readily tested in the present-day optical-lattice setup. In par-
ticular, the acceleration rate would be of great importance,
especially where the choice of experimental parameters is
concerned. One would also be interested to know how the
ratchet potential influences QAMs which may occur, while
the quasimomentum will be taken into account via the gauge
transformation within the free-falling frame; this would be
a great alternative to direct calculations in the laboratory
frame. More other resonances due to QAMs may occur and
influence the inherent current reversal and ANM found in
this work. Finally, the introduction of noise in the present
model may lead to decoherence, which may affect phenomena
observed here.
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