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Analytic-normal-mode frequencies for N identical particles: The microscopic dynamics
underlying the emergence and stability of excitation gaps from BCS to unitarity
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The frequencies of the analytic normal modes for N identical particles are studied as a function of system
parameters from the weakly interacting BCS regime to the strongly interacting unitary regime. The normal modes
were obtained previously from a first-order L = 0 group theoretic solution of a three-dimensional Hamiltonian
with a general two-body interaction for confined identical particles. In a precursor to this study, the collective
behavior of these normal modes was investigated as a function of N from few-body systems to many-body
systems analyzing the contribution of individual particles to the collective macroscopic motions. A specific case,
the Hamiltonian for Fermi gases in the unitary regime, was studied in more detail. This regime is known to
support collective behavior in the form of superfluidity and has previously been successfully described using
normal modes. Two phenomena that could sustain the emergence and stability of superfluid behavior were
revealed, including the behavior of the normal mode frequencies as N increases. In this paper, I focus on a more
detailed analysis of these analytic frequencies, extending my investigation to include Hamiltonians with a range
of interparticle interaction strengths from the BCS regime to the unitary regime and analyzing the microscopic
dynamics that lead to large gaps at unitarity. The results of the present study suggest that in regimes where
higher-order effects are small, normal modes can be used to describe the physics of superfluidity from the weakly
interacting BCS regime with the emergence of small excitation gaps to unitarity with its large gaps and can offer
insight into a possible microscopic understanding of the behavior at unitarity. This approach could thus offer an
alternative to the two-body pairing models commonly used to describe superfluidity along this transition.
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I. INTRODUCTION

The evolution of collective behavior in the form of super-
fluidity for systems of ultracold gaseous fermions from the
BCS regime to unitarity has been studied intensely during
the past two decades since this transition was first explored
in the laboratory [1–9]. Typically, theoretical methods assume
that fermions are pairing into loosely bound Cooper pairs in
the BCS regime to explain the emergence of superfluid behav-
ior [10–16]. As the interparticle interaction increases toward
the unitary regime in ultracold fermion gases, these atomic
Cooper pairs decrease in size, ultimately forming diatomic
molecules that condense in the Bose-Einstein condensation
(BEC) regime on the other side of unitarity. In materials
supporting superconductivity, the emergence of Cooper pairs
of electrons is mediated by interactions with phonons in the
underlying material creating a weak attraction that can bind
two electrons at long distances [10–14]. In an ultracold Fermi
gas, neutral atoms are assumed to pair at large distances due
to weak interactions when a Feshbach resonance is tuned
far from resonance. In this study, I will present an alterna-
tive possibility to describe the transition from the weakly
interacting BCS regime to the strong interactions of the uni-
tary regime that does not assume that individual fermions
are forming pairs. Instead, the proposed model assumes
many-body pairing exhibited through normal modes to model

*dwatson@ou.edu

the physics, i.e., synchronized collisionless motion of the
particles that makes it impossible to know which fermion is
paired with any other fermion. Normal mode functions nat-
urally provide simple, coherent macroscopic wave functions
with phase coherence that is maintained over the entire en-
semble. The excitations between modes define quasiparticles
of the macroscopic quantum system. I will show how the two
lowest normal mode frequencies relevant for ultracold sys-
tems, a gapless phonon mode with extremely low frequencies
and a particle-hole excitation mode, exhibit, as expected, an
extremely small excitation gap in the weakly interacting BCS
regime, which widens as the interaction increases, reaching a
maximum in the unitary regime. The physics of this model
from BCS to unitarity is a precursor to the physical pairing of
atoms in real space that eventually forms diatomic molecules
in the BEC region.

Normal mode behavior is ubiquitous in the universe, oc-
curring at all scales from the vibration of crystals [17] to
the oscillation of rotating stars [18]. This universal dynamic
reflects the widespread appearance of vibrational motions in
nature [17–29], which can often be coupled into the simple
collective motions of normal modes. These collective motions
depend on the interparticle correlations of the system and thus
incorporate many-body effects into simple dynamic motion.
If higher-order effects are small, these collective motions are
eigenfunctions of an approximate Hamiltonian and acquire
some degree of stability as a function of time; thus a sys-
tem in a single normal mode will tend to stay in that mode
unless perturbed. Normal modes manifest the symmetry of
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this underlying approximate Hamiltonian with the possibility
of offering analytic solutions to many-body problems and a
clear physical picture of the microscopic dynamics underlying
diverse phenomena.

In an earlier paper, I studied the character of five types
of normal modes previously derived as the L = 0 first-order
analytic solutions of a general Hamiltonian for confined iden-
tical particles [30] using a perturbation formalism called
symmetry-invariant perturbation theory (SPT) [31–38]. Using
the simple analytic expressions for the N-body normal-mode
coordinates, I investigated the evolution of their physical
character as a function of N , from few-body to many-body
systems, and examined the motion of the individual particles
as they contributed to the collective motion. Some general
observations were made based on symmetry considerations
and then their behavior was analyzed for a specific case, the
Hamiltonian of a confined system of fermions in the unitary
regime, which is known to support superfluid behavior. This
study found that the behavior expected for few-body systems,
which have the well-known motions of molecular equivalents
such as ammonia and methane (symmetric stretch, symmet-
ric bend, antisymmetric stretch, antisymmetric bend, and
the opening and closing of alternative interparticle angles),
evolves smoothly as N increases to the collective motions
expected for large-N ensembles (breathing, center of mass,
particle-hole radial and angular excitations, and phonon). Fur-
thermore, the transition from few-body behavior to large-N
behavior was found to occur at quite low values of N (N ≈
10). This change in character from small N to large N is
dictated by fairly simple analytic forms that nonetheless in-
corporate the intricate interplay of individual particles as they
contribute to the macroscopic motion. The evolution of behav-
ior was found to be determined primarily from the symmetry
structure of the Hamiltonian and thus could be applicable to
diverse phenomena at different scales if the same symmetry is
present or dominates.

The SPT formalism was developed initially for systems
of bosons [31–37] and more recently applied to fermions
[38–41]. This approach has been formulated for L = 0
three-dimensional systems with spherically-symmetric con-
fining potentials and completely general interaction potentials
through first order in the perturbation series. Wave functions
through first order have been developed and tested for systems
of bosons [32,34–37], but not for fermions. The extension to
higher orders has been formulated using an algorithm that uses
tensor algebra [42]. The normal mode solutions, which are the
exact solutions at first order, are used as a complete basis to
obtain expansion coefficients for the energy and wave function
at each order. This extension, while straightforward, is quite
challenging particularly in memory requirements, reflecting
the exponential growth in complexity as a function of pertur-
bation order (not the value of N) that has been demonstrated
for this method [43,44], and has not been implemented for
large-N systems which have many degrees of freedom [42].
Higher-order calculations for the energies of small atomic
systems have been carried out in earlier versions of this ap-
proach [45–49], as well as the extension and application to
higher angular momentum states [50–54]. The extension to
cylindrically confined systems has been formulated, but not
implemented.

The SPT formalism at each order takes into account every
two-body interaction rather than some average interaction and
is applicable to strongly interacting systems since the pertur-
bation parameter does not involve the interaction potential.
Beyond-mean-field effects are included even at the lowest
perturbation order underpinning the excellent results obtained
through first order using the SPT approach [33,38,41] as well
as earlier dimensional methods [45,46,55–57].

This formalism has also been tested against an exactly
solvable model problem of harmonically interacting particles
under harmonic confinement [36,37,39,40]. Exact agreement
was found (to ten or more digits of accuracy) for the wave
function with the exact analytic wave function obtained in
an independent solution, confirming this general formalism
for a fully interacting three-dimensional N-body system [36]
and verifying the analytic expressions for the normal mode
frequencies and coordinates.

In the fermion studies, the numerically demanding de-
termination of explicitly antisymmetrized wave functions is
avoided by using specific assignments of normal mode oc-
cupations to enforce the Pauli principle at first order “on
paper” [38–41] [see Sec. II after Eq. (18)]. Ground- [38]
and excited-state [41] beyond-mean-field energies and their
degeneracies have been determined, allowing the construc-
tion of a partition function [40,41] and the determination of
thermodynamic quantities [40,41]. Constructing the partition
function required a large number of excited states from the
infinite spectrum of equally spaced states, chosen specifically
to comply with the enforcement of the Pauli principle, thus
connecting the Pauli principle to many-body interaction dy-
namics through the normal modes.

The study of the thermodynamic behavior of ultracold
fermions in the unitary regime obtained quite good agreement
with experimental data for the energy, entropy, and heat capac-
ity [41]. Two normal modes, selected by the Pauli principle,
were found to play a role in creating and stabilizing the
superfluid behavior at low temperatures, a phonon mode at
ultralow temperatures, and a single-particle excitation mode,
i.e., a particle-hole excitation, as the temperature increases.
The single-particle excitation has a much higher frequency
and creates a gap that stabilizes the superfluid behavior. This
normal mode description offers an interesting alternative to
two-body pairing correlation models commonly used to de-
scribe superfluid regimes.

The good agreement with experiment for thermodynamic
quantities increased the interest in investigating the physical
character of these states. Originally obtained simply as a com-
plete basis at first order, these states offer the possibility of
acquiring physical intuition into the dynamics of collective
motion [30] and insight into the universal behavior of the
unitary regime.

My previous study of the five types of normal mode coordi-
nates looked at the evolution of behavior as a function of N for
only one specific case, the strongly interacting unitary regime.
This region was chosen because of the current experimental
and theoretical interest in this regime, which is known to
exhibit universal behavior and to support superfluidity with
large excitation gaps. My analysis of the N dependence for
the unitary Hamiltonian revealed two phenomena that have the
potential to support the creation and stabilization of collective
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behavior. First the mixing of radial and angular behavior in
the normal modes is found to limit to pure radial or pure
angular behavior for very large (or very small) N . This re-
sults in symmetry coordinates that are eigenfunctions of an
approximate Hamiltonian governing the physics of the unitary
regime, thus acquiring some amount of stability if the symme-
try is unperturbed. Second, for low values of N , the five types
of normal mode frequencies start out closer in value, but as
N increases these frequencies spread out, creating large gaps
between the values of these five frequencies. These gaps could
provide the stability for superfluid behavior if mechanisms to
prevent the transfer of energy to other modes exist (such as
low temperatures) or could be engineered.

In this paper, I extend my investigation to regimes other
than the unitary regime, studying the evolution of the fre-
quencies as a function of the interparticle interaction strength
V̄0 from the BCS regime to unitarity. I will focus on larger
values of N relevant to experimental investigations of this
transition. For this study, I have scaled the value of V̄0 so
that V̄0 = 1.0 corresponds to the unitary regime which has
an infinite scattering length. The BCS regime is loosely de-
fined as having extremely weak interparticle interactions, e.g.,
V̄0 ≈ 10−6. This potential is defined in Sec. II, with a more
detailed description in Appendix A in Ref. [30].

The analytic expressions for the five types of frequencies
have a complicated dependence on V̄0, both explicitly and im-
plicitly through other variables in the formalism that depend
on V̄0. The goal is to determine the interplay of various terms
in the Hamiltonian as they respond to the increase in the in-
terparticle interaction and affect the value of the frequencies.
This understanding should offer insight into the microscopic
dynamics that leads to large gaps as unitarity is approached
and offers the possibility of fine-tuning the system parameters
to control the appearance and stability of excitation gaps.

In the remainder of this section, I summarize the results of
my investigation and state my conclusions. Section II gives a
brief review of the SPT method including the derivation of
the symmetry coordinates, the normal coordinates, and the
normal mode frequencies, establishing the necessary nota-
tion. Section III looks at the mixing coefficients (defined in
Appendix A) that determine the radial-angular mixing of the
symmetry coordinates to form a normal coordinate, extending
my earlier study in the unitary regime to regimes with weak
interactions. Similar behavior is found for all strengths of
the interparticle interaction. Specifically, the character of the
normal modes q′[α]

± evolves to almost purely radial or purely
angular as N increases, with very little mixing of the sym-
metry coordinates, confirming that this phenomenon is driven
by dynamics other than the universal behavior of a system at
unitarity. This negligible mixing is reflected in the character
of the normal mode frequencies, which can be appropriately
labeled as radial frequencies or angular frequencies across
the entire transition. It also has implications for the ability
to tune these frequencies as well as the stability of collective
behavior since the symmetry coordinates are eigenfunctions
of an approximate underlying Hamiltonian.

In Sec. IV and Appendixes B–E, I analyze the analytic
expressions for the five types of frequencies in terms of
their dependence on V̄0, confirming that the frequencies can
be characterized into two types: radial frequencies that have

a strong dependence on V̄0 and angular frequencies with a
weaker dependence on V̄0 that evolve to stable limits insen-
sitive to changes in V̄0.

Section V discusses the behavior of the frequencies and
the emergence of stable gaps as a function of V̄0 from the
BCS regime to the unitary regime. This analysis shows the
emergence of excitation gaps that increase as V̄0 increases.
For extremely weak interactions, the five frequencies converge
to identical values at twice the trap frequency, which results
in infinitesimally small excitation gaps. As V̄0 increases, the
frequencies begin to spread out, creating gaps that reach a
maximum at unitarity with the angular frequencies approach-
ing stable limits while the radial frequencies continue to
gradually change. (These limits are derived in detail in Ap-
pendixes F and G). For ultracold systems, the two lowest
frequencies are of interest: the phonon frequency, which tends
to extremely small values, and the angular particle-hole fre-
quency, which limits to the trap frequency at unitarity. This
sets up an excitation gap that stabilizes as the unitary limit
is approached. As N increases, this behavior is stabilized
at smaller and smaller values of V̄0. Since V̄0 appears as a
parameter in the analytic expressions for the frequencies, the
evolution of these frequencies can be studied as a function of
the interparticle interaction without intensive numerical work.

Finally, in Sec. VI, the microscopic dynamics underpin-
ning the stable limits of the angular frequencies and the
emergence of excitation gaps that could support superfluid-
ity are investigated from two perspectives. First the relative
contributions of various Hamiltonian terms to the evolving
analytic frequencies are tracked as V̄0 changes. Then the mo-
tion of the individual particles in the corresponding normal
mode coordinate is studied to understand how the ensemble is
rearranging on a microscopic level as interactions turn on and
collective behavior emerges. The excitation gap relevant for
ultracold Fermi gases limits to the trap frequency at unitarity,
setting up a spectrum of evenly spaced levels identical to
the spectrum of the noninteracting regime. This results in
dynamics independent of microscopic details of the underly-
ing interactions consistent with the universal behavior of the
unitary regime.

In summary, this study of the evolution of the normal mode
frequencies from the first-order solution of the SPT equations
for confined systems of identical particles as a function of
V̄0 suggests that these normal modes are able to describe
the physics of superfluidity from the weakly interacting BCS
regime to the universal behavior of unitarity and to offer a
view of the microscopic dynamics without the assumption of
two-particle pairing.

II. SYMMETRY-INVARIANT PERTURBATION THEORY:
DERIVATION OF NORMAL MODES AND THEIR

FREQUENCIES

In this section, I summarize the development of SPT and
the previous derivation of the normal modes and their fre-
quencies that was presented in Refs. [31,32], introducing
the notation required in Secs. III–VI for the analysis of the
frequencies.

The normal modes are the exact solutions at first order
in inverse dimensionality of a first-principles perturbation
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many-body formalism called symmetry-invariant perturbation
theory. This formalism uses group theory to solve a fully
interacting many-body three-dimensional Hamiltonian with
a confining potential and an arbitrary interaction potential
[32,35]. Using the symmetry of the symmetric group at large
dimension [31], this group theoretic approach successfully
rearranges the many-body work at each perturbation order
so that an exact solution can in principle be obtained non-
numerically, order by order, using group theory and graphical
techniques [43]. Specifically, the numerical work is rear-
ranged into analytic building blocks, resulting in a formulation
with a complexity that does not scale with N [35–37,43,44].
Group theory is used to partition the N scaling problem away
from the interaction dynamics, allowing the N scaling to be
treated as a separate mathematical problem (cf. the Wigner-
Eckart theorem). The exponential scaling in complexity is
shifted from a dependence on the number of particles N to a
dependence on the order of the perturbation series [44]. Exact
first-order results that contain beyond-mean-field effects for
all values of N can now be obtained from a single calculation,
but determining higher-order results becomes exponentially
difficult. To minimize the work needed for new calcula-
tions, the analytic building blocks have been calculated and
stored [58].

Strongly interacting systems like the unitary regime can be
studied since the perturbation does not involve the strength
of the interaction. Beyond unitarity, as a system of ultracold
Fermi gases transitions into the BEC regime, the normal mode
first-order basis with its many-body pairing is not a useful
basis to describe the transition to diatomic molecules with
two-body pairing. This BEC regime could in principle be de-
scribed by including higher-order terms in the series, although
it is probable that many terms would be required, making
convergence challenging and undermining the ability to obtain
physical insight.

The Schrödinger equation in D dimensions is defined in
Cartesian coordinates for N interacting particles by

H� =
[

N∑
i=1

hi +
N−1∑
i=1

N∑
j=i+1

gi j

]
� = E�, (1)

hi = − h̄2

2mi

D∑
ν=1

∂2

∂x2
iν

+ Vconf

⎛
⎝
√√√√ D∑

ν=1

x2
iν

⎞
⎠,

gi j = Vint

⎛
⎝
√√√√ D∑

ν=1

(xiν − x jν )2

⎞
⎠, (2)

where hi is the single-particle Hamiltonian, gi j is a two-body
interaction potential, xiν is the νth Cartesian component of
the ith particle, and Vconf is a spherically-symmetric confining
potential [31,32,35]. The Schrödinger equation is transformed
from Cartesian coordinates to internal coordinates using

ri =
√√√√ D∑

ν=1

x2
iν (1 � i � N ),

γi j = cos(θi j ) =
(

D∑
ν=1

xiνx jν

)/
rir j (3)

(1 � i < j � N ), which are the D-dimensional scalar radii ri

of the N particles from the center of the confining potential
and the cosines γi j of the N (N − 1)/2 angles between the
radial vectors.

The first-order derivatives are removed using a similar-
ity transformation [59], and dimensionally-scaled oscillator
length units are defined with a length scale factor κ (D) =
D2āho, where āho =

√
h̄

mω̄ho
and ω̄ho = D3ωho, that regularizes

the large-dimension limit of the Schrödinger equation. Sub-
stituting the scaled variables r̄i = ri/κ (D), with Ē = D2 E

h̄ω̄ho

and H̄ = D2 H
h̄ω̄ho

, into the similarity-transformed Schrödinger
equation gives

H̄
 = (δ2T̄ + Ū + V̄conf + V̄int )
 = Ē 
, (4)

where

T̄ =
N∑

i=1

(
−1

2

∂2

∂ r̄i
2 − 1

2r̄2
i

∑
j �=i

∑
k �=i

∂

∂γi j

× (γ jk − γi jγik )
∂

∂γik

)
, (5)

Ū =
N∑

i=1

(
δ2N (N − 2) + [1 − δ(N + 1)]2

(
�(i)

�

)
8r̄2

i

)
, (6)

V̄conf =
N∑

i=1

1

2
r̄2

i , (7)

V̄int = V̄0

1 − 3b′δ

N−1∑
i=1

N∑
j=i+1

(1 − tanh i j ), (8)

h̄ = m = 1, δ = 1/D is the perturbation parameter, � is the
Gramian determinant with elements γi j (see Appendix D in
Ref. [31]), and �(i) is the determinant with the row and column
of the ith particle deleted. The barred quantities have been
scaled by κ (D).

The form of the interaction potential V̄int is chosen to
reduce to a square-well potential at D = 3 and to be differ-
entiable away from D = 3 to allow the dimensional analysis
[31,33]. The constant b′ in the denominator is chosen so the
potential yields an infinite scattering length for the unitary
regime with V̄0 = 1.0. To evolve toward the weaker interac-
tions of the BCS regime, V̄0 is scaled to smaller values. The
argument i j is defined as

i j = c̄0

1 − 3δ

(
r̄i j√

2
− ᾱ − 3δ(R̄ − ᾱ)

)
, (9)

where r̄i j is the interatomic separation

r̄i j =
√

r̄2
i + r̄2

j − 2r̄i r̄ jγi j, (10)

R̄ is the range of the square-well potential in dimensionally
scaled oscillator units, and ᾱ is a constant which softens
the potential as D → ∞. The range R is chosen so R � aho

(aho = √
h̄/mωho) and has been systematically reduced to ex-

trapolate to zero-range interaction.
Taking the D → ∞ limit, the second derivative terms drop

out, yielding a static zeroth-order problem with an effective
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potential V̄eff:

V̄eff(r̄, γ ; δ) =
N∑

i=1

[Ū (r̄i; δ) + V̄conf(r̄i; δ)]

+
N−1∑
i=1

N∑
j=i+1

V̄int(r̄i, γi j ; δ). (11)

The minimum of this effective potential yields an infinite-
dimensional maximally-symmetric structure with all radii r̄i

and angle cosines γi j of the particles equal, i.e., when D →
∞, r̄i = r̄∞ (1 � i � N) and γi j = γ∞ (1 � i < j � N). The
values of these parameters are determined by two minimum
conditions (

∂V̄eff

∂ r̄i

)∣∣∣∣
∞

= 0,

(
∂V̄eff

∂γi j

)∣∣∣∣
∞

= 0. (12)

Substituting the above definition of V̄eff, two equations in r̄∞
and γ∞ are obtained which yield

r̄∞ = 1√
2
√

1 + (N − 1)γ∞
, (13)

while γ∞ can be solved from the transcendental equation

γ∞[2 + (N − 2)γ∞]

(1 − γ∞)3/2
√

1 + (N − 1)γ∞
+ V̄0 sech2(∞)′

∞ = 0.

(14)
In the large-D limit (δ → 0), the argument i j becomes

∞ = i j |∞ = c̄0(
√

1 − γ∞ r̄∞ − ᾱ). (15)

The zeroth-order energy at this minimum, Ē∞ = V̄eff(r̄∞),
provides the starting point for the 1/D expansion. A position
vector of the N (N + 1)/2 internal coordinates is defined as

ȳ =
(

r̄
γ

)
, (16)

where

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ12

γ13

γ23

γ14

γ24

γ34

γ15

γ25
...

γN−2,N

γN−1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r̄ =

⎛
⎜⎜⎝

r̄1

r̄2
...

r̄N

⎞
⎟⎟⎠.

The substitutions r̄i = r̄∞ + δ1/2r̄′
i and γi j = γ∞ + δ1/2γ ′

i j set
up a power series in δ1/2 about the D → ∞ symmetric
minimum.

The first-order δ = 1/D equation is a harmonic problem,
which is solved exactly and analytically by obtaining the
N-body normal modes of the system. The first-order Hamilto-
nian H̄1 is defined in terms of constant matrices G and F that
are evaluated at the large-dimension limit

H̄1 = − 1
2∂ȳ′ T G∂ȳ′ + 1

2 ȳ′T Fȳ′ + v0, (17)

where G involves kinetic energy terms, F involves deriva-
tives of the effective potential, and v0 is a constant [31]. The
FG matrix method [60] is used to obtain the normal mode
frequencies and the harmonic-order energy correction [31].
A review of the FG matrix method is presented in Appendix
A of Ref. [31]. Here N (N + 1)/2 frequencies ω̄ are obtained
from the roots of the FG equation; however, only five roots
are distinct due to the large degeneracy of the frequencies
reflecting the very high degree of symmetry manifested in
the F, G, and FG matrices. The elements of these matrices
are evaluated for the large-dimension maximally-symmetric
structure with a single value for all radii r̄∞ and angle cosines
γ∞. Thus these matrices are invariant under the N! operations
of particle interchanges effected by the symmetric group SN ,
which results in the highly degenerate eigenvalues. These
matrices do not connect subspaces belonging to different irre-
ducible representations of SN [61] (see, for example, Ref. [60],
Appendix XII, p. 347); thus the normal coordinates must
transform under irreducible representations of SN .

There are a total of five irreducible representations: two
one-dimensional irreducible representations, one radial and
one angular, labeled by the partition [N]; two (N − 1)-
dimensional irreducible representations, one radial and one
angular, labeled by the partition [N − 1, 1]; and one angular
N (N − 3)/2-dimensional irreducible representation, labeled
by the partition [N − 2, 2]. These representations are given
shorthand labels 0−, 0+, 1−, 1+, and 2, respectively (see
Refs. [32,35]). Thus the energy through first order in δ = 1/D
can be written in terms of the five distinct normal mode
frequencies [31,55] as

E = E∞ + δ

⎡
⎣ ∑

μ={0±,1±,2}

(
nμ + 1

2
dμ

)
ω̄μ + v0

⎤
⎦, (18)

where μ is a label which runs over the five types of normal
modes 0−, 0+, 1−, 1+, and 2 [irrespective of the particle num-
ber (see Ref. [31] and Ref. [15] in [32])], nμ is the total quanta
in the normal mode with frequency ω̄μ, and v0 is a constant
[defined in Ref. [31], Eq. (125)]. The multiplicities of the five
roots are d0+ = 1, d0− = 1, d1+ = N − 1, d1− = N − 1, and
d2 = N (N − 3)/2.

The energy expression given by Eq. (18) gives the
ground-state energy as well as the excited-state spectrum
by assigning normal mode quantum numbers consistent
with the Pauli principle. The allowed assignments are de-
termined by finding a correspondence between the normal
mode states |n0+ , n0− , n1+ , n1− , n2〉 and the noninteracting
states of the confining potential, a spherically-symmetric
three-dimensional harmonic oscillator [Vconf(ri) = 1

2 mω2
hor2

i ],
which have known restrictions due to antisymmetry. These
two spectra are related in the double limit D → ∞ and ωho →
∞ where both representations are valid. The radial and angu-
lar characters separate cleanly at this double limit, resulting in
two conditions [38,39]

2n0− + 2n1− =
N∑

i=1

2νi, 2n0+ + 2n1+ + 2n2 =
N∑

i=1

li, (19)

where νi is the radial and li is the orbital angular mo-
mentum quantum number of the three-dimensional harmonic
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oscillator, satisfying ni = 2νi + li, and ni is the energy-level
quanta of the ith particle defined by E = ∑N

i=1[ni + 3
2 ]h̄ωho =∑N

i=1[(2νi + li ) + 3
2 ]h̄ωho.

Equations (19) determine a set of possible normal mode
states |n0+ , n0− , n1+ , n1− , n2〉 that are consistent with an
antisymmetric wave function from the known set of harmonic-
oscillator configurations that obey the Pauli principle. As
particles are added at the noninteracting ωho → ∞ limit, ad-
ditional harmonic-oscillator quanta νi and li are of course
needed to satisfy the Pauli principle. Equivalently, this corre-
sponds to additional normal mode quanta needed to maintain
antisymmetry as interactions turn on and the normal modes
reflect the emerging many-body interactions. This strategy is
similar to Landau’s use of the noninteracting system to set up
the correct Fermi statistics as interactions adiabatically evolve
in Fermi liquid theory [62].

We define the symmetry coordinate vector S as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S[N]
r̄′

S[N]
γ ′

S[N−1,1]
r̄′

S[N−1,1]
γ ′

S[N−2,2]
γ ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

W [N]
r̄′ r̄′

W [N]
γ ′ γ ′

W [N−1,1]
r̄′ r̄′

W [N−1,1]
γ ′ γ ′

W [N−2,2]
γ ′ γ ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where the W [α]
r̄′ and the W [α]

γ ′ are transformation matrices. This
is shown in Ref. [32] using the theory of group characters to
decompose r̄′ and γ ′ into basis functions that transform under
these five irreducible representations of SN . The FG method
is applied using these symmetry coordinates to determine the
eigenvalues λα = ω̄2

α , frequencies ω̄α , and normal modes q′[α]

of the system

q′[N]
± = c[N]

±
(
cos θ

[N]
±

[
S[N]

r̄′
] + sin θ

[N]
±

[
S[N]

γ ′
])

, (21)

q′[N−1,1]
ξ± = c[N−1,1]

±
(
cos θ

[N−1,1]
±

[
S[N−1,1]

r̄′
]
ξ

+ sin θ
[N−1,1]
±

[
S[N−1,1]

γ ′
]
ξ

)
(22)

for the α = [N] and [N − 1, 1] sectors and 1 � ξ � N − 1
and

q′[N−2,2] = c[N−2,2]S[N−2,2]
γ ′ (23)

for the [N − 2, 2] sector.
From Eqs. (21) and (22) above, the symmetry coordinates

in the [N] and [N − 1, 1] sectors are mixed to form a nor-
mal coordinate. Thus, depending on the value of the mixing
angles, the normal modes, which are the eigenfunctions at
first order of the Schrödinger equation, will have mixed radial
and angular behavior in the [N] and [N − 1, 1] sectors. The
[N − 2, 2] normal modes have entirely angular behavior since
there are no r̄′ symmetry coordinates in this sector and so no
mixing. The value of the mixing angles and thus the extent
of radial-angular mixing in a normal coordinate depends of
course on the Hamiltonian terms at this first perturbation
order.

III. MIXING COEFFICIENTS AS A FUNCTION
OF N AND V̄0

The mixing coefficients that determine the radial-angular
mixing in the normal modes for the [N] and [N − 1, 1] sectors
are defined in Appendix A and have a complicated depen-
dence on N and V̄0 that originates in the Hamiltonian terms
at first order. In particular, these coefficients have some ex-
plicit dependence from the symmetry present in the first-order
Hamiltonian as well as dependence from the F and G ele-
ments for a particular Hamiltonian.

As shown in Appendix A, there are three layers of ana-
lytic expressions that can introduce N and/or V̄0 dependence.
When these mixing coefficients were plotted for the unitary
(large-V̄0) Hamiltonian as a function of N in a recent study, the
character of the normal modes was found to evolve to a pure
radial or pure angular symmetry coordinate for N � 200, i.e.,
no mixing for N 
 1. (This was also true for very small N ,
e.g., N � 10, which are not being studied in this work).

A bit of inspection revealed that this behavior was being
dictated to a large extent by the explicit N dependence in
the expressions for cos θ

[α]
± and sin θ

[α]
± [Eqs. (A1)–(A8)].

The expressions depend on the symmetry of the first-order
Hamiltonian, not the specific details of the potential. The
position and shape of the crossover is influenced by the other
sources of N and V̄0 dependence that originate in the specific
Hamiltonian.

The emergence of pure symmetry coordinates for large N
has implications for the stability of collective behavior since
the symmetry coordinates are eigenfunctions of an approx-
imate underlying Hamiltonian and thus have some degree
of stability unless the system is perturbed. In addition, this
means that the frequencies ω̄[N]± and ω̄[N−1,1]± associated with
these normal modes should reflect pure radial or pure angular
character for large N .

In the present study, I now extend this earlier study to
regimes other than the unitary regime, investigating whether
this emergence of pure symmetry character in the normal
modes and their frequencies is unique to the unitary regime
or is driven by dynamics common to regimes throughout the
transition from BCS to unitarity.

In Figs. 1(a)–1(d), I show the behavior of the mixing coef-
ficients as a function of N for a system of identical fermions
in the weakly interacting BCS regime, plotting the square
of the mixing coefficients |cos θ

[α]
± |2 and |sin θ

[α]
± |2 which

gives the probability associated with each symmetry coordi-
nate [S[α]

r̄′ ] or [S[α]
γ ′ ] in the expression for the normal modes

q′[α]
± . The plots show that the character of the normal modes

q′[α]
± evolves to almost purely radial or purely angular, as N

increases with very little mixing of the symmetry coordinates.
This happens in this weakly interacting regime at even lower
values of N than in the unitary regime, thus confirming that
this phenomenum is driven by dynamics other than the uni-
versal behavior of a system at unitarity. This also validates
the decision to designate the [N] and [N − 1, 1] sector nor-
mal mode frequencies for the typical many-body ensemble
sizes studied in the laboratory, as either a radial frequency or
an angular frequency instead of having mixed radial-angular
character. Inspecting the plots reveals that ω̄0+ and ω̄1+ are
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(a)

(b)

(c)

(d)

FIG. 1. Square of the mixing coefficients as a function of N for
the weakly interacting BCS regime: (a) |cos θ

[N]
+ |2 and |sin θ

[N]
+ |2 for

the normal mode q′[N]
+ , (b) |cos θ

[N]
− |2 and |sin θ

[N]
− |2 for the normal

mode q′[N]
− , (c) |cos θ

[N−1,1]
+ |2 and |sin θ

[N−1,1]
+ |2 for q′[N−1,1]

+ , and
(d) |cos θ

[N−1,1]
− |2 and |sin θ

[N−1,1]
− |2 for q′[N−1,1]

− .

angular frequencies and ω̄0− and ω̄1− are radial frequencies.
(This designation holds over the entire range of interparticle
interaction strengths until the systems are approaching the
unitary regime where the large value of V̄0 results in a crossing
of the character at which point the labels are switched).

IV. ANALYTIC EXPRESSIONS FOR THE FIVE NORMAL
MODE FREQUENCIES

In this section, I analyze the analytic expressions for the
frequencies, investigating the differences between the radial
(ω̄0− and ω̄1− ) and angular (ω̄0+ and ω̄1+ ) frequencies in the
[N] and [N − 1, 1] sectors, as well as studying the angular
frequency ω̄2 in the [N − 2, 2] sector. The radial frequencies
depend strongly on the interparticle interaction potential V̄0,
while the angular frequencies which are comprised primarily
from centrifugal potential terms have a weaker dependence on
V̄0. Thus all the frequencies will respond to tuning the interac-
tion strength in the laboratory using a Feshbach resonance.

Analytic expressions for the N-body normal mode frequen-
cies were derived in Ref. [31] using a method outlined in
Appendixes B and C of that paper, which derives analytic
formulas for the roots λμ of the FG secular equation. The
normal mode vibrational frequencies ω̄2

μ are related to the
roots λμ of FG by

λμ = ω̄2
μ. (24)

The two frequencies associated with the λ0 roots of
multiplicity 1 are of the form

ω̄0± =
√

η0 ∓
√

η0
2 − �0, (25)

where

η0 = 1

2

[
a + (N − 1)b+ g+ 2(N − 2)h + (N − 2)(N − 3)

2
ι

]

�0 = [a + (N − 1)b]

[
g + 2(N − 2)h + (N − 2)(N − 3)

2
ι

]

− N − 1

2
[2c + (N − 2)d][2e + (N − 2) f ]. (26)

For the two N − 1 multiplicity roots, the frequencies are

ω̄1± =
√

η1 ∓
√

η1
2 − �1, (27)

where η1 and �1 are given by

η1 = 1
2 [a − b + g + (N − 4)h − (N − 3)ι],

�1 = −(N − 2)(c − d )(e − f ) + (a − b)

× [g + (N − 4)h − (N − 3)ι]. (28)

The frequency ω̄2, associated with the root λ2 of multiplicity
N (N − 3)/2, is given by

ω̄2 =
√

g − 2h + ι. (29)
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The quantities a, b, c, d , e, f , g, h, and ι are defined in
Appendix B in terms of the F and G elements of the first-order
Hamiltonian.

Explicit V̄0 dependence in the analytic expressions for the
frequencies. Analogous to the mixing coefficients, there are
three layers of analytic expressions that define the frequen-
cies: the expressions for ω̄0± , ω̄1± , and ω̄2 in Eqs. (25)–(29)
above, the expressions for a, b, c, d , e, f , g, h, and ι given in
Appendix B, and the expressions for the F and G elements of
Eq. (17) which are also given in Appendix B. The expressions
for ω̄0± , ω̄1± , and ω̄2 do not contain V̄0 explicitly, however the
next layer, which involves the quantities a, b, c, d , e, f , g, h,
and ι, does have an explicit dependence on V̄0, as well as the
third layer involving the F and G elements of the first-order
Hamiltonian.

Implicit dependence of the frequencies on V̄0 through the
variables r̄∞, γ∞, tanh ∞, and sech2∞. The frequencies
have some implicit dependence on V̄0 from the variables
r̄∞ and γ∞ whose values are obtained as roots of transcen-
dental equations that involve V̄0 [see Eqs. (12)–(14)]. The
values of r̄∞ and γ∞ are also used to determine tanh ∞
and sech2∞. This implicit dependence on the interparticle
interaction strength through the solution of transcendental
equations complicates understanding the dependence of the
frequencies on V̄0 solely by analytic means, however it is
possible with a little numerical work to understand how V̄0

is implicitly affecting the frequencies through these variables.

A. The [N] sector frequencies ω̄0±

The normal mode frequencies in the [N] sector, ω̄0+ and
ω̄0− , are associated with the angular center-of-mass mode and
the radial breathing mode, respectively. These two frequencies
are the largest frequencies of the five normal modes and so do
not come into play in providing an excitation gap in ultracold
regimes. It is interesting to analyze the relative contributions
of the interaction potential V̄0 versus terms originating in the
kinetic energy for these [N] sector frequencies. The breathing
frequency is expected to depend strongly on the strength of
V̄0 as the particles spread out and then move back in toward
the minimum of the effective potential. For the center-of-mass
frequency, the dependence on V̄0 should drop out of the final
simplified analytic expression since the center-of-mass mode
is independent of interparticle interactions. In Appendix C,
I demonstrate how the quadratic formula for ω̄0+ and ω̄0−

results in one frequency ω̄0− , the breathing mode, constructed
from the terms at first order that involve V̄0 with the centrifu-
gal terms from the kinetic energy canceling, while the other
frequency ω̄0+ , the center-of-mass mode, is constructed from
centrifugal terms at first order with the terms that involve V̄0

canceling.

B. The [N − 1] sector frequencies ω̄1±

The normal mode frequencies in the [N − 1, 1] sector, ω̄1+

and ω̄1− , are associated with angular and radial particle-hole
excitations. These two frequencies are the closest frequencies
to the extremely low phonon frequency occupied in ultracold
regimes and thus play a role in setting up an excitation gap
for these systems. It is again enlightening to analyze the

relative contributions of the interaction potential V̄0 versus
the kinetic energy for these [N − 1, 1] sector frequencies.
The radial particle-hole frequency should depend strongly on
the strength of V̄0, as a single particle is excited from the
ensemble in a radial direction. For the angular particle-hole
excitation frequency, I expect to see the strong dependence on
V̄0 drop out of the final simplified analytic expression and the
centrifugal terms in the effective potential contribute. This is
demonstrated in Appendix D.

C. The [N − 2, 2] sector frequency ω̄2

The normal mode frequency in the [N − 2, 2] sector, ω̄2, is
associated with the phonon compressional mode which has an
extremely small frequency and thus is the only normal mode
occupied by a gas of fermions at ultracold temperatures. This
is an angular mode, so I expect its frequency to be relatively
independent of V̄0 and to have a strong dependence on cen-
trifugal terms. This is shown in Appendix E.

V. EVOLUTION OF EXCITATION GAPS FROM WEAKLY
INTERACTING TO UNITARITY

I discuss the emergence, growth, and stability of excitation
gaps as the frequencies evolve as a function of the strength of
interparticle interactions.

A. V̄0 increases for a fixed ensemble size

I fix the system size, i.e., the value of N , and let the inter-
action strength V̄0 increase. This analysis is directly relevant
to experiments which use a Feshbach resonance to tune the
interaction strength for a particular system. The value of V̄0

is changed from essentially zero, i.e., the case of independent
noninteracting particles trapped in a harmonic potential, to the
large interactions (V̄0 = 1.0) of the unitary regime.

Figures 2(a)–2(c) show this effect for N = 103, 104, and
105 particles, respectively, as V̄0 is tuned from the BCS regime
to the unitary regime. The plots show that at the limit of
zero interparticle interactions, the frequencies coalesce to the
same value of 2ω̄ho as expected and observed in the labo-
ratory [4,63]. [See an expanded view in Figs. 3(a)–3(c) of
the region near the independent-particle limit]. As interac-
tions are slowly turned on, gaps rapidly emerge, reaching
values that stabilize for the angular frequencies as unitarity is
approached.

Unlike the angular frequencies that quickly converge to
limiting values, the radial frequencies continue to slowly in-
crease as unitarity is approached, suggesting that higher-order
terms are needed to converge the radial frequencies. The angu-
lar frequencies approach limits that are integer multiples of the
trap frequency: twice the trap frequency for the center-of-mass
angular frequency, ω̄0+ = 2ω̄ho; equal to the trap frequency for
the single-particle angular excitation, ω̄1+ = ω̄ho; and orders
of magnitude smaller than the trap frequency for the phonon
mode, ω̄2 = O(10−2)ω̄ho. For N 
 1, stable values for the
angular frequencies are reached quite quickly as V̄0 increases
from the BCS regime. [See Figs. 3(a)–3(c)].

As can be seen in all the above figures, the largest gap
forms between the extremely-low-frequency phonon mode,
which is the only mode occupied by ultracold gases, and the
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(b)

(c)

(a)

FIG. 2. Frequencies as a function of the interparticle interaction
strength V̄0 from BCS to unitarity in units of the trap frequency
(ω0− , orange circles; ω0+ , blue squares; ω1− , red down triangles;
ω1+ , green diamonds; and ω2, purple up triangles) for (a) N = 103

fermions, (b) N = 104 fermions, and (c) N = 105 fermions. Note the
logarithmic scale on the x axis.

(b)

(c)

(a)

FIG. 3. Expanded view of Figs. 2(a)–2(c) near the independent-
particle region, i.e., in the deep BCS regime, showing the rapid
change in the frequencies when interactions turn on (ω0− , orange
circles; ω0+ , blue squares; ω1− , red down triangles; ω1+ , green di-
amonds; and ω2, purple up triangles), for (a) N = 103 fermions,
(b) N = 104 fermions, and (c) N = 105 fermions. Note the small
linear scale on the x axis.
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(a)

(b)

FIG. 4. Excitation gap in units of the trap frequency from the two
lowest normal mode frequencies as a function of the interparticle in-
teraction strength V̄0 from BCS to unitarity for (a) N = 103 fermions
and (b) N = 104 fermions.

next lowest frequency, which is a particle-hole excitation, i.e.,
a single-particle excitation. Both of these are angular frequen-
cies which reach stable limits, not changing as V̄0 increases.
This particular excitation gap is relevant to the emergence and
sustainability of superfluidity and is shown in Figs. 4(a) and
4(b) for system sizes of N = 103 and N = 104 particles, re-
spectively. Note this gap emerges at lower V̄0, i.e., for weaker
interactions for larger ensemble sizes.

In the expanded view of the region near the independent-
particle limit [Figs. 3(a)–3(c)] when the interactions have just
turned on, two phenomena are noticeable. First the change
in the frequencies is quite rapid as soon as the interactions
turn on (note the small scale on the x axis), quickly ap-
proaching values that will stabilize or change very slowly
as the interactions increase. Second the frequencies sepa-
rate more quickly for larger systems, i.e., as more and more
particles are responding to a particular interaction strength.
Thus, increasing the interaction between a fixed number of
particles or increasing the number of particles experienc-
ing a fixed interaction has a similar effect in separating the

frequencies quickly. (See Sec. VI D for a discussion of the mi-
croscopic dynamics underpinning these two approaches and
Appendix G for details of the analytic derivation of this
effect).

B. Stable limits for angular frequencies as a function of V̄0

The angular frequencies evolve from the independent-
particle limit to stable limits at unitarity as V̄0 increases. I will
discuss both these limits in this section, deriving them from
the analytic expressions for the frequencies in Appendixes F
and G, respectively. Then, in Sec. VI, I will take advantage
of the analytic forms for both the normal mode frequencies
and the corresponding normal coordinates to understand the
microscopic dynamics underpinning the stability of these lim-
its by tracking the evolution of behavior including the normal
mode motions of individual particles as V̄0 increases.

Independent-particle limit V̄0 = 0. Determining the values
of the five frequencies is straightforward in the limit of no
interactions between the particles. Setting V̄0 equal to zero in
the transcendental equations for γ∞ and r̄∞ [see Eqs. (12)–
(14)] results in values of γ∞ = 0 and r̄∞ = 1/

√
2. Using these

values in the formulas for the frequencies (see Appendix F)
yields a value of 2ω̄ho, an integer multiple of the trap fre-
quency, as expected [4,63,64] for each of the five frequencies
since the only potential affecting the particles is the harmonic
trap. The individual fermions obey Fermi-Dirac statistics, but
have no interactions with the other fermions in the trap. Thus
all five frequencies coalesce to the same value. This can be
clearly seen in Figs. 2(a)–2(c) and in the expanded view in
Figs. 3(a)–3(c).

Unitary limit V̄0 = 1.0. As V̄0 is turned on and the par-
ticles begin to interact, the frequencies spread apart. The
radial frequencies ω̄0− and ω̄1− increase while the angular
frequencies evolve to limits of ω̄0+ = 2ω̄ho, ω̄1+ = ω̄ho, and
ω̄2 = O(10−2)ω̄ho. These limits for the angular frequencies
are stabilized at lower values of the interaction strength for
larger values of N as previously discussed and as shown
in Figs. 2(a)–2(c). In Figs. 5(a) and 5(b) the approach to
the unitary regime on a linear scale shows the stability of
the angular frequencies and the gradual change in the radial
frequencies. As will be demonstrated in the next section, the
stable limits for the angular frequencies as V̄0 increases signify
the vanishing of the interparticle interactions for these angular
motions. A derivation of these limits from the analytic expres-
sions for the angular frequencies is given in Appendix G. In
the following section, the microscopic behavior that underpins
this stability is analyzed using the analytic expressions for the
angular frequencies and the motions as analyzed in detail in
Ref. [30].

VI. UNDERSTANDING THE MICROSCOPIC DYNAMICS
THAT RESULT IN STABLE LIMITS FOR THE ANGULAR

FREQUENCIES

The behavior of the angular frequencies as shown in
Figs. 2(a)–2(c) and discussed in the previous sections has
revealed three interesting phenomena.

(1) First, the angular frequencies are evolving to stable
limits independent of interactions as V̄0 increases while the
radial frequencies continue to slowly change.
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(a)

(b)

FIG. 5. Expanded view of Figs. 2(a) and 2(b) as unitarity is
approached, showing the stability of the angular frequencies ω̄0+ ,
ω̄1+ , and ω̄2 and the gradual change of the radial frequencies ω̄0− and
ω̄1− (ω0− , orange circles; ω0+ , blue squares; ω1− , red down triangles;
ω1+ , green diamonds; and ω2, purple up triangles) for (a) N = 103

fermions and (b) N = 104 fermions.

(2) Second, the limits for the angular frequencies are inte-
ger multiples of the trap frequency.

(3) Third, the gap between the frequencies emerges at
weaker interaction strengths for larger values of N .

I will now analyze the origins of these three interrelated
phenomena for each of the three angular frequencies by first
looking at the analytic expressions for the frequencies in these
limits, then tracking the increase in correlation using the vari-
able γ∞, and finally analyzing the corresponding motion of
the associated normal mode using the analysis in Ref. [30].
The motion of the individual particles offers an understanding
of the microscopic dynamics responsible for these phenom-
ena, including the emergence, growth, and stability of the
excitation gaps as V̄0 increases.

Tracking contributions of terms in the Hamiltonian to an-
alytic expressions for angular frequencies. It is enlightening
to analyze the evolution of the various terms in the Hamil-
tonian as they contribute to the value of the frequencies as
V̄0 increases. I will focus on terms in the effective potential

which is composed of three terms, i.e., the centrifugal term
that originates in the kinetic energy, the trap potential, and
the interparticle potential, and focus on their effect on the
angular frequencies that are relevant to the emergence of
superfluid behavior in ultracold regimes. The trap potential
affects all the frequencies of course, the two radial frequencies
explicitly and the angular frequencies implicitly through other
variables. If there are no interparticle interactions, all the
frequencies would of course be integer multiples of the trap
frequencies.

The analysis in Appendixes C–E shows that V̄0 contributes
at first order to the radial frequencies [see Eqs. (C5) and (D4)],
while canceling out of the expressions for the angular fre-
quencies at first order which are dominated by the centrifugal
potential terms. The remaining explicit dependence on V̄0 (in
Fg) for the angular frequencies is small, damped by a factor of
1/N . However, there are implicit dependences on V̄0 through
the variables r̄∞, γ∞, tanh ∞, and sech2∞. Of these four
variables, two of the variables tanh ∞ and sech2∞ play a
role only in these damped terms.

Of the two remaining variables r̄∞ and γ∞, the most in-
teresting variable to study is γ∞, the angle cosine of each
pair of particles in the large dimension maximally sym-
metric configuration. This variable was identified in early
dimensional scaling work to signify the existence of corre-
lation between the particles [34,45,65]. The term correlation
energy has been defined, for example, by comparing the en-
ergies obtained in configuration-interaction calculations with
Hartree-Fock mean-field energies. The correlation energy re-
flects the change in energy as the particles in the system
move in a correlated way, thus minimizing their interactions.
These early studies compared dimensional scaling results to
Hartree-Fock mean-field results and noted that γ∞ = 0 in
the Hartree-Fock approximation, which is an independent-
particle approximation. The nonzero values of γ∞ at zeroth
order in the dimensional expansion thus indicated that some
correlation effects were being included even at lowest order,
underpinning the excellent results obtained by this early work
at low order [55–57].

Tracking the magnitude of γ∞. Tracking the magnitude of
γ∞, which is a negative quantity, as V̄0 increases and its effect
on the different terms in the expression for the frequencies
has the potential to reveal insight into how the ensemble is
adjusting microscopically to the introduction of interactions
between the particles, specifically how the particles are re-
arranging from “independent” motion to collective coherent
motion as correlation sets in. The Pauli principle is of course
in effect as this transition occurs. Its role is fundamental, and
will require an in depth study in the future. Each expression
for the three angular frequencies involves several terms that
involve γ∞ from the F and G elements as seen in Eqs. (C6),
(D5), (E2), and (G1)–(G3). These terms evolve as correlation
increases and the magnitude of γ∞ increases, changing the
relative contributions of the kinetic energy, the trap, and the
interparticle interaction to the frequency. I will analyze the
response of each angular frequency to these changes in γ∞ as
correlation increases below.

Analyzing the microscopic motions of angular normal
modes as unitarity is approached. What are the microscopic
dynamics that are controlling this evolution to stable large
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gaps at unitarity? My analysis of the motions of the normal
modes in a recent study [30] makes it possible to under-
stand the dynamics at a microscopic level as the ensemble
rearranges its motion from the independent-particle case to
correlated collective behavior. This motion is determined
by fairly simple analytic expressions [see Eqs. (19)–(25) in
Ref. [30]] that involve an intricate balancing of Kronecker
δ functions and Heaviside functions that give zero or unity
depending on the integer indices that refer to specific parti-
cles. This accounting keeps track of the interplay of all the
particles, one by one, and offers a microscopic view of the
dynamics leading to unitarity.

A. Center-of-mass frequency ω̄0+

The center-of-mass frequency is too large to be relevant
for the emergence and support of superfluidity of ultracold
gases. However, it is helpful to analyze its simple motion and
well-known independence from interparticle interactions to
gain insight into the dynamics of the other angular normal
modes.

Independent of V̄0. The center-of-mass frequency is inde-
pendent of interparticle interactions. The system of particles
moves as a rigid body, all particles moving in lockstep with
identical motions. This frequency separates out as a constant
value in all the figures at twice the trap frequency for all values
of N and V̄0. The analytic formula for ω̄0+ from the solution
of the first-order Hamiltonian is analyzed in Appendix C and
reveals the cancellation of the terms involving V̄0 to first order
yielding an analytic expression that is insensitive to changes
in the interparticle interaction strength.

Independent of N. The center-of-mass frequency is also
constant as the system size increases. This is expected since a
system that is independent of interparticle interactions should
behave like the independent-particle case with all particles
responding only to the trap, not to other interactions. Thus
adding particles has no effect on the interactions experienced
by the other particles and thus no effect on the frequen-
cies. (The fermions of course obey the Pauli principle, which
affects the properties of the ensemble through Fermi-Dirac
statistics but does not affect the frequencies).

Microscopic dynamics. The individual particles in the
center-of-mass normal mode can be seen from my analysis of
the normal mode motions in Ref. [30], Secs. 3.2 and 5.1, to be
executing identical very small angular motions as a rigid body
with negligible change in their radial interparticle distances.
Thus, these particles are not affected by the interparticle in-
teraction resulting in a frequency that is an integer multiple
(equal to 2) of the trap frequency since the trap is the only
potential affecting the particles.

Response of ω̄0+ to changes in γ∞. The center-of-mass fre-
quency remains at a fixed value of ω̄0+ = 2ω̄ho as the variables
in the analytic expression

ω̄0+ ≈ √
[Gg + 2(N − 2)Gh]

×
√

Fg + 2(N − 2)Fh + (N − 2)(N − 3)

2
Fι (30)

change in response to system parameters. How does this ex-
pression remain fixed as its various terms are changing?

Consider the independent-particle limit where V̄0 = 0,
γ∞ = 0, r̄∞ = 1/

√
2, and the particles are affected only by

the harmonic trap while obeying the Pauli principle. Most of
the terms in the expression for ω̄0+ are zero. The only nonzero
terms are Gg and Fg (see Appendix F), which both originate
in the kinetic energy, depend implicitly on the trap potential,
and involve a dependence on just two particles i and j through
the variable γi j . As V̄0 turns on, γ∞ takes on a small nonzero
value, signifying that weak correlations exist. This nonzero
value now means that all of the terms in ω̄0+ are nonzero
and Gg and Fg evolve to new values. Specifically, Gh, Fh, and
Fi acquire nonzero values and involve the dependence of the
kinetic energy (Gh) and the centrifugal potential (Fh and Fi) on
γi jγ jk , i.e., involving three particles i, j, and k, and on γi jγkl ,
involving four particles i, j, k, and l . These terms become sig-
nificant in determining the value of the frequency with factors
of 2(N − 2) for Fh and (N − 2)(N − 3)/2 for Fi as interparti-
cle correlations increase. Since the value of ω̄0+ remains fixed
at 2, the magnitudes of Gg and Fg adjust as correlations spread
throughout the ensemble. Thus, the emergence of interparticle
interactions starts an intricate readjustment of the ensemble as
the particles governed by the evolving Hamiltonian respond to
the other N − 1 particles.

B. Angular particle-hole excitation frequency ω̄1+

Now consider the angular single-particle excitation fre-
quency ω̄1+ , which can also be described as a particle-hole
angular excitation.

Independent of V̄0. This frequency reaches a constant value
equal to the trap frequency as V̄0 increases, reflecting the
vanishing of interparticle interactions. The analytic formula
for ω̄1+ analyzed in Appendix D reveals the cancellation of
the terms involving V̄0 to first order. Thus this frequency is
expected to become constant as the interaction changes if
higher-order terms are small.

Independent of N. It also becomes constant as the system
size increases since the frequency is insensitive to all interpar-
ticle interactions so additional particles have no effect.

Microscopic dynamics. This behavior can be understood
from a microscopic view of the motions of the particles. In this
case, the motion of the corresponding normal mode is made
up of one particle creating a “large” angular displacement with
the other particles, while the remaining interparticle angles
make a small adjustment. The first group has N − 1 inter-
particle angles, while the second group of (N − 1)(N − 2)/2
angles quickly becomes the overwhelming majority of the
ensemble with displacements that are smaller by a factor of
(N − 2)/2. (See Secs. 3.4 and 5.1 in Ref. [30]). These two
opposing and unequal motions invoke some radial interactions
from slight changes in the interparticle distances and thus this
mode does have some response to the interaction V̄0. However,
for values of N typical of laboratory ensembles (104–106),
the percentage of particles moving in lockstep by a smaller
and smaller angular amount becomes so dominant that the
radial contribution is insignificant. Thus the harmonic trap
is the dominant effect determining this frequency, analogous
to the center-of-mass frequency. This explains the value of
the frequency at an integer multiple (equal to 1) of the trap
frequency and its independence from changes in V̄0 and/or N .
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Response of ω̄1+ to changes in γ∞. When V̄0 = 0 and
the particles are moving independently, γ∞ = 0 and r̄∞ =
1/

√
2, only Gg and Fg in the expression for ω̄1+ are

nonzero with values determined by the harmonic trap yielding
2ω̄ho, a integer multiple of the trap frequency for ω̄1+ (see
Appendix F),

ω̄1+ ≈ √
Gg + (N − 4)Gh

×√
Fg + (N − 4)Fh − (N − 3)Fι

→ 2ω̄ho (Gg = 4, Fg = 1, Gh = Fh = Fi = 0). (31)

As interparticle interactions are introduced, γ∞ is no longer
zero, so Gh, Fh, and Fi contribute as interparticle correlations
increase. Smaller factors for Fh of (N − 4) and a negative
factor of −(N − 3) for Fi result in a smaller value of ω̄1+

which evolves to ω̄ho from its value of 2ω̄ho at the independent
particle limit. The magnitudes of Gg and Fg adjust as the
changing value of γ∞ signifies longer-range correlations in-
troducing new contributions involving three and four particles.

C. Phonon frequency ω̄2

Finally consider the angular phonon compressional fre-
quency ω̄2. This frequency reaches a constant value that is two
or three orders of magnitude smaller than the trap frequency
as V̄0 increases.

Independent of V̄0. The analytic formula for ω̄2,

ω̄2 = √
[Gg − 2Gh][Fg − 2Fh + Fι],

analyzed in Appendix E, reveals the insignificance of the
terms involving V̄0 to first order. Thus this frequency is ex-
pected to become constant as the interaction increases.

Independent of N. It also becomes constant as the system
size increases since adding particles has no effect on this fre-
quency, which is independent of the interparticle interaction
to first order.

Microscopic dynamics. In this third case, the motion of
the corresponding normal mode is made up of three groups
of interparticle angles involving particles that move with
different angular motions and amounts: a single dominant
interparticle angle which has the largest angular displacement,
2(N − 2) nearest-neighbor angles which move with an op-
posing angular displacement that is smaller than that of the
dominant angle by a factor of (N − 2), and a third group
which quickly becomes the dominant group of particles in-
volving (N − 2)(N − 3)/2 angles which have a displacement
that is a factor of (N − 2)(N − 3)/2 smaller than the dom-
inant angle. (See Secs. 3.5 and 5.1– 5.1.3 in Ref. [30]).
These groups move in opposing directions with unequal
displacements and thus experience some radial interparticle
interactions. However, as N increases, the percentage of par-
ticles moving in lockstep in the third group by a smaller and
smaller angular amount becomes so dominant that the radial
contribution due to the movement of the other two groups is
negligible. (See Sec. 5.1.3 in Ref. [30]). This results in the
value of the frequency at an integer multiple (approximately
equal to 0) of the trap frequency and independence from
changes in V̄0 and/or N .

Response of ω̄2 to changes in γ∞. When V̄0 = 0 and the
particles are moving independently affected only by the trap

potential, γ∞ = 0 and r̄∞ = 1/
√

2. The nonzero terms Gg

and Fg depend on γi j (see Appendix F). As V̄0 turns on, γ∞
is nonzero, so all terms in ω̄2 are now nonzero and involve
a dependence on γi jγ jk and γi jγkl . Since the value of ω̄2

evolves to very small values from 2ω̄ho, the magnitudes of Gg

and Fg must adjust as longer-range correlations throughout
the ensemble reflect the realignment of the particles into
collective motion.

D. Discussion of the microscopic dynamics

The dynamics that drive the angular frequencies to integer
multiples of the trap frequency at unitarity are responsible
for both the large excitation gap between the two lowest
normal modes and the independence of the ensemble from the
microscopic interaction, details consistent with the expected
universal behavior. There are in fact two distinct dynamical
effects that can produce this behavior. The discussion of the
microscopic dynamics in the above paragraphs assumes large
values of N typical of experiments with ultracold Fermi gases
to understand these stable limits as the interparticle interac-
tions vanish. However, increasing V̄0 can also result in the
angular frequencies approaching integer multiples of the trap
frequency for fixed values of N . These two effects can be
seen in the figures in Sec. V, which show V̄0 increasing for
several fixed ensemble sizes. This complementary behavior
as either N or V̄0 increases was previously noted at the end
of Sec. V A and an analytic derivation of these two effects is
given in Appendix G. I discuss both these behaviors in more
detail below.

Two distinct microscopic dynamics. As discussed above,
when N increases to large values, the percentage of particles
that have very small angular movements, i.e., γi j � 1 in
the [N − 1, 1] and [N − 2, 2] angular modes, becomes the
overwhelming majority of particles in the ensemble. (The
center-of-mass mode of course has all the particles mov-
ing in lockstep with amounts that are small when N is
large). The angular motion, i.e., the magnitude of γi j , for
this majority of particles becomes smaller and smaller as N
increases. (See Sec. 5.1 in Ref. [30]). Since purely angular
motions produce no change in the radial distances from the
center of the trap, i.e., r̄i and r̄ j are constant, this motion
yields negligible changes in the interparticle distances r̄i j =√

r̄2
i + r̄2

j − 2r̄i r̄ jγi j when γi j is tiny.
Now consider letting V̄0 increase for fixed system size.

The correlation between the particles increases as tracked by
the parameter γ∞. This happens quite rapidly as V̄0 increases
from zero, reflecting the rearrangement of the particles into
correlated angular motion as collective behavior sets in. This
dynamic is relevant to experiments using Feshbach resonances
to tune interactions to the large values of the unitary regime.
As correlations spread throughout the ensemble into this rigid
angular motion, the interparticle interactions become negligi-
ble for this fixed value of N and the system is independent of
the details of the microscopic interactions.

Microscopic dynamics of unitarity. The two lowest nor-
mal modes in the unitary regime have frequencies that set
up an excitation gap that is stable and independent of the
microscopic details of the interaction. The spectrum of the
[N − 1, 1] angular mode has evenly spaced levels at every
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integer multiple of the trap frequency, identical to the spec-
trum of the noninteracting regime of independent particles.
The strong interactions of the unitary regime result in
synchronized correlated behavior that paradoxically have
minimal interparticle interactions.

The unitarity limit is defined as having no interaction
length scale due to strong interactions that are much shorter
range than the interparticle distance, leaving the oscillator
length and the interatomic distance as the only relevant length
scales. The interatomic distance is the defining characteristic
of an angular normal mode which has all (center-of-mass
mode) or the overwhelming majority (angular particle-hole
excitation and phonon modes) of the particles moving as a
rigid body with collisionless motion. The gas is expected to
show a universal thermodynamic behavior at zero tempera-
ture, independent of any microscopic details of the underlying
interactions.

VII. CONCLUSION

In this study, I have looked in detail at the analytic frequen-
cies for N identical particles as a function of the interparticle
interaction strength as it is tuned from weakly interacting
regimes to the strong interactions of the unitary regime. The
frequencies were obtained previously from the normal mode
solutions to the SPT first-order equation in inverse dimension-
ality for a system of confined, interacting, identical particles.
These N-body normal modes were determined analytically as
a function of various system parameters and used to construct
wave functions and density profiles for systems of identical
bosons [32,34,35] and later energies [38] and thermodynamic
quantities for fermions [40,41].

The present investigation was motivated by a recent study
of the evolution of the N-body analytic-normal-mode coordi-
nates as N increases from few-body systems that have good
molecular equivalents to the expected behavior of many-body
ensembles [30]. A specific Hamiltonian, that of the unitary
regime, was investigated and two phenomena were noted that
could sustain the emergence and stability of superfluid be-
havior. In this paper, I have extended the study of these two
phenomena to a range of interaction strengths from BCS to
unitarity.

In particular, I have investigated closely the behavior of
the two lowest angular frequencies, a single-particle angu-
lar excitation and a compressional phonon mode, that are
relevant to the emergence of excitation gaps that could sup-
port superfluidity. I used both the analytic expressions for
the frequencies, which allow the different contributions from
Hamiltonian terms to be assessed, and the simple analytic
expressions for the normal mode motions [30] to gain insight
into the microscopic dynamics underpinning this evolution.
The single-particle angular excitation is a particle-hole ex-
citation, i.e., a rearrangement of the particles within the
ensemble due to the angular excitation of a single particle
creating a hole, not the loss of a particle due to angu-
lar motion. The low-frequency phonon mode, while similar
to the long-wavelength compressional modes appearing in
other formalisms such as Goldstone modes [66–68] and
Bogoliubov-Anderson phonons [68–71], is distinct from these
modes since it is not composed of Cooper pairs. The phonon
mode in the SPT formalism is a normal mode function pro-

viding a coherent macroscopic wave function with many-body
pairing.

Summary. In summary, my analysis has resulted in a num-
ber of observations that may prove useful in understanding
the emergence, growth, and stability of excitation gaps as
well as offering a possible explanation of the microscopic
dynamics responsible for universal behavior at unitarity. I list
them below.

(1) The analytic expressions for the normal mode fre-
quencies produce behavior that supports the emergence of
excitation gaps consistent with the known behavior of ul-
tracold Fermi gases in the laboratory tuned using Feshbach
resonances from the weakly interacting BCS regime with
small gaps to the large gaps of the strongly interacting unitary
regime.

(2) The normal modes evolve to almost purely radial or
purely angular character as N increases, with very little mix-
ing of the symmetry coordinates, over the entire transition
from BCS to unitarity. This confirms that the frequencies
can be labeled as radial or angular and affects the stability
since the symmetry coordinates are analytic solutions of an
underlying approximate Hamiltonian.

(3) As V̄0 increases from zero at the independent-particle
limit, these first-order analytic frequencies rapidly separate.
As unitarity is approached the angular frequencies stabilize
while the radial frequencies continue to slowly change. This
suggests that higher-order terms may be necessary to converge
the radial frequencies.

(4) The change in the frequencies emerges at weaker in-
teraction strengths as the ensemble grows. Thus, increasing
the number of particles experiencing a fixed interaction or
increasing the interaction between a fixed number of particles
has a similar effect in separating the frequencies quickly.

(5) The largest gap forms between the extremely-low-
frequency angular phonon mode, which is the only mode
occupied by ultracold gases, and the next lowest frequency,
which is an angular particle-hole excitation, i.e., a single-
particle excitation. This particular excitation gap is relevant to
the emergence and sustainability of superfluidity in ultracold
systems.

(6) The limits for the three angular frequencies are inte-
ger multiples of the trap frequency, reflecting the interaction
independence of these frequencies.

(7) The two lowest normal mode frequencies relevant to
ultracold gases provide a spectrum of evenly spaced levels at
integer multiples of the trap frequency at unitarity, identical
to the spectrum of the noninteracting regime of indepen-
dent particles. This spectrum is of course independent of any
microscopic details of the underlying interactions consistent
with the dynamics expected for the unitary regime. Thus,
the strong interactions of the unitary regime result in strong
long-range correlated behavior that paradoxically has minimal
interparticle interactions.

(8) Two distinct dynamical effects were found that can
drive the angular frequencies to integer multiples of the trap
frequency at unitarity. First, when N increases, the angular
phonon and single-particle excitation modes that are involved
in creating an excitation gap for ultracold particles now have
an overwhelming percentage of particles moving with small
purely angular motions that have a negligible response to
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interparticle interactions. This results in angular frequencies
at integer multiples of the trap frequency since the trap is the
only potential affecting the particles. Second, as V̄0 increases
for fixed N , correlations increase and become long range as
tracked by the parameter γ∞. The motion evolves into rigid
angular motion as interparticle interactions vanish, yielding
frequencies at integer multiples of the trap frequency.

Conclusions. This analysis of the normal mode frequen-
cies yields consistent, physically intuitive behavior that has
been observed in the laboratory. The microscopic dynamics
underlying this behavior are based on normal mode motions
and thus are different from the accepted view that the relevant
particles in a superfluid form loosely bound pairs that decrease
in size as a Feshbach resonance is tuned to strong interactions.

Normal modes have an infinite spectrum of evenly spaced
excited states. At unitarity, the spectrum involved in an excita-
tion gap for ultracold fermions consists of integer steps of the
trap frequency identical to the spectrum of the noninteracting
independent-particle limit. This behavior supports dynamics
at unitarity that are independent of interparticle interactions.
Despite having the same spectrum, the dynamics of indepen-
dent fermions in a trap are quite different from the dynamics
of fermions at unitarity whose behavior reflects the strong
interactions that have been encapsulated into normal mode
motions. A full understanding of how this spectrum affects
the dynamics at unitarity requires an understanding of the role
of the Pauli principle which is a subject left for future study.

If higher-order effects are small, the normal coordinates
whose frequencies and mixing coefficients depend on the in-
terparticle interactions are in fact beyond-mean-field analytic
solutions to a many-body Hamiltonian. The frequencies and
the motions of the normal modes evolve in sync with each
other, both responding to the same microscopic dynamics.
These analytic forms for the frequencies and coordinates al-
low the details of the terms in the Hamiltonian that are driving
the dynamics to be revealed in a particularly transparent way.

Specifically, I looked at the change in the parameter γ∞
whose magnitude increases as V̄0 increases, signaling an in-
crease in the strength and long-range character of correlation

as terms involving three and four particles begin to contribute
to the values of the frequencies.

The dynamics revealed by this study are based on a exact
solution of the first-order equation of SPT. If higher-order
terms are significant in a particular regime along this tran-
sition, the dynamics could change. In particular, the radial
frequencies (which are not involved in providing excitation
gaps for ultracold gases) do not show stable limits as uni-
tarity is approached, which suggests that higher-order terms
are needed for these frequencies. First-order SPT results
have been tested only in the unitary regime, i.e., for strong
interactions, yielding ground-state energies comparable to
benchmark Monte Carlo results [38] and excellent agree-
ment with experiment for thermodynamic quantities [41]. The
weakly interacting regime has so far been unexplored using
this formalism. This approach also does not offer an efficient
mechanism for the two-body pairing in real space that oc-
curs beyond unitarity as the ensemble transitions to the BEC
regime.

Normal mode functions provide simple, coherent macro-
scopic wave functions with phase coherence over the entire
system. The dynamics of a normal mode description of the
BCS to unitarity transition with its many-body pairing offer
an interesting alternative to the models relying on two-body
pairing mechanisms to achieve superfluidity. This approach
also offers a possible microscopic understanding of the uni-
versal behavior at unitarity which could be applicable to other
strongly correlated superfluids in diverse systems.
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APPENDIX A: MIXING COEFFICIENTS
FOR THE [N] AND [N − 1, 1] SECTORS

The mixing coefficients for the [N] sector are

cosθ [N]
+ =

√
2
√

N − 1[c + (N/2 − 1)d]√
2(N − 1)[c + (N/2 − 1)d]2 + [−a − (N − 1)b + λ+

[N]]
2
, (A1)

sinθ
[N]
+ = −a − (N − 1)b + λ+

[N]√
2(N − 1)[c + (N/2 − 1)d]2 + [−a − (N − 1)b + λ+

[N]]
2
, (A2)

cosθ [N]
− =

√
2
√

N − 1[c + (N/2 − 1)d]√
2(N − 1)[c + (N/2 − 1)d]2 + [−a − (N − 1)b + λ−

[N]]
2
, (A3)

sinθ
[N]
− = −a − (N − 1)b + λ−

[N]√
2(N − 1)[c + (N/2 − 1)d]2 + [−a − (N − 1)b + λ−

[N]]
2
, (A4)

while the coefficients in the [N − 1, 1] sector are

cosθ [N−1,1]
+ =

√
N − 2(c − d )√

(N − 2)(c − d )2 + (−a + b + λ+
[N−1,1])

2
,

(A5)

sinθ
[N−1,1]
+ = −a + b + λ+

[N−1,1]√
(N − 2)(c − d )2 + (−a + b + λ+

[N−1,1])
2
,

(A6)
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cosθ [N−1,1]
− =

√
N − 2(c − d )√

(N − 2)(c − d )2 + (−a + b + λ−
[N−1,1])

2
,

(A7)

sinθ
[N−1,1]
− = −a + b + λ−

[N−1,1]√
(N − 2)(c − d )2 + (−a + b + λ−

[N−1,1])
2
,

(A8)

where λ±
[N] and λ±

[N−1,1] are given by Eqs. (24)–(28) in Sec. IV.
The above equations have some explicit N dependence (but
no V̄0 dependence) that is due to the symmetry present in
the first-order Hamiltonian. The quantities a, b, c, d , e, f ,
g, h, and i in the expressions for the mixing coefficients and
the eigenvalues λ±

[N] and λ±
[N−1,1] are defined in Appendix B

[see also Eq. (42) in Ref. [31]] in terms of the F and G
elements and have explicit N and V̄0 dependence as well as
N and V̄0 dependence from the F and G elements from a
particular Hamiltonian. Thus there are three layers of analytic
expressions that can introduce N and/or V̄0 dependence: the
expressions for mixing coefficients in Eqs. (A1)–(A8) above,

the expressions for a, b, c, d , e, f , g, h, ι, λ±
[N], and λ±

[N−1,1],
and the expressions for the F and G elements for a specific
Hamiltonian.

APPENDIX B: THE FG MATRIX ELEMENTS

The constants used in the expressions for the mixing coef-
ficients and the frequencies are defined below:

a = GaFa,

b = GaFb,

c = GgFe + (N − 2)Gh(Fe + Ff ),

d = GgFf + 2Gh[Fe + (N − 3)Ff ],

e = GaFe,

f = GaFf ,

g = GgFg + 2(N − 2)GhFh,

h = GgFh + GhFg + (N − 2)GhFh + (N − 3)GhFι,

ι = GgFι + 4GhFh + 2(N − 4)GhFι. (B1)

The nonzero elements of the G matrix are

Ga = Gr̄ir̄i = 1,

Gg = Gγi jγi j = 2
1 − γ∞2

r̄2∞
= 4[1 + (N − 1)γ∞](1 + γ∞)(1 − γ∞),

Gh = Gγi jγ jk = γ∞(1 − γ∞)

r̄2∞
= 2[1 + (N − 1)γ∞]γ∞(1 − γ∞),

where the matrix elements have been evaluated at the infinite-D symmetric minimum. Likewise, the nonzero F matrix
elements are

Fa =
(

∂2V̄eff

∂ r̄2
i

)∣∣∣∣
∞

= 1 + 3

4r̄4∞

1 + (N − 2)γ∞
(1 − γ∞)[1 + (N − 1)γ∞]

+ V̄0c̄0

2
(N − 1)sech2∞

[
c̄0(1 − γ∞) tanh ∞ − 1 + γ∞

2r̄∞
√

1 − γ∞

]
, (B2)

Fb =
(

∂2V̄eff

∂ r̄i∂ r̄ j

)∣∣∣∣
∞

= V̄0c̄0

2
sech2∞

[
c̄0(1 − γ∞) tanh ∞ + 1 + γ∞

2r̄∞
√

1 − γ∞

]
,

Fe =
(

∂2V̄eff

∂ r̄i∂γi j

)∣∣∣∣
∞

= − γ∞
2r̄3∞

1 + (N − 2)γ∞
(1 − γ∞)2[1 + (N − 1)γ∞]2

+ V̄0c̄0

2
sech2∞

[
− c̄0r̄∞ tanh ∞ + 1

2
√

1 − γ∞

]
, (B3)

Ff =
(

∂2V̄eff

∂ r̄i∂γ jk

)∣∣∣∣
∞

= γ 2
∞

2r̄3∞(1 − γ∞)2[1 + (N − 1)γ∞]2
, (B4)

Fg =
(

∂2V̄eff

∂γ 2
i j

)∣∣∣∣
∞

= 1

2r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

[
1 + 3(N − 2)γ∞ + (13 − 11N + 3N2)γ 2

∞ + (N − 2)(4 − 3N + N2)γ 3
∞
]

+V̄0c̄0

2
sech2∞

[
c̄0r̄2

∞
1 − γ∞

tanh ∞ + r̄∞
2(1 − γ∞)3/2

]
,

Fh =
(

∂2V̄eff

∂γi j∂γ jk

)∣∣∣∣
∞

= −γ∞
4r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

[
3 + (5N − 14)γ∞ + (11 − 9N + 2N2)γ 2

∞
]
, (B5)
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Fι =
(

∂2V̄eff

∂γi j∂γkl

)∣∣∣∣
∞

= γ 2
∞[2 + (N − 2)γ∞]

r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3
. (B6)

Inspection of the formulas for F elements easily reveals the
explicit dependence of their terms on the confining (trap)
potential V̄conf, the centrifugal potential Ū , and/or the inter-
particle interaction potential V̄0. All the terms also have some
implicit dependence on all the terms in V̄eff through the vari-
ables r̄∞ and γ∞. I list the explicit contributions below:

Fa ⇔ V̄conf, Ū ,V̄0 (strong),

Fb ⇔ V̄0 (weak),

Fe ⇔ Ū ,V̄0 (weak),

Ff ⇔ Ū ,

Fg ⇔ Ū ,V̄0 (weak),

Fh ⇔ Ū ,

Fι ⇔ Ū .

Using the fact that the three nonzero G elements and the
centrifugal “potential” terms originate in kinetic energy terms
of the Hamiltonian, it is possible to classify the a, b, c, d ,
e, f , g, h, and ι terms. Since they all contain one of the
three G elements, they all have a contribution from the kinetic
energy. Below I list the explicit contributions in terms of the
potentials:

a = GaFa ⇔ V̄conf, Ū ,V̄0 (strong),

b = GaFb ⇔ V̄0 (weak),

c = GgFe + (N − 2)Gh(Fe + Ff ) ⇔ Ū ,V̄0 (weak),

d = GgFf + 2Gh(Fe + (N − 3)Ff ) ⇔ Ū ,V̄0 (weak),

e = GaFe ⇔ Ū ,V̄0 (weak),

f = GaFf ⇔ Ū ,

g = GgFg + 2(N − 2)GhFh ⇔ Ū ,V̄0 (weak),

h = GgFh + GhFg + (N − 2)GhFh + (N − 3)GhFι

⇔ Ū , V̄0 (weak),

ι = GgFι + 4GhFh + 2(N − 4)GhFι ⇔ Ū .

APPENDIX C: ANALYSIS OF THE [N]
SECTOR FREQUENCIES

The frequencies ω̄0± associated with the roots λ0± of mul-
tiplicity 1 are given by

ω̄0± =
√

η0 ∓
√

η0
2 − �0, (C1)

η0 = 1

2

[
a + (N − 1)b + g + 2(N − 2)h

+ (N − 2)(N − 3)

2
ι

]
,

�0 = [a + (N − 1)b]

[
g + 2(N − 2)h + (N − 2)(N − 3)

2
ι

]

− N − 1

2
[2c + (N − 2)d][2e + (N − 2) f ], (C2)

η2
0 − �0 = 1

4

[
a + (N − 1)b −

(
g + 2(N − 2)h

+ (N − 2)(N − 3)

2
ι

)]2

+N − 1

2
[2c + (N − 2)d][2e + (N − 2) f ]. (C3)

Defining

A = a + (N − 1)b,

T = g + 2(N − 2)h + (N − 2)(N − 3)

2
ι

and substituting the definitions of a, b, c, d , e, f , g, h, and ι in
terms of F and G elements yields

A = GaFa + (N − 1)GaFb,

T = [Gg + 2(N − 2)Gh]

×
[

Fg + 2(N − 2)Fh + (N − 2)(N − 3)

2
Fι

]
= T1T2,

2c + (N − 2)d = [Gg + 2(N − 2)Gh][2Fe + (N − 2)Ff ]

= T1T3,

2e + (N − 2) f = [2Fe + (N − 2)Ff ]

= T3.

So

ω̄0± =
√

η0 ∓
√

η0
2 − �0

=
√

1

2
[A + T ] ∓

√
1

4
[A − T ]2 + N − 1

2
T1T 2

3 .

Thus,

ω0− =
√

1
2 [A + T ] + 1

2 [A − T ](1 + x)1/2,

ω0+ =
√

1
2 [A + T ] − 1

2 [A − T ](1 + x)1/2, (C4)

where

x =
N−1

2 T1T 2
3

1
4 (A − T )2

is small. Thus the two frequencies ω0± in the [N] sector split
into a frequency ω0− , which has a leading term (under the
square root) A with a strong dependence on the interparticle
interaction potential V̄0, and a frequency ω0+ , in which A
cancels out, leaving a leading term T that depends on the
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centrifugal terms. The powers of x introduce higher-order
terms

ω0− ≈
√

A =
√

a + (N − 1)b

=
√

GaFa + (N − 1)GaFb, (C5)

ω0+ ≈
√

T =
√

g + 2(N − 2)h + (N − 2)(N − 3)

2
ι

= √
Gg + 2(N − 2)Gh

×
√

Fg + 2(N − 2)Fh + (N − 2)(N − 3)

2
Fι. (C6)

APPENDIX D: ANALYSIS OF THE [N − 1, 1]
SECTOR FREQUENCIES

The frequencies ω̄1± associated with the roots λ1± of mul-
tiplicity N − 1 are given by

ω̄1± =
√

η1 ∓
√

η1
2 − �1, (D1)

η1 = 1
2 [a − b + g + (N − 4)h + (N − 3)ι],

�1 = (a − b)[g + (N − 4)h − (N − 3)ι]

− (N − 2)(c − d )(e − f ), (D2)

η2
1 − �1 = 1

4 {a − b − [g + (N − 4)h − (N − 3)ι]}2

+ (N − 2)(c − d )(e − f ). (D3)

Defining

B = a − b,

R = g + (N − 4)h − (N − 3)ι

and substituting the definitions of a, b, c, d , e, f , g, h, and ι in
terms of F and G elements yields

B = GaFa − GaFb,

R = [Gg + (N − 4)Gh][Fg + (N − 4)Fh − (N − 3)Fι]

= R1R2,

c − d = [Gg + (N − 4)Gh] × [Fe − Ff ] = R1R3,

e − f = [Fe − Ff ] = R3.

So

ω̄1± =
√

η1 ∓
√

η1
2 − �1

=
√

1
2 [B + R] ∓

√
1
4 [B − R]2 + (N − 2)R1R2

3.

Regrouping the expressions for η1 and η2
1 − �1 using these

factors yields

ω1− =
√

1
2 [B + R] + 1

2 [B − R](1 + x′)1/2,

ω1+ =
√

1
2 [B + R] − 1

2 [B − R](1 + x′)1/2,

where

x′ = (N − 2)R1R2
3

1
4 (B − R)2

is small. Similar to the [N] sector, the two frequencies ω1± in
the [N − 1, 1] sector split into a frequency ω1− , which has a
leading term B with a strong dependence on the interparticle
interaction potential V̄0, and a frequency ω1+ , in which B
cancels out, leaving a leading term R that depends on the
centrifugal terms. The powers of x′ introduce higher-order
terms

ω1− ≈
√

B = √
a − b

= √
GaFa − GaFb, (D4)

ω1+ ≈
√

R =
√

g + (N − 4)h − (N − 3)ι

= √
Gg + (N − 4)Gh (D5)

×√
Fg + (N − 4)Fh − (N − 3)Fι.

APPENDIX E: ANALYSIS OF THE [N − 2, 2]
SECTOR FREQUENCY

The frequency ω̄2 associated with the root λ2 of multiplic-
ity N (N − 3)/2 is given by

ω̄2 =
√

g − 2h + ι. (E1)

Substituting the definitions of g, h, and ι in terms of F and G
elements, the terms in the expression for ω̄2 can be factored as

ω̄2 = √
[Gg − 2Gh][Fg − 2Fh + Fι]. (E2)

Note that the only term Fg that has an explicit dependence
on V̄0 has only a weak dependence, while Fh and Fι contain
contributions from the centrifugal potential. As V̄0 approaches
unitarity, this frequency decreases, becoming a tiny fraction
of the trap frequency.

APPENDIX F: LIMITS FOR THE FREQUENCIES
AT THE INDEPENDENT-PARTICLE LIMIT

The formulas for the five frequencies from Sec. IV are
summarized by

ω̄0± =
√

η0 ∓
√

η0
2 − �0,

ω̄1± =
√

η1 ∓
√

η1
2 − �1,

ω̄2 =
√

g − 2h + ι, (F1)

where the variables η0, �0, η1, and �1 are defined in Eqs. (C2)
and (D2), in terms of the quantities a, b, c, d , e, f , g, h, and ι

given in Appendix B in terms of the F and G elements of the
first-order Hamiltonian.

At the independent-particle limit, also referred to as the
noninteracting limit, V̄0 = 0, γ∞ = 0, and r̄∞ = 1/

√
2. Sub-

stituting these values into the F and G elements readily gives

Fa = 4, Ga = 1,

Fb = 0, Gg = 4,

Fe = 0, Gh = 0,

Ff = 0,

Fg = 1,

Fh = 0,

Fι = 0.
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Substituting these values into the expressions for a, b, c, d , e,
f , g, h, and ι yields

a = GaFa = 4,

b = GaFb = 0,

c = GgFe + (N − 2)Gh(Fe + Ff ) = 0,

d = GgFf + 2Gh[Fe + (N − 3)Ff ] = 0,

e = GaFe = 0,

f = GaFf = 0,

g = GgFg + 2(N − 2)GhFh = 4,

h = GgFh + GhFg + (N − 2)GhFh + (N − 3)GhFι = 0,

ι = GgFι + 4GhFh + 2(N − 4)GhFι = 0,

which gives, for η0, �0, η1, and �1,

η0 = 4,

�0 = 16,

η1 = 4,

�1 = 16,

yielding a value of 2 for each frequency [see Eqs. (F1)] in
units of the trap frequency as expected.

APPENDIX G: LIMITS FOR THE ANALYTIC ANGULAR
FREQUENCIES FOR LARGE VALUES OF V̄0

Now consider the strength of the interparticle interaction
V̄0 increasing from the weak interactions of the BCS regime
to the strong interactions of unitarity. In the expanded view
in the region of weak interactions in Figs. 3(a)–3(c), one can
see these angular frequencies ω0+ , ω1+ , and ω2 separate as the
interaction gets stronger and in Figs. 5(a) and 5(b) stabilize
at multiples of the trap frequency. What is happening in the
analytic expressions as V̄0 is increasing for fixed N to yield
these stable limits?

In this Appendix, I will use the analytic expressions for
these three frequencies to derive these limits, working with
the roots λα = ω2

α in order to avoid the square-root signs in the
formulas. The three angular roots λ0+ , λ1+ , and λ2 are given
in terms of the F and G elements by

λ0+ = [Gg + 2(N − 2)Gh]

×
[

Fg + 2(N − 2)Fh + (N − 2)(N − 3)

2
Fι

]
, (G1)

λ1+ = [Gg + (N − 4)Gh]

×[Fg + (N − 4)Fh − (N − 3)Fι], (G2)

λ2 = [Gg − 2Gh][Fg − 2Fh + Fι]. (G3)

Using the definitions of Gg, Gh, Fg, Fh, and Fi found in
Appendix B and letting V̄0 become large, a little numerical
work reveals that the dominant terms will involve powers
of Nγ∞, which limits to a value of −1 as V̄0 → 1.0. Since
γ∞ → O(−1/N ) for ensemble sizes relevant to experiment,
extra factors of γ∞ in a term will make it drop out. These
limits for Nγ∞ and γ∞ are easily determined numerically and

(b)

(a)

FIG. 6. Limits of γ∞ and Nγ∞ as a function of V̄0 for (a) N =
100 and (b) N = 1000.

shown in Figs. 6(a) and 6(b) for two values of N . Similarly,
limits for tanh ∞ and sech2∞ as V̄0 increases to unitarity
can also be obtained numerically,

γ∞ → O

(
− 1

N

)
,

Nγ∞ → −1,

sech2∞ → 0,

tanh ∞ → 1,

as V̄0 → 1.0.
Note that the powers of Nγ∞ in the analytic expressions

for the angular frequencies can begin to dominate the ex-
pressions in two ways. (1) As V̄0 increases, the magnitude
of γ∞ increases, driving Nγ∞ towards its limit of −1 as N
remains fixed. (2) Letting N increase for a fixed value of V̄0

will also drive Nγ∞ towards its limit of −1. This explains the
earlier observation that increasing the interaction between a
fixed number of particles or increasing the number of particles
experiencing a fixed interaction has a similar effect in sepa-
rating the frequencies quickly. The microscopic dynamics are
however distinct between the two, as discussed in Sec. VI D.
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Using the above limits and the relation r̄∞ =
1√

2
√

1+(N−1)γ∞
, in the definitions of Gg, Gh, Fg, Fh, and Fi

in Appendix B and keeping powers of γ∞ that will contribute
when factors of (N − 2), (N − 4), etc., are included from the
expressions for the roots λ0+ , λ1+ , and λ2, the limits for these
G and F elements for values of N typical of experiments are

Ga = 1,

Gg = 2
1 − γ 2

∞
r̄2∞

→ 2
r̄2∞

,

Gh = γ∞(1 − γ∞)

r̄2∞
≈ γ∞

r̄2∞
, (G4)

Fg = 1

2r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

×[1 + 3(N − 2)γ∞ + (13 − 11N + 3N2)γ 2
∞

+(N − 2)(4 − 3N + N2)γ 3
∞] + V̄0c̄0

2
sech2∞

×
[

c̄0r̄2
∞

1 − γ∞
tanh ∞ + r̄∞

2(1 − γ∞)3/2

]

→ 1

2r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

×(1 + 3Nγ∞ + 3N2γ 2
∞ + N3γ 3

∞)

= 1

2r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3
(1 + Nγ∞)3

≈ 1
2r̄2∞

, (G5)

Fh = −γ∞
4r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

×[3 + (5N − 14)γ∞ + (11 − 9N + 2N2)γ 2
∞]

→ −γ∞
4r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

×[3 + 5Nγ∞ + 2N2γ 2
∞]

= −γ∞
4r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

×[(3 + 2Nγ∞)(1 + Nγ∞)]

≈ −γ∞
4r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]2

≈ −γ∞r̄2
∞, (G6)

Fι = γ 2
∞[2 + (N − 2)γ∞]

r̄2∞(1 − γ∞)3[1 + (N − 1)γ∞]3

→ γ 2
∞8r̄6

∞
r̄2∞(1 − γ∞)3

= 8γ 2
∞r̄4

∞
(1 − γ∞)3

≈ 8γ2
∞r̄4

∞. (G7)

Looking at the expressions for the three angular roots
λ0+ , λ1+ , and λ2, the following combinations are needed:
Gg + 2(N − 2)Gh, Gg + (N − 4)Gh, Gg − 2Gh, 2(N − 2)Fh,
(N−2)(N−3)

2 Fi, (N − 4)Fh, and (N − 3)Fi. Taking these limits

gives

Gg + 2(N − 2)Gh = 2
1 − γ 2

∞
r̄2∞

+ 2(N − 2)
γ∞(1 − γ∞)

r̄2∞

= 2

r̄2∞
(1 − γ∞)[1 + (N − 1)γ∞]

= 1 − γ∞
r̄4∞

≈ 1
r̄4∞

,

Gg + (N − 4)Gh = 2
1 − γ 2

∞
r̄2∞

+ (N − 4)
γ∞(1 − γ∞)

r̄2∞

= 1 − γ∞
r̄2∞

[2 + (N − 2)γ∞]

≈ 1
r̄2∞

,

Gg − 2Gh = 2
1 − γ 2

∞
r̄2∞

− 2
γ∞(1 − γ∞)

r̄2∞

= 2

r̄2∞
[(1 − γ 2

∞) − γ∞(1 − γ∞)]

= 2(1 − γ∞)

r̄2∞
≈ 2

r̄2∞
,

2(N − 2)Fh ≈ 2(N − 2)(−γ∞r̄2
∞) ≈ 2r̄2

∞,

(N − 2)(N − 3)

2
Fi = N2 − 5N + 6

2
Fi ≈ 4r̄4

∞,

(N − 4)Fh = (N − 4)(−γ∞r̄2
∞) = r̄2

∞,

(N − 3)Fi ≈ (N − 3)8γ 2
∞r̄4

∞

≈ −8γ∞r̄4
∞. (G8)

Substituting these results into the expressions for the roots
(G1)–(G3) gives

λ0+ = 1

r̄4∞

[
1

2r̄2∞
+ 2r̄2

∞ + 4r̄4
∞

]
≈ 4, (G9)

λ1+ = 1

r̄2∞

[
1

2r̄2∞
+ r̄2

∞ + 8γ∞r̄4
∞

]

= 1

2r̄4∞
+ 1 + 8γ∞r̄2

∞

≈ 1, (G10)

λ2 = 2

r̄2∞

[
1

2r̄2∞
+ 2γ∞r̄2

∞ + 8γ 2
∞r̄4

∞

]

= 1

r̄4∞
+ 4γ∞ + 16γ 2

∞r̄2
∞ ≈ 1

r̄4∞
≈ O(10−4) for the unitary regime, (G11)
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yielding values for ω0+ , ω1+ , and ω2 of

ω0+ = 2,

ω1+ = 1, ω2 = O(10−2) (G12)

in units of the trap frequency ωho. Thus, as expected from
physical arguments (see Sec. VI), these expressions for the
angular frequencies limit to multiples of the trap frequency as
V̄0 and/or N increase.
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