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Dilute quantum liquid in a K-Rb Bose mixture
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A quantum liquid in a heterogeneous mixture of 41K and 87Rb atoms is studied using the diffusion Monte
Carlo method and density-functional theory. The perturbative Lee-Huang-Yang term for a heterogeneous mixture
is verified and it is proved to be valid only near the gas-liquid transition. Based on the equations of state of
the bulk mixture, calculated with diffusion Monte Carlo, extensions to Lee-Huang-Yang corrected mean-field
energy functionals are presented. Using density-functional theory, a systematic comparison between different
functionals is performed, focusing on the critical atom number, surface tension, surface width, Tolman length,
and compressibility. These results are given as a function of the interspecies interaction strength, within the
stability domain of the liquid mixture.
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I. INTRODUCTION

A new quantum state of matter has been predicted [1]
and experimentally realized [2–4] recently in ultracold atomic
gases, where a subtle interplay between interspecies attractive
interactions and quantum fluctuations may result in the for-
mation of self-bound ultradilute droplets. Such liquid droplets
are fundamentally different from those in classical or helium
fluids, where they arise instead from the interplay between the
short-range repulsive and long-range attractive components of
the interatomic potential [5]. The existence of self-bound ul-
tradilute quantum droplets, made of atoms of a binary mixture
of Bose-Einstein condensates, was predicted by Petrov [1]
and was experimentally confirmed shortly thereafter [2,3].
These systems, whose peculiar properties are shared by other
systems such as dipolar Bose gases [6–8], are characterized
by ultralow densities, orders of magnitude lower than that of
the prototypical quantum liquid, i.e., liquid helium. Notice-
ably, quantum droplets exist at temperatures that are several
orders of magnitude lower than the freezing points of classical
liquids.

Mean-field (MF) analysis predicts that binary mixtures
of Bose-Einstein condensates become unstable against col-
lapse when the attractive interspecies interaction overcomes
the repulsive contact potential between atoms [9]. However,
in the ultradilute liquid phase the mean-field collapse is
avoided if beyond-mean-field first-order perturbative correc-
tions, in the form of the Lee-Huang-Yang (LHY) energy
functional [10,11], are included. This correction is repulsive
in nature and thus stabilizes the system.

The formation of heteronuclear quantum droplets in an
attractive bosonic mixture of 41K and 87Rb has been observed
recently [4]. At variance with the largely studied mixture of
two hyperfine states of 39K, longer-lived self-bound states are

observed in the K-Rb mixture, both in free space and in optical
waveguides. The K-Rb mixture has proven to be robust even
when the two components are exposed to different confining
potentials. Such long-lived self-bound droplets remain local-
ized on a timescale of several tens of milliseconds, more than
a factor of 10 larger than in the 39K mixture [3].

The increased lifetime of this new liquid mixture not only
allows for a more detailed experimental observation and char-
acterization of isolated droplets (like, e.g., the observation
of the droplet self-evaporation [12]), but will also permit the
observation of more complex scenarios arising from the inter-
actions between self-bound droplets. Moreover, the observed
reduction of three-body losses allows for the realization of
larger droplets. Recently, collisions between two droplets have
been proposed as a useful experimental tool to investigate
the dynamical properties of self-bound systems [13]. When
two such droplets approach each other with a given relative
velocity, they can either merge in a single droplet (coales-
cence) or separate into two or more droplets after the collision
(bouncing or fragmentation) [14]. These different outcomes
depend on whether or not the surface tension is large enough
to counterbalance the kinetic energy of the colliding drops.
A different phenomenology is expected for the coalescence
dynamics of two droplets colliding at very low velocities,
which, in analogy to previous studies on helium clusters,
could be a probe of their superfluid properties. One interesting
outcome of collision would be the formation of vortices or
other topological structures during the merging process, as
a consequence of their condensate nature. These effects are
known to arise during the merging of superfluid liquid-helium
nanodroplets [15].

A fruitful comparison with experiments needs accurate
and reliable theoretical schemes, which have not been ap-
plied yet to the K-Rb mixture. The use of density-functional
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theory (DFT), in its time-dependent version, is known to
allow a quite accurate description of the dynamics of in-
homogeneous superfluid systems, even at the level of the
local-density approximation. Finite-range effects permit one
to widen the applicability of numerical simulations by going
beyond the usual mean-field theory corrected with the LHY
term (MF + LHY). A most natural way to include such effects
within the DFT scheme is to use density functionals built
from results of first-principles quantum Monte Carlo (QMC)
calculations for the homogeneous phase [16,17]. Importantly,
first-principles finite-N QMC calculations in the low-density
regime show good agreement with the DFT approach [18]
only in the vicinity of the gas-liquid transition while, at larger
densities, modifications to the MF + LHY approach are nec-
essary [19–22].

This work is organized as follows. In Sec. II we introduce
the MF + LHY functional for a K-Rb mixture and predict a
range of scattering lengths which allow a self-bound state.
In Sec. III we describe the diffusion Monte Carlo (DMC)
methodology for obtaining the ground-state energies of the
bulk mixture. We report the DMC energies obtained using
the short-range and finite-range potentials in Secs. IV and V,
respectively. In Sec. VI we apply the density-functional for-
malism to the characterization of the droplets, comparing the
MF + LHY and QMC-based functionals for each quantity.
Namely, we provide results for the surface tension, density
profile, critical atom number, surface width, compressibility,
and Tolman length for an experimentally relevant range of
scattering parameters. Finally, a summary of results and con-
clusions is given in Sec. VII.

II. THE MFLHY EQUATION OF STATE

We consider a homogeneous heteronuclear Bose-Bose
mixture with two components (with masses m1 and m2) in
a volume V and a total number of bosons N = N1 + N2. By
neglecting finite-range effects (which will be considered in
Sec. III), only the s-wave scattering lengths are used to charac-
terize the interparticle interactions. Within the LHY-extended
mean-field framework (abbreviated MF + LHY hereafter),
the energy of the system per unit volume is given by the
functional [1]

E = EMF + ELHY, (1)

where the mean-field and Lee-Huang-Yang terms
read [9,23,24]

EMF = 1

2
g11ρ

2
1 + 1

2
g22ρ

2
2 + g12ρ1ρ2, (2)

ELHY = 8m3/2
1 (g11ρ1)5/2

15π2 h̄3

[
1 +

(
m2

m1

)3/5 g22ρ2

g11ρ1

]5/2

. (3)

Here ρi (i = 1, 2) are the number densities of each com-
ponent of the mixture, normalized such that

∫
V ρidr = Ni,

and gi j = 2π h̄2ai j/μi j are the i j-interaction strengths, with
μ−1

i j = m−1
i + m−1

j the reduced mass.

The mixture of the two species is stable against fluctuations
in the concentration N1/N2 if [1]

ρ2

ρ1
=

√
g11

g22
. (4)

As pointed out in Refs. [1,23,25], it is safe to assume that
this optimal composition is realized everywhere in the system.
Thus, the energy functional EMF+LHY[ρ] = EMF[ρ] + ELHY[ρ]
becomes effectively a single component and can be written in
terms of the total density ρ = ρ1 + ρ2. Under this assumption,
the MF and LHY terms read

EMF =
2π h̄2

(
2a11m2 + a12

√
a11m2
a22m1

(m1 + m2)
)

m1m2
(√ a11m2

a22m1
+ 1

)2
ρ2, (5)

ELHY = 256
√

π h̄2a5/2
11

15m1

⎡
⎣1 + (m2

m1

)1/10
√

a22
a11

1 +
√

m2a11
m1a22

⎤
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5/2

ρ5/2. (6)

The MF + LHY energy per particle can be compactly writ-
ten as

E/N∣∣EMF+LHY
0

∣∣/N
= −3

ρ

ρMF+LHY
0

+ 2

(
ρ

ρMF+LHY
0

)3/2

, (7)

ρMF+LHY
0 being the equilibrium density within the MF +

LHY theory, i.e., the density that minimizes the functional
EMF+LHY[ρ]. Explicitly,

ρMF+LHY
0 =

25πm3
2

(
2a11m2 + a12

√
a11m2
a22m1

(m1 + m2)
)2

4096
(
a11m2 + a22m1

(m2
m1

)3/5
√

a11m2
a22m1

)5

×
(√

a11m2

a22m1
+ 1

)
. (8)

The energy per particle at equilibrium is EMF+LHY
0 /N =

EMF+LHY[ρMF+LHY
0 ]/ρMF+LHY

0 . The fact that the MF + LHY
functional can be written in a universal form (7) proves that
all the results from Ref. [1] can be applied here with a proper
change of units.

In what follows, we define the hyperfine state
|F = 1, mF = 1〉 of 41K as component 1 and the hyperfine
state |F = 1, mF = 1〉 of 87Rb as component 2. The
scattering parameters describing the intraspecies repulsion
are fixed and their values are equal to a11 = 65a0 [26] and
a22 = 100.4a0 [27]. Notice that a slightly different value
for the K-K scattering length, a11 = 63a0, has been used
more recently in Ref. [12]. With those two parameters, the
MF + LHY theory predicts a self-bound state (hereafter
called liquid) for a12 < ac

12, with ac
12 given by

ac
12 = −2

√
a22/a11√

m2/m1(1 + m1/m2)
≈ −75.4a0. (9)

In the experiment, accessible values of a12 are in the range
between a12 = −80a0 and a12 = −95a0 [4].

III. DIFFUSION MONTE CARLO

We use the DMC method to determine the energy per
particle in the homogeneous phase. This method was previ-
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ously applied in related problems regarding the study of a
Bose-Bose liquid by some of the authors [16,28]. Diffusion
Monte Carlo is nowadays a well-know method that is able
to solve exactly the imaginary-time Schrödinger equation of
the many-particle system, within some statistical noise. The
starting point of DMC is the decomposition of the imaginary-
time evolution operator. In this paper we use a propagator that
is accurate up to second order in the time step [29], following
the implementation outlined in Ref. [30].

To reduce the variance in the estimation of energy, we use
standard importance sampling through a trial wave function,
written as a Jastrow product over pairs [31]

�(R) =
N1∏

j>i=0

f (11)(ri j )
N1+N2∏
j>i=N1

f (22)(ri j )
N1,N2∏

i, j

f (12)(ri j ), (10)

where the two-particle correlation functions f (α,β )(r) (α, β =
1, 2) are chosen as

f (α,β )(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f2b(r), r < R̃

B
(
1 − aα,β

r

)
, r < Rv

C exp
(−D

r + E
r2

)
, Rv < r < L

2

1, r > L
2 .

(11)

The two-particle correlation function at short distances f2b(r)
is the solution to the two-body problem for a given inter-
action potential. Throughout the paper we use short-range
potentials such that the potential is zero at distances greater
than R̃. The function f2b is connected to the asymptotic form
1 − aα,β/r, where aα,β is a corresponding scattering length.
At r = Rv , this is connected to the long-range phononic form
C exp(−D

r + E
r2 ) [32]. Finally, we impose that the function is

constant (one) at the boundary of the simulation box (r =
L/2). This trial wave function has only one variational pa-
rameter, namely, Rv , which we optimize variationally finding
that, in all cases, Rv = 0.45L. Our DMC results are unbiased
for time steps �τ � 0.5m41a2

11/h̄2 and walker number nw ≈
200. Simulations are performed in a cubic box of size L =
(N/ρ)1/3, with periodic boundary conditions applied to parti-
cle coordinates. For each density, a set of several calculations
of increasing number of particles, namely, N = 130, 160, 200,
250, and 500, is performed in order to study finite-size effects.
The final energies, corresponding to the thermodynamic limit,
are obtained by an extrapolation to N → ∞ assuming a cor-
rection which decreases as N−1.

IV. SHORT-RANGE POTENTIALS

In a first approach to the problem, we use in DMC in-
teratomic potentials that have a very short range, which we
call SRPOTs in the following. Since we cannot use a contact
interaction in DMC, we model the short-range interaction by
a set of potentials with a range rp satisfying ρr3

p � 1, where ρ

is the typical number density. Under this criterion, we choose
a hard-core potential for repulsive interactions (between equal
species), with a diameter corresponding to the s-wave scatter-
ing length [9]

Vii(r) =
{∞ for r < aii, i = 1, 2

0 otherwise.
(12)
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FIG. 1. Diffusion Monte Carlo energy per particle as a function
of density, obtained with the SRPOT models [Eqs. (12) and (13)],
in a mixture having the optimal composition ρ2/ρ1 = √

g11/g22. The
energy per particle and the total density are normalized with respect
to the equilibrium values given in Eq. (8).

The attraction between different species is modeled by a short-
range square-well potential

V12(r) =
{−Vsr for r < Rsr

0 otherwise,
(13)

where we choose Rsr = a11. The particular choice of po-
tentials given in Eqs. (12) and (13) resembles a zero-range
case, since the probability of finding two particles within the
diameter Rsr is ρ0R3

sr ≈ 2 × 10−4, evaluated at the equilib-
rium density for the densest liquid analyzed, corresponding
to a12 = −95a0. By properly setting Vsr, we obtain a target
scattering length a12, which for a square-well potential is
given by [33]

a12 = Rsr

{
1 + tan(K0Rsr )

K0Rsr

}
, (14)

where K0 =
√

2Vsr (m1 + m2)/h̄2m1m2. The DMC results of
the energy per particle, obtained with SRPOTs (12) and (13),
are shown in Fig. 1 for a12 = −77a0, −85a0, −90a0, and
−95a0, which include experimentally accessible values. They
are compared with the predictions of MF + LHY theory. The
DMC energy per particle is well fitted to the form

E

N
= αρ + βργ , (15)

where α, β, and γ are the fitting parameters. The equilibrium
density and the coefficients of the fit to the DMC energy per
particle are reported in Table I. As we can see in Fig. 1,
the DMC results of the energy per particle reproduce well
the MF + LHY theory for a12 = −77a0, which is close to
the critical value ac

12 = −75.4a0. However, the DMC results
for different a12 do not fit a single line defined by Eq. (7),
implying that the universality of the MF + LHY theory is
broken, with the deviation growing as a12 becomes larger. In-
terestingly, we observe repulsive beyond-LHY contributions
when the fluid enters a more correlated regime. Repulsive
beyond-LHY contributions to the energy have already been
observed in symmetric Bose-Bose fluids [28] and in the liquid
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TABLE I. Coefficients of fit E/N = αρa3
11 + β(ρa3

11)γ of the
DMC energies per particle, obtained with a short-range set of poten-
tials [Eqs. (12) and (13), reported in Fig. 1]. The parameters α and β

are given in units of h̄2/m1a2
11 = 10−3 K and γ is adimensional. Here

ρ0 stands for the equilibrium density of a QMC functional. Scattering
lengths in the repulsive channel are a11 = 65a0 and a22 = 100.4a0.

a12 Method α β γ ρ0a3
11

−77a0 QMC −0.056 35.709 1.500 1.08 × 10−6

−77a0 MF+LHY −0.057 36.437 1.5 1.09 × 10−6

−85a0 QMC −0.385 15.981 1.395 3.48 × 10−5

−85a0 MF+LHY −0.340 36.437 1.5 3.86 × 10−5

−90a0 QMC −0.592 16.344 1.384 7.53 × 10−5

−90a0 MF+LHY −0.516 36.437 1.5 8.92 × 10−4

−95a0 QMC −0.772 16.768 1.379 1.26 × 10−4

−95a0 MF+LHY −0.693 36.437 1.5 1.61 × 10−4

39K mixture [16] for the potentials with a small effective
range. This effect could be due to bosonic pairing between
atoms of different species [20,21].

V. FINITE-RANGE POTENTIALS

The effective range in the 41K - 87Rb mixture is not known,
but can be estimated from the combined knowledge of the
C6 coefficient of the leading term in the long-range tail of
the van der Waals interaction potential and the scattering
length obtained from measurements of the Feshbach reso-
nances [34–36]. Knowing the van der Waals coefficient C6,
one can estimate the effective range using a semiclassical
approximation [36]

reff = 

(

1
4

)2

6π
am

[
1 − 2

am

a
+ 2

(
am

a

)2]
, (16)

with am = 4πRvdW/
( 1
4 )2 the mean scattering length and

RvdW = (2μC6/h̄2)1/4/2 the van der Waals length, where μ

is the reduced mass. The C6 coefficients for 41K and 87Rb are
given, along with the effective ranges derived from (16), in
Table II.

Since only two scattering parameters, namely, the scat-
tering length a and the effective range reff , cannot uniquely
define the interaction potential, we resort to model potentials
satisfying the two scattering criteria. To investigate the role
of the shape of the interaction dictated by the higher-order

TABLE II. Coefficients C6 of each channel and the correspond-
ing scattering lengths and effective ranges.

Channel C6 (a.u.) a/a0 reff/a0

K-K (1-1)a 3897 65 168
Rb-Rb (2-2)b 4707 100.4 153
K-Rb (1-2)c 4285 −85 795

−90 748
−95 707

aReferences [26,37].
bReference [27].
cReference [38].

TABLE III. Parameters of potentials POT-I and POT-II which
reproduce both scattering parameters (see Table II). Here R0 and R1

are given in units of a11 = 65a0, and V0 and V1 are given in units of
h̄2/m1a2

11 = 10−3 K.

a Potential R0 R1 V0 V1

65a0 POT-I 1.8797 0 1.2123 0
65a0 POT-II 2.8386 3.5581 0.9140 0.3687

100.4a0 POT-I 2.7084 0 0.3337 0
100.4a0 POT-II 3.8374 4.8201 0.2366 0.0824
−85a0 POT-I 0 4.8897 0 0.01865
−85a0 POT-II 2.7513 3.6684 0.0632 0.1189
−90a0 POT-I 0 4.8069 0 0.0205
−90a0 POT-II 2.7419 3.6558 0.0586 0.1197
−95a0 POT-I 0 4.7315 0 0.0222
−95a0 POT-II 2.7329 3.6438 0.0541 0.1205

scattering parameters, we performed two independent sets of
calculations, each having different models of the interaction
potential. We call the two models POT-I and POT-II and both
can be written as

V (r) =

⎧⎪⎨
⎪⎩

V0 for 0 < r < R0

−V1 for R0 < r < R1, i = 1, 2

0 otherwise.

(17)

This particular form of interaction is convenient because the
analytic expressions for both the s-wave scattering length
and effective range are analytically known [39]. The specific
values of the interaction parameters in all three channels for
potentials POT-I and POT-II are summarized in Table III.

In Fig. 2 we report the comparison between the DMC and
MF + LHY equations of state for three values of a12 and using
POT-I and POT-II as model potentials (see Table IV). For all
three values of a12, there is a slight increase in the equilibrium
density, relative to the MF + LHY theory. This phenomenon
was previously observed in a mixture with symmetric inter-
actions [18,19,28], whereas in a 39K liquid mixture [16] the
significant increase of equilibrium density occurs because in
that mixture the effective range is much larger than in the
K-Rb one. In other words, in the K mixture the finite-range,
beyond-LHY, negative energy contributions dominate. On the

TABLE IV. Coefficients of fit E/N = αρa3
11 + β(ρa3

11)γ of the
DMC energy per particle, obtained with a set of potentials POT-I
and POT-II [see Eq. (17 and Table III]. (A comparison of different
functionals is presented in Fig. 2.) The parameters α and β are given
in units of h̄2/m1a2

11 = 10−3 K and γ is adimensional. Scattering
lengths in the repulsive channel are a11 = 65a0 and a22 = 100.4a0.
For comparison, the MF+LHY parameters are given in Table I.

a12 Potentials α β γ

−85 POT-I −0.37 14.087 1.393
−85 POT-II −0.371 14.547 1.396
−90 POT-I −0.578 11.778 1.359
−90 POT-II −0.573 12.894 1.369
−95 POT-I −0.824 9.752 1.316
−95 POT-II −0.774 12.22 1.351
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FIG. 2. Energy per particle as a function of density, for values
of (a) a12 = −85a0, (b) a12 = −90a0, and (c) a12 = −95a0. The
DMC calculations are performed with potentials POT-I and POT-II,
which satisfy both scattering parameters [see Eq. (17) and Table IV].
The ratio of concentrations ρ2/ρ1 = √

g11/g22 is kept fixed for each
density, a criterion coming from the mean field, also verified by QMC
to predict the ground state.

other hand, we observe that energies obtained with two differ-
ent potentials but with the same s-wave scattering length and
effective range collapse to a single equation of state, at least at
densities not much larger than the equilibrium one. Therefore,

the range of universality is extended, but now in terms of two
scattering parameters [16].

VI. DENSITY-FUNCTIONAL RESULTS

The stability of the self-bound mixture of 41K - 87Rb in free
space implies the presence of a surface and a positive surface
tension associated with it. We studied the surface properties
of spherical 41K - 87Rb droplets within the DFT approach
in the MF + LHY framework, for a fixed ratio of densities
ρ2/ρ1 = √

g11/g22 corresponding to the equilibrium one for
the homogeneous mixture. We provide additional results using
a more accurate density functional obtained from the ab initio
QMC results discussed in the preceding section.

We first studied a planar surface, with the aim of deter-
mining the surface tension σ in a range of values of the
interparticle attractive interaction a12 accessible to the exper-
iments. When studying a planar surface, it is useful to use
a slab geometry, i.e., we assume an extended homogeneous
system in the xy plane (with periodic boundary conditions)
and with a finite extension in the z direction. In this direction,
two liquid-vacuum interfaces are formed, with the slab width
thick enough to have a constant density region between the
two confining surfaces (bulk phase). This amounts to neglect-
ing curvature effects, which will be explicitly considered later
on. The surface width of the density profile along z can be
quantified by the parameter �, which measures the width
between surface points at 90% and 10% of the bulk total
density.

By defining the coefficients

CK = 1

4

(
h̄2

2m1
+ h̄2

2m2

√
g11

g22

)
, (18)

Cδ = g11 + g12

√
g11

g22
, (19)

Cρ = 8

15π2

(
m1

h̄2

)3/2

g5/2
11

[
1 +

(
m1

m2

)3/5√g22

g11

]
, (20)

the effective single-component energy density of the mixture
within the MF + LHY theory, expressed for simplicity in
terms of the density ρ1, reads

E = CK
(∇ρ1)2

ρ1
+ Cδρ

2
1 + Cρρ

5/2
1 . (21)

We recall that knowledge of one density is enough to charac-
terize the whole droplet because of the underlying assumption
ρ2/ρ1 = √

g11/g22 [23,25].
Remarkably, the surface tension of the planar interface

described by local energy functionals of the form (21) can be
estimated, without any prior knowledge of the density profile,
by calculating the integral [40]

σ = 2
∫ ρ0

0
dρ1

√
CK

(
Cδρ1 + Cρρ

3/2
1 − μ0

)
, (22)

where μ0 = Cδρ1 + Cρρ
3/2
1 is the chemical potential of a

liquid system in equilibrium with the vacuum, evaluated at
the equilibrium density ρ0. The density profile can also be
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FIG. 3. Surface tension as a function of the (attractive) inter-
species scattering length a12. The red solid line is obtained using
the MF + LHY functional; green squares and blue crosses are the
predictions assuming SRPOT and POT-I functionals, respectively
(see Tables I and IV).

obtained by simple quadrature, solving the implicit equation

z(ρ) = z0 +
∫ ρ

ρ0/2

1

h(ρ ′)
dρ ′, (23)

where ρ(z0) = ρ0/2 and

h(ρ) = −
√( ρ

CK

)
[Cδρ2 + Cρρ5/2 − μ0ρ]. (24)

Here ρ can have any value in the interval [0, ρ0].
The calculated surface tension for different values of

a12 is shown in Fig. 3 and compared with the results ob-
tained from the QMC-based functional. Notice that relatively
small changes in the interspecies interaction strength cause
order-of-magnitude changes in the surface tension, which is
highlighted by the logarithmic scale introduced on the σ axis.
Surface tension obtained with the QMC-based functionals
SRPOT and POT-I are both below the predictions of the
MF + LHY functional, with SRPOT having larger deviations
from MF + LHY.

The width of the liquid-vacuum interface profile is strongly
dependent on the interspecies scattering length a12. In a
droplet this will affect the overall shape of the droplet itself,
depending upon the value of the total number of particles
N . For larger values of N the droplet will be characterized
by a central region of fairly uniform density (bulk) and an
external surface region where the density drops to zero with
the distance from its center, whereas it will be an all-surface
Gaussian-like droplet, where the central bulk region is almost
absent, for low values of N . By defining the droplet radius R
as

R = 3

√
3N

4πρbulk
, (25)

in the first case the ratio between the surface width � and
the droplet radius R is �/R � 1, while in the second case
�/R 	 1.

We must notice that not all values of N are allowed in
a droplet for a given a12 because small droplets, i.e., those
with a number of particles below some critical value Nc,
become unstable when the kinetic energy dominates over the
interaction energy, eventually causing the evaporation of the
droplet. In order to estimate the critical size Nc we make a
simple variational ansatz for the radial density profile, which
is a good approximation for spherical small droplets:

ρ1(r) = N1

π3/2σ 3
e−r2/σ 2

. (26)

We use the above ansatz in the energy functional (21) and
impose the condition for a minimum, ∂E/∂σ = 0, together
with the additional requirement E = 0, which marks the line
separating stable droplets with negative total energies from
unstable ones with positive energies. Solving for the total
number of atoms of species 1, N1, we find the critical droplet
size Nc = Nc1(1 + √

g11/g22), where

Nc1 = − c

λ9/2(a/λ2 + b/λ3)
, (27)

with λ = −3b/5a. Here a, b, and c are given by the ex-
pressions a = 6CK, b = Cδ/2π3/2, and c = 4Cρ/5

√
10π9/4.

Table V and Fig. 4 show the critical atom number for some
values of the scattering length computed with DFT and QMC
methods.

Figure 5 summarizes our results. The color scale shows
the ratio between the surface width � and the radius R of
the droplet, which evaporates for a number of particles below
the critical value (black solid line). The red region identifies
Gaussian-like all-surface droplets, while the green and blue
regions identify droplets with a well-defined central bulk den-
sity. Notice that the black line belongs to the red region for
each |a12|, so the assumption of a Gaussian density profile
for the variational study of the critical atom number is indeed
justified.

The surface tension for the 41K - 87Rb self-bound mixture
has been obtained for a planar interface (we will call it σ0

to distinguish it from the size-dependent surface tension of
a droplet), though in real droplets an interfacial curvature
of the surface in contact with the vacuum is present. The
curvature-dependent surface tension can be expressed in term
of the so-called Tolman length δ [41]. To a first approximation
the Tolman length δ is independent of the droplet size and it
gives the size-dependent surface tension in terms of the one
for a planar surface [42,43]

σ (R) = σ0

(
1 − 2δ

R

)
. (28)

A thermodynamic argument relates the Tolman length to the
isothermal compressibility κ−1 and surface tension σ0 [44],

δ ≈ −κ−1σ0. (29)

The isothermal compressibility κ−1 of a self-bound quan-
tum mixture with equilibrium bulk densities ρ1 and ρ2 in the
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TABLE V. Summary of all the quantities reported in the paper. Mass m is the mass of the 41Rb atom and a0 is the Bohr radius. Here
εr(SRPOT) and εr(POT-I) are the relative differences (OSRPOT − OMF+LHY)/|OMF+LHY| and (OPOT−I − OMF+LHY)/|OMF+LHY| for observable O,
given in percentages. Positive (negative) values of εr mean that QMC functionals predict higher (lower) values of the observable with respect
to the MF+LHY one.

Observable a12/a0 MF+LHY SRPOT POT-I εr(SRPOT) εr(POT-I)

Nc −85 2.07 × 104 2.31 × 104 2.26 × 104 12 9
Nc −90 7.28 × 103 8.47 × 103 8.31 × 103 16 14
Nc −95 3.49 × 103 4.44 × 103 4.10 × 103 27 17

σ

h̄2/ma4
0

−85 1.97 × 10−20 1.40 × 10−20 1.77 × 10−20 −29 −10
σ

h̄2/ma4
0

−90 8.55 × 10−20 5.45 × 10−20 7.42 × 10−20 −36 −13
σ

h̄2/ma4
0

−95 2.40 × 10−19 1.34 × 10−19 1.95 × 10−19 −44 −19

�/a0 −85 4.17 × 104 4.78 × 104 4.48 × 104 14 7
�/a0 −90 2.23 × 104 2.65 × 104 2.46 × 104 19 11
�/a0 −95 1.43 × 104 1.80 × 104 1.65 × 104 26 15
δ/a0 −85 −5.53 × 103 −6.57 × 103 −6.16 × 103 −19 −11
δ/a0 −90 −2.95 × 103 −3.67 × 103 −3.43 × 103 −24 −16
δ/a0 −95 −1.90 × 103 −2.50 × 103 −2.35 × 103 −32 −24

κ−1

ma5
0/h̄2 −85 2.81 × 1023 4.69 × 1023 3.47 × 1023 67 24

κ−1

ma5
0/h̄2 −90 3.45 × 1022 6.73 × 1022 4.62 × 1022 95 34

κ−1

ma5
0/h̄2 −95 7.90 × 1021 1.86 × 1022 1.20 × 1022 135 52

MF + LHY approach is given by [23]

κ−1 = (
g11ρ

2
1 + g22ρ

2
2 + 2g12ρ1ρ2 + 15

4 ELHY
)−1

. (30)

Previously, some studies have noticed that the product
κ−1σ0 is a fundamental characteristic length in liquid
droplets [45–49] though the connection with the Tolman
length δ was never explicitly made. We checked the validity of
Eq. (29) by independently computing δ using the liquid drop
model (LDM), i.e., writing the calculated total energy of a
droplet made of N atoms as

E = a′N + b′N2/3 + c′N1/3, (31)

FIG. 4. Critical atom number Nc as a function of the interspecies
scattering length. The red solid line is obtained using the MF + LHY
functional; green squares and blue crosses are the predictions assum-
ing SRPOT and POT-I functionals, respectively (see Tables I and IV).

where the separate bulk, surface, and curvature contributions
to the total energy of the droplet are highlighted. By using
the relation (28), one can see that c′ = 8π (3/4πρ0)1/3σ0δ.
The coefficient c′ is in turn obtained by fitting the calculated
energies using the LDM expression quoted above, allowing
one to determine the Tolman length δ. Predictions for the
Tolman length are summarized in Table V.

In Fig. 6 the compressibility computed with the MF +
LHY approach is shown for a set of values of the scattering
length and compared to QMC results. In contrast to 39K

FIG. 5. Ratio �/R represented as a function of |a12| and N . The
red region (darker region in the lower part of the figure) identifies
Gaussian-like radial density profiles, while the green region (lighter
portion in the middle) and blue region (lighter portion in the upper
part) identify droplets with a central bulk region. The black solid
line marks the total critical number of particles Nc below which the
droplet evaporates.

033319-7
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FIG. 6. Compressibility κ−1 as a function of the interspecies
scattering length a12 in the self-bound droplet regime. The red solid
line is obtained using the MF + LHY functional; green squares and
blue crosses are the predictions assuming SRPOT and POT-I func-
tionals, respectively (see Tables I and IV).

droplets [17], the compressibility of the QMC-based func-
tional is higher compared to that of the MF + LHY, due
to relatively smaller values of effective ranges in a K-Rb
mixture.

Figure 7 shows the calculated radial density profile for
a droplet with a12 = −90a0, where a comparison is made
between the prediction of the MF + LHY approach and those
from the QMC-based energy functionals. The QMC-based
functional, which relies on short-range model potentials (see
Fig. 1), predicts less dense droplets due to repulsive beyond-
LHY energy contributions. Profiles obtained with the POT-I

FIG. 7. Radial density profile for a droplet with a12 = −90a0.
The prediction of MF + LHY (red solid line) is compared with the
results obtained from a density functional reproducing the QMC re-
sults, at zero range (SRPOT, green dashed line) and with finite-range
effects (POT-I, blue dashed line).

FIG. 8. Corrected and normalized surface tension σ/σ0 as a
function of the total number of particles N in the droplet for a set
of values of the interspecies scattering length a12, computed within
the MF + LHY framework.

and MF + LHY functionals are more similar since the effect
of increasing the effective range, included in POT-I through
model potentials, is to increase binding energy and the peak
density.

In Fig. 8 we show the dependence of the corrected sur-
face tension σ as a function of the droplet’s total number of
particles N , computed within the MF + LHY framework by
combining Eq. (28) with Eq. (25).

In Table V we summarize the predictions for all ob-
servables analyzed in our work with the MF + LHY and
QMC-based functionals for a12 = −85a0, −90a0, and −95a0.
It can be seen that QMC functionals show increasing devi-
ation from the predictions of the MF + LHY functional as
|a12| increases. Quantum Monte Carlo–based density func-
tionals constructed assuming short-range model potentials
predict larger deviations from the MF + LHY theory. When
the correct effective range is included in the model poten-
tials (POT-I), the predictions become more similar to those
of MF + LHY. The variable most sensitive to beyond-LHY
energy corrections appears to be the compressibility κ−1, with
a relative difference in the range from approximately 20% to
130%. This could have an impact on the collective excitation
modes of a droplet [50], which are left for future study.

VII. CONCLUSION

We have performed QMC calculations for the ground state
of a K-Rb liquid mixture. We found that the zero-range
model potentials used in a QMC calculation predict signifi-
cant beyond-LHY energy contributions. Otherwise, when the
s-wave effective range is included in the model potentials, the
energies fall close to the MF + LHY energies. Using both the
MF + LHY and the QMC-based functionals, we have inves-
tigated fundamental surface properties for an experimentally
relevant range of scattering parameters. These properties are
relevant to the ongoing experiments because the observed
droplets have a large surface-to-volume ratio. Upon entering
a more correlated (denser) regime, the differences between
the predictions for all quantities with the MF + LHY and the
QMC-based functional grow.
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