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Impurity-induced quantum chaos for an ultracold bosonic ensemble in a double well
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We demonstrate that an ultracold many-body bosonic ensemble confined in a one-dimensional double-well
potential can exhibit chaotic dynamics due to the presence of a single impurity. The nonequilibrium dynamics
is triggered by a quench of the impurity-Bose interaction and is illustrated via the evolution of the population
imbalance for the bosons between the two wells. While the increase of the postquench interaction strength always
facilitates the irregular motion for the bosonic population imbalance, it becomes regular again when the impurity
is initially populated in the highly excited states. Such an integrability to chaos (ITC) transition is fully captured
by the transient dynamics of the corresponding linear entanglement entropy, whose infinite-time-averaged value
additionally characterizes the edge of the chaos and implies the existence of an effective Bose-Bose attraction
induced by the impurity. To elucidate the physical origin for the observed ITC transition, we perform a detailed
spectral analysis for the mixture with respect to both the energy spectrum as well as the eigenstates. Specifically,
two distinguished spectral behaviors upon a variation of the interspecies interaction strength are observed. While
the avoided level crossings take place in the low-energy spectrum, the energy levels in the high-energy spectrum
possess a bandlike structure and are equidistant within each band. This leads to a significant delocalization of
the low-lying eigenvectors, which, in turn, accounts for the chaotic nature of the bosonic dynamics. By contrast,
those highly excited states bear a high resemblance to the noninteracting integrable basis, which explains the
recovery of the integrability for the bosonic species. Finally, we discuss the induced Bose-Bose attraction as
well as its impact on the bosonic dynamics.
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I. INTRODUCTION

Trapping an ultracold many-body bosonic ensemble in a
one-dimensional (1D) double-well (DW) potential constitutes
a prototype system for investigations of correlated quantum
dynamics [1–3]. Such a system represents a bosonic Joseph-
son junction (BJJ), an atomic analogy of the Josephson effect
initially predicted for Cooper pair tunneling through two
weakly linked superconductors [4,5]. Due to the unprece-
dented controllability of the trapping geometries as well as
the atomic interaction strengths [6], studies of the BJJ un-
veil various intriguing phenomena that are not accessible
for conventional superconducting systems [7–13]. Exam-
ples are the Josephson oscillations [7–9], fragmentations
[10,11], macroscopic quantum self-trapping [3,7,8], collapse
and revival sequences [9], as well as the atomic squeezing
state [12,13].

Under the explicit time-dependent driving forces, the BJJ
can alternatively turn into the quantum kicked top (QKT), a
famous platform for investigations of quantum chaos as well
as classical-quantum correspondence [14–26]. To date, related
studies include spectral statistics [15], entanglement en-
tropy production [16–23], quantum decoherence and quantum
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correlations [24,25], as well as the border between regular and
chaotic dynamics [26]. Moreover, by viewing the QKT as a
collective N-qubit system, the effects of quantum chaos on
digital quantum simulations have also been discussed in detail
recently [27,28].

On the other hand, stimulated by the experimental progress
in few-body ensembles [29–34], significant theoretical ef-
fort has also been focused on 1D few-body atomic systems
[35–46], revealing, for example, the ground state [35–43] as
well as the dynamical properties [44–46]. This has paved the
way for studies on binary mixtures with a large particle num-
ber imbalance. Such hybridized systems are closely related
to polaron physics [47–49] as well as open quantum systems
[50], and they are particularly interesting due to the fact that
one subsystem is in the deep quantum regime while the other
one can more or less be described by semiclassical physics.
Note, however, that while most of the discussions focus on
the impacts on the minority species from the majority bath,
studies that alternatively explore the feedback to the major-
ity species due to the presence of the minority one are still
rare.

In the present paper, we investigate a binary ultracold
atomic mixture made of a single impurity, and a noninteract-
ing many-body bosonic ensemble, which are confined within
a 1D DW potential. In the existing literature, chaos has been
identified and comprehensively studied via both semiclassical
and quantum analysis [51–55]. For instance, Ref. [54] reports
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that beyond a critical value of the impurity-Bose interaction
strength, chaos takes place, which is accompanied by a parity-
breaking phase transition in the ground state. Reference [52]
further reveals the relation for such a quantum phase transition
to a classical bifurcation. However, we note that those studies
mostly focus on the weak interacting regime, which means
that the impurity is restricted to the lowest two modes of
the DW potential, whereas our discussion is not restricted
to such a scenario. Specifically, we study the onset of chaos
for the majority bosonic species due to the presence of the
impurity, and we put particular emphasis on its dynamical
response upon a sudden quench of the impurity-Bose in-
teraction strength. As an exemplary observable, we monitor
the quantum evolution of the population imbalance for the
bosons between the two wells starting from a balanced particle
population. While the increase of the postquench interaction
strength always facilitates a chaotic motion for the bosonic
population imbalance, it becomes regular again when the
impurity is initially prepared in the highly excited states. To
characterize such an integrability to chaos (ITC) transition,
we employ linear entanglement entropy as a signature of
quantum chaos, which alternatively measures the decoherence
for the bosonic species. Depending on the degree of chaos, the
transient dynamics of the corresponding linear entanglement
entropy can behave as either rapid growth or a slow varia-
tion with increasing time, whereas its infinite-time averaged
value, in addition, captures the edge of quantum chaos, i.e.,
the border between the integrable and the chaotic regions
in the corresponding classical phase space. Furthermore, by
computing the infinite-time averaged values of the linear en-
tanglement entropy for various initial conditions, we find a
striking resemblance between its profile and a classical phase
space with attractive Bose-Bose interaction, which implies
the existence of an attractive interaction among the bosons
induced by the impurity.

To elucidate the physical origin for the above observed ITC
transition, we perform a detailed spectral analysis with respect
to both the energy spectrum as well as the eigenstates of the
mixture. Two distinguished spectral behaviors upon variation
of the interspecies interaction strength are observed. While
the avoided level crossings take place in the low-energy spec-
trum, the energy levels in the high-energy spectrum possess a
bandlike structure and are equidistant within each band. Con-
sequently, this results in a significant delocalization for those
low-lying eigenstates, which, in turn, accounts for the chaotic
nature of the bosonic nonequilibrium dynamics. Remarkably,
those highly excited states bear a striking resemblance to the
noninteracting integrable basis, which explains the recovery
of the integrability for the bosonic species. Finally, we also
discuss the induced Bose-Bose attraction and its impact on
the bosonic dynamics.

This paper is organized as follows. In Sec. II we introduce
our setup, including the Hamiltonian, the initial conditions, as
well as the quantities of interest. In Sec. III we present our
main observation: the ITC transition for the bosonic species.
In Sec. IV we perform a detailed spectral analysis for the
mixture with respect to both the energy spectrum as well as
the eigenstates so as to elucidate the physical origin for the
above observed ITC transition. Finally, our conclusions and
outlook are provided in Sec. V.

II. SETUP

A. Hamiltonian and angular-momentum representation

The Hamiltonian of our 1D ultracold impurity-Bose mix-
ture is given by Ĥ = ĤI + ĤB + ĤIB, where

Ĥσ =
∫

dxσ ψ̂†
σ (xσ )hσ (xσ )ψ̂σ (xσ ),

ĤIB = gIB

∫
dx ψ̂

†
I (x)ψ̂†

B(x)ψ̂B(x)ψ̂I (x), (1)

and hσ (xσ ) = − h̄2

2mσ

∂2

∂x2
σ

+ VDW(xσ ) is the single-particle
Hamiltonian for the σ = I (B) species being confined within
a 1D symmetric DW potential VDW(xσ ) = aσ (x2

σ − b2
σ )2. For

simplicity, we consider that the atoms for both species are of
the same mass (mI = mB = m) and are trapped by the same
potential geometry, i.e., aI = aB = aDW and bI = bB = bDW.
ψ̂†

σ (xσ ) [ψ̂σ (xσ )] is the field operator that creates (annihilates)
a σ -species particle at position xσ . Moreover, we neglect the
interactions among the bosons and assume the impurity-Bose
interaction is of zero range and can be modeled by a contact
potential of strength [46,56–58]

gIB = 2h̄2a3D

μa2
⊥

[
1 − C

a3D

a⊥

]−1

. (2)

Here a3D is the 3D impurity-Bose s-wave scattering length
and C ≈ 1.4603 is a constant. The parameter a⊥ = √

h̄/μω⊥
describes the transverse confinement, with μ = m/2 being
the reduced mass, and we assume the transverse trapping
frequency ω⊥ to be equal for both species. In the following
discussions, we rescale the Hamiltonian of the mixture Ĥ for
the units of the energy, length, and time as η = h̄ω⊥, ξ =√

h̄/mω⊥, and τ = 1/ω⊥, respectively. We focus on the repul-
sive interaction regime, i.e., gIB � 0, and we set aDW = 0.5,
bDW = 1.5, such that the lowest two single-particle energy
levels are well separated from the others [see Fig. 1(a), the
spatial geometry of VDW(x) (black dashed line) as well as the
lowest six single-particle energy levels (gray solid horizontal
lines)]. Throughout this work, we explore a binary mixture
made of a single impurity and 100 bosons (NI = 1, NB =
100), and we focus on the dynamical response for the majority
bosonic species upon a sudden quench of the impurity-Bose
interaction strength (see below). Let us note that such a
1D mixture is experimentally accessible by imposing strong
transverse and weak longitudinal confinement for a binary,
e.g., a Bose-Fermi mixture with two different kinds of atoms
[59,60] or a Bose-Bose mixture made of the same atoms with
two different hyperfine states [61,62]. The DW potential can
also be readily constructed by imposing a 1D optical lattice on
top of a harmonic trap [3,5]. Moreover, the contact interaction
strength gIB can be controlled experimentally by tuning the s-
wave scattering lengths via Feshbach or confinement-induced
resonances [56–58].

Noticing further that the bosonic species is confined within
a tight DW potential with δ1 � δ0 [cf. Fig. 1(a)], here δi

denotes the energy difference between the ith and the (i + 1)th
single-particle eigenstates. We adopt the two-mode approxi-
mation

ψ̂B(x) = uL(x)b̂L + uR(x)b̂R, (3)
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FIG. 1. (a) Single-particle spectrum for the double-well poten-
tial, in which the gray solid horizontal lines denote the lowest six
energy levels, and the blue solid (red dashed) arrows represent
possible transitions that reverse (preserve) the spatial parity of the
impurity. (b) Real-time dynamics for the bosonic population imbal-
ance Sz(t ) for the initial state |
(0)〉 = |φ0〉 ⊗ |π/2, π/4〉 and for
the case gIB = 0 (red solid line), together with the classical Z (t ) dy-
namics starting from the phase point (Z = 0, ϕ = π/4) (blue dashed
line). (c) Classical phase space for J0 = 0.071. The red dot denotes
the phase-space point (Z = 0, ϕ = π/4) corresponding to the ACS
|θ, ϕ〉 = |π/2, π/4〉.

with uL,R(x) being the Wannier-like states localized in the
left and right well, respectively. This leads to the low-energy
effective Hamiltonian for the bosonic species,

ĤB = −J0(b̂†
Lb̂R + b̂†

Rb̂L ), (4)

corresponding to the two-site Bose-Hubbard (BH) model,
with J0 = 0.071 being the hopping amplitude.

Before proceeding, it is instructive to express the above BH
Hamiltonian in the angular-momentum representation. To see
this, we introduce three angular-momentum operators [9,63],

Ĵx = 1

2
(b̂†

Lb̂R + b̂†
Rb̂L ), Ĵy = − i

2
(b̂†

Lb̂R − b̂†
Rb̂L ),

Ĵz = 1

2
(b̂†

Lb̂L − b̂†
Rb̂R), (5)

obeying the SU(2) commutation relation [Ĵα, Ĵβ ] = iεαβγ Ĵγ .
The BH Hamiltonian in Eq. (4) thus can be rewritten as

ĤB = −2J0Ĵx, (6)

which describes the angular momentum precession of a
single-particle whose spatial degrees of freedom (DOFs) are
frozen. According to the definitions for Ĵx and Ĵz in Eq. (5),
we note that the kinetic energy in the BH model as well
as the population imbalance for the bosons between the two
wells are in analogy to the magnetizations of this single
particle along the x and the z axes. Moreover, the particle
number conservation in the Hamiltonian (4) corresponds to
the angular-momentum conservation

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z = NB

2

(
NB

2
+ 1

)
(7)

for the Hamiltonian (6).

For the case gIB = 0, the angular-momentum dynamics can
be simply integrated out from the corresponding Heisenberg
equations of motion, in which

Ĵy(t ) = Ĵz(0)cos(2J0t ) − Ĵy(0)sin(2J0t ),

Ĵz(t ) = Ĵy(0)cos(2J0t ) + Ĵz(0)sin(2J0t ), (8)

being the harmonic oscillations with the frequency ω0 =
2J0, and Ĵx(t ) = Ĵx(0) is time-independent since [Ĵx, ĤB] =
0. Further introducing the normalized vector �̂S(t ) = Ŝx(t )�i +
Ŝy(t )�j + Ŝz(t )�k with Ŝγ (t ) = Ĵγ (t )/J for γ = x, y, z and J =
NB/2, together with the fact that∑

γ=x,y,z

〈Ŝγ 〉2(t ) =
∑

γ=x,y,z

〈Ŝγ 〉2(0), (9)

one can readily show that the motion of the vector �̂S(t ) always
lies on the Bloch sphere with unit radius if, in addition, we
choose the initial state as the atomic coherent state (ACS) (see
below).

B. Classical dynamics

The above angular-momentum dynamics can alternatively
be understood in a classical manner. As we will show below,
the periodic motions for Ĵy(t ) and Ĵz(t ) [equivalently Ŝy(t )
and Ŝz(t )] correspond to the periodic oscillation of a classical
nonrigid pendulum around its equilibrium position, while the
conservation of Ĵx(t ) [Ŝx(t )] relates to the energy conservation
of this pendulum. To this end, we first adopt the mean-field ap-
proximation as b̂β = bβ (β = L, R), with bβ being a c-number
[64]. The quantum operators Ŝx, Ŝy, and Ŝz then should be
rewritten as

Sx = 1

2J
(b∗

LbR + b∗
RbL ), Sy = − i

2J
(b∗

LbR − b∗
RbL ),

Sz = 1

2J
(b∗

LbL − b∗
RbR). (10)

Employing the phase-density representation for bβ as bβ =√
NB

β eiθβ and further introducing the two conjugate variables

Z = (
NB

L − NB
R

)/
NB, ϕ = θR − θL, (11)

representing the relative population imbalance between the
two wells and the relative phase difference, respectively, we
arrive at

Sx =
√

1 − Z2cosϕ, Sy =
√

1 − Z2sinϕ, Sz = Z, (12)

whose dynamics are governed by the Hamiltonian

Hcl = −J0

√
1 − Z2cosϕ, (13)

which, as aforementioned, describes a nonrigid pendulum
with angular momentum Z whose length is proportional to√

1 − Z2 [7–9,65]. Comparing Eq. (12) to Eq. (13), we note
that Sy and Sz, being the classical counterpart of the quantum
operators Ŝy and Ŝz, now represent the horizontal displacement
and the angular momentum of this classical pendulum, while
the Sx (Ŝx) proportions to its total energy, which is conserved
during the dynamics.
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In this way, a one-to-one correspondence between the
quantum and classical dynamics is established in which the
periodic motions for Ŝy(t ) and Ŝz(t ) are mapped to the periodic
oscillations for this classical pendulum around its equilibrium
position. Since our focus is put on the dynamics of the pop-
ulation imbalance of the bosons, we compare the quantum
evolution Ŝz(t ) for the case gIB = 0 to the classical dynamics
Z (t ) in Fig. 1(b), and no discrepancies are observed among
them. Hence, for the case gIB = 0, we will always refer to the
classical Z (t ) dynamics as the quantum Sz(t ) evolutions. How-
ever, it should also be emphasized that the agreement between
Ŝz(t ) and Z (t ) takes place only for this noninteracting case.
For gIB > 0, on the one hand, the mixture has no classical
mapping, while on the other hand the quantum correlations
among the bosons come into play, thus one can witness even
a completely different quantum dynamics as compared to
the classical one, albeit that the bare Bose-Bose interaction
always vanishes (see below).

The above classical interpretation provides us not only with
a vivid picture for visualizing the quantum dynamics in a
classical manner, but also with the profound physical insights
with respect to its overall dynamical properties. In particular,
the periodic motions for Ŝy(t ) and Ŝz(t ) obtained from the
quantum simulations are a direct consequence of the inte-
grability of the classical Hamiltonian Hcl. Due to the energy
conservation for the case gIB = 0, Hcl is completely integrable
with all the corresponding classical trajectories, characterized
by [Z (t ), ϕ(t )], being periodic in time [66]. Such an inte-
grability is also transparently shown in the classical phase
space [see Fig. 1(c)]. Depending on the initial condition, two
distinguished types of motions are clearly observed: a peri-
odic trajectory orbiting around the fix point either located at
(Z = 0, ϕ = 0) or (Z = 0, ϕ = π ), referred as the zero- and
the π -phase mode for a 1D BJJ [5].

C. Breaking of the integrability

In contrast to the above integrable limit, the presence of
the impurity-Bose interaction leads to the energy transport
between the two species, and hence it breaks the integrability
for the bosonic species. To elaborate on this process in more
detail, we decompose the interspecies interaction into various
impurity-boson pair excitations,

ĤIB =
∞∑

i, j=0

∑
α,β=L,R

Ui jαβ â†
i â j b̂

†
α b̂β, (14)

with Ui jαβ = gIB
∫

dx φi(x)φ j (x)uα (x)uβ (x), and {φi(x)} be-
ing the single-particle basis for the DW potential. Moreover,
uL/R(x), being the above-mentioned localized Wannier-like
states, are constructed via a linear superposition of the lowest
two eigenstates φ0(x) and φ1(x). Note that Eq. (14) is obtained
by means of an expansion of the field operator for the impurity
ψ̂I (x) = ∑∞

i=0 φi(x)âi, and by employing the two-mode ap-
proximation in Eq. (3) for the bosonic species. In addition, all
the eigenstate wave functions {φi(x)} are chosen to be real due
to the preserved time-reversal symmetry in the single-particle
Hamiltonian hσ .

Next, we group different pair excitations with respect to
their bosonic indices as

ĤIB =
[ ∞∑

i, j=0

Ui jLRâ†
i â j b̂

†
Lb̂R +

∞∑
i, j=0

Ui jRLâ†
i â j b̂

†
Rb̂L

]

+
[ ∞∑

i, j=0

Ui jLLâ†
i â j b̂

†
Lb̂L +

∞∑
i, j=0

Ui jRRâ†
i â j b̂

†
Rb̂R

]
. (15)

By noticing the fact that

Ui jLR = Ui jRL, Ui jLL = ηUi jRR (16)

with η = 1 (η = −1) for ne,o = |i − j| being an even (odd)
number, together with the definitions given in Eq. (5), we
finally arrive at

ĤIB =
( ∞∑

i, j=0

U (1)
i j â†

i â j

)
2Ĵx +

( ∞∑
|i− j|=ne

U (2)
i j â†

i â j

)
N̂B

+
( ∞∑

|i− j|=no

U (3)
i j â†

i â j

)
2Ĵz

= Ĥ (1)
IB + Ĥ (2)

IB + Ĥ (3)
IB . (17)

Here U (1)
i j = Ui jLR = Ui jRL , U (2)

i j = Ui jLL = Ui jRR, and U (3)
i j =

Ui jLL = −Ui jRR. Let us emphasize that Eq. (16) relies on the
fact that the DW potential is spatially symmetric, thus all of
its single-particle eigenstates {φi} respect spatial parity sym-
metry.

Equation (17) transparently elaborates how the interspecies
interaction ĤIB breaks the integrability for the Hamiltonian
ĤB. Since both Ĥ (1)

IB and Ĥ (2)
IB commute with ĤB [cf. Eq. (6)],

it is the noncommutativity between Ĥ (3)
IB and ĤB that results

in the energy nonconservation for the bosonic species, and
breaks its integrability for gIB > 0. Further inspecting the Ĥ (3)

IB
term in more detail, we notice that it corresponds to all the
different single-particle excitations that reverse the impurity’s
spatial parity [see Fig. 1(a) for a schematic illustration]. With
this, we conclude that those parity-nonconservation transi-
tions of the impurity lead to the integrability breaking for the
majority bosonic species.

D. Initial condition

We prepare our impurity-Bose mixture initially as
|
(0)〉 = |φn〉 ⊗ |θ, ϕ〉, being a product state between the two
species. Here |φn〉 is the nth single-particle eigenstate for the
impurity, and |θ, ϕ〉 denotes the ACS given by [67,68]

|θ, ϕ〉 = 1√
NB!

[
cos

(
θ

2

)
b̂†

L + sin

(
θ

2

)
eiϕ b̂†

R

]NB

|vac〉

=
NB∑

NB
L =0

(
NB

NB
L

)1/2

cosNB
L (θ/2) sinNB

R (θ/2) eiNB
R ϕ

∣∣NB
L , NB

R

〉
,

(18)

which is the linear superposition of all the number states
{|NB

L , NB
R 〉} and fulfills the completeness relation

(NB + 1)
∫

d�

4π
|θ, ϕ〉〈θ, ϕ| = 1 (19)

033315-4



IMPURITY-INDUCED QUANTUM CHAOS FOR AN … PHYSICAL REVIEW A 104, 033315 (2021)

with d� = sinθ dθ dϕ being the volume element. Physically,
the ACS |θ, ϕ〉 corresponds to the classical state (Z, ϕ) in
such a way that cosθ = (NB

L − NB
R )/NB = Z controls the ini-

tial population difference for the bosons, and ϕ, possessing
the same meaning as its classical counterpart, determines the
phase difference between the two wells [63]. For a given ACS
|θ, ϕ〉, the mean values for the angular-momentum operators
introduced in Eq. (5) are [9]

〈Ŝx〉 = sinθcosϕ, 〈Ŝy〉 = sinθsinϕ, 〈Ŝz〉 = cosθ, (20)

which satisfies the normalization condition 〈Ŝx〉2 + 〈Ŝy〉2 +
〈Ŝz〉2 = 1. Together with Eqs. (8) and (9), we conclude that,

for the case gIB = 0, the motion of the �̂S(t ) vector starting
from an arbitrary ACS always lies on a Bloch sphere with unit

radius. Even for the case gIB > 0, where the vector �̂S(t ) can
jump out of the Bloch sphere significantly, the use of the ACS
still allows us to visualize the quantum trajectory in a classi-
cal manner (see below), which simplifies the analysis of the
complex quantum dynamics to a large extent while providing
insights for the classical-quantum correspondence. Finally, let
us note that the ACS has been implemented in recent ultracold
experiments in a controllable manner. Tuning a two-photon
transition between two hyperfine states of 87Rb atoms allows
for preparing an ACS with arbitrary |θ, ϕ〉 [69,70].

In this paper, we aim at exploring the dynamical response
of the majority bosonic species to the presence of the impurity.
To this end, we quench at t = 0 the impurity-Bose interaction
strength from initial gIB = 0 to some finite value gIB > 0, and
we monitor the quantum evolution of the bosonic population
imbalance starting from a balanced population. While the
initial state for the mixture is |
(0)〉 = |φn〉 ⊗ |θ, ϕ〉, without
other specifications we always choose the bosonic part being
|θ, ϕ〉 = |π/2, π/4〉. The corresponding Sz(t ) dynamics for
this initial ACS and for the case gIB = 0 has been discussed
in detail above and is presented in Fig. 1(b) (red solid line).
Furthermore, we also consider the scenarios for various initial
impurity states |φn〉 so as to explore their impact on bosonic
dynamics.

III. BOSONIC ITC TRANSITION

A. Onset of quantum chaos

Let us first focus on the case in which the impurity is
initially prepared in its ground state. The many-body ini-
tial state for the mixture is then given by |
(0)〉 = |φ0〉 ⊗
|π/2, π/4〉. Figure 2 depicts the real-time population imbal-
ance for the bosonic species Sz(t ) for various fixed postquench
impurity-Bose interaction strengths gIB = 0.01 [Fig. 2(a)],
gIB = 0.1 [Fig. 2(b)], and gIB = 1.0 [Fig. 2(c)], together with
the classical Z (t ) dynamics (all blue dashed lines), which,
as aforementioned, is equivalent to the Sz(t ) for gIB = 0.
For a weak impurity-Bose interaction (gIB = 0.01), the Sz(t )
dynamics is only slightly perturbed by the presence of the
impurity, thus it leads to the small deviations of the population
imbalance between the quantum and the classical simulations
[cf. Fig. 2(a), red solid line and blue dashed line]. For a larger
timescale (t > 5000), a “collapse-and-revival” behavior for
Sz(t ) is observed (the result is not shown here), manifesting
its near integrability in this weak interacting regime [9,65].
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FIG. 2. Time evolution of the bosonic population imbalance
Sz(t ) (red solid lines) for the initial state |
(0)〉 = |φ0〉 ⊗ |π/2, π/4〉
and for various fixed impurity-Bose interaction strengths, in which
(a) gIB = 0.01, (b) gIB = 0.1, and (c) gIB = 1.0. For comparison, the
classical Z (t ) dynamics is depicted as well (all blue dashed lines).

Further increasing the interaction strength, the quantum Sz(t )
evolution becomes much more complicated, and large dis-
crepancies between Sz(t ) and Z (t ) are observed with respect
to both the oscillation amplitude and the frequencies. For the
case gIB = 1.0, the quantum Sz(t ) dynamics quickly deviates
from the classical Z (t ) dynamics below the Ehrenfest time
th̄ ≈ 5 (see below) and becomes completely irregular [cf.
Fig. 2(c), red solid line], signifying the onset of quantum
chaos for the bosonic species.

To diagnose such an ITC transition, meanwhile, in order to
quantify the degree of the above observed quantum chaos, we
employ the linear entanglement entropy (EE)

SL = 1 − trρ̂2
1B (21)

for the bosonic species, which represents the bipartite entropy
between the single boson and the NB − 1 bosons after tracing
out the impurity [20,21]. Here ρ̂1B stands for the reduced
one-body density matrix for the bosonic species [63,71,72].
Before proceeding, let us point out the reason for not using
the spectral statistics as an indicator for the quantum chaos.
Similar to the situation for a single particle in a 1D harmonic
trap, the single DOF of the Hamiltonian ĤB for a fixed particle
number violates the Berry-Tabor conjecture, which states that
the energy level spacing distribution follows the universal
Poisson form for an integrable system [73–75]. As a result,
the variation of the level distribution for our mixture upon
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the increase of gIB can behave largely differently as compared
to other systems [75], and hence it is insufficient to capture
the quantum chaos. Upon a spectral decomposition of the
reduced density matrix ρ̂1B, SL in Eq. (21) can be expressed,
with respect to the natural populations {n1, n2}, as SL = 1 −∑2

i=1 n2
i . In this way, the linear EE alternatively measures

the degree of the decoherence for the bosonic species. Note
that the two-mode expansion employed in Eq. (3) results
in the single-particle Hamiltonian h(x) being restricted to a
two-dimensional Hilbert space and thus gives rise to only two
natural populations obtained from the spectral decomposition
[63]. For the case in which all the bosons reside in the same
single-particle state, the bosonic species is of complete coher-
ence. As a result, we have SL = 0. By contrast, for the case of
maximal decoherence, we have n1 = n2 = 1/2, which gives
rise to the upper bound for the linear EE as SL = 1/2. For the
case gIB = 0, the bosons are fully coherent in the course of the
dynamics. The growth of SL thereby alternatively measures
how the quantum Sz(t ) dynamics deviates from the classical
Z (t ) dynamics.

The linear EE has been extensively used in the QKT sys-
tems as a signature of quantum chaos [20,21]. Depending
on whether the corresponding classical trajectory is regular
or chaotic, the linear EE behaves as either slowly varying
for a long time or rapidly growing for a short time. The
latter is also referred to as the Ehrenfest time. Physically, the
Ehrenfest time denotes the timescale for a chaotic system in
which the expectation values of the quantum observables be-
come very different from their classical counterparts [76–78].
In our system, it is the time for observing large deviations
between the quantum Sz(t ) and the classical Z (t ) dynamics,
and it can be roughly estimated as th̄ ∼ 1

2λ
ln NB, with λ and

NB being the Lyapunov exponent and the number of bosons,
respectively [78]. Based on the above discussions, we note
that the Ehrenfest time is alternatively equivalent to the time
for observing the rapid growth of the linear EE values. On the
other hand, the infinite-time averaged values of the linear EE
for various initial ACSs additionally characterize the edge of
the quantum chaos, denoted as the border between the inte-
grable and the chaotic region in the corresponding classical
phase space [20,21]. Figure 3(a) reports the transient dynam-
ics of the linear EE for the cases examined in Figs. 2(a)–2(c).
At short times (t < 200), the SL(t ) evolution for a stronger
interaction exhibits a more rapid growth as compared to the
cases with a smaller gIB. This is particularly obvious for the
case gIB = 1.0, where we observe the linear EE surge to
the value SL = 0.38 at t = 10, while it only reaches SL =
0.02 (SL = 0.0007) for the case gIB = 0.1 (gIB = 0.01). With
this knowledge, we conclude that the different transient dy-
namical behaviors of the linear EE fully capture the ITC
transition that is observed in the dynamics of the bosonic
population imbalance. In addition, we shall also note that
the linear EE for t = 0 trivially vanishes since all the bosons
are initially condensed into the same single-particle state [cf.
Eq. (18)].

Having investigated the transient dynamics of the linear EE
for a specific ACS, let us now explore its asymptotic behaviors
with respect to different ACSs, which, as aforementioned,
characterize the edge of the quantum chaos. To this end, we
compute the infinite-time averaged value of the linear EE

FIG. 3. (a) The linear EE evolutions for the initial state |
(0)〉 =
|φ0〉 ⊗ |π/2, π/4〉 and for the postquench interaction strengths gIB =
0.01 (red solid line), gIB = 0.1 (green dashed line), and gIB = 1.0
(blue dash-dot line). (b) Infinite-time averaged values for the linear
EE for gIB = 1.0 and for various ACSs. (c) A typical classical phase
space for the BJJ with an attractive on-site interaction, where the red
stars denote the corresponding classical fixed points.

(ITEE) for the initial state |
(0)〉 = |φ0〉 ⊗ |θ, ϕ〉,

SL(θ, ϕ) = limT →∞
1

T

∫ T

0
dt SL(t ). (22)

Note that the impurity initially always occupies the ground
state |φ0〉, and in our practical numerical simulations the
time average is performed up to t = 104, being much larger
than any other timescales involved in the dynamics. Before
proceeding, let us point out the geometrical interpretation of
the ITEE value. To show it, we first rewrite the linear EE in
Eq. (21) for time t as [20,21]

SL(t ) = 1

2

[
1 −

∑
γ=x,y,z

〈Ŝγ 〉2(t )

]
, (23)

where we have used the relation

ρ̂1B = 1

2

[
1 +

∑
γ=x,y,z

〈Ŝγ 〉σ̂γ

]
, (24)

with {σ̂γ } being the Pauli matrices. Since SL(t ) is proportional

to the instant distance of the vector �̂S(t ) to the Bloch sphere,
SL thus measures its averaged distance for the entire dynam-
ics. From the results in the QKT systems [20,21], we note
that there exists a clear correspondence between the ITEE
values and the classical phase-space structure. Regions of low
ITEE correspond to regular trajectories, while regions of high
EE correspond to the chaotic trajectories. Moreover, a sudden
change of the ITEE value takes place as one crosses the bor-
der between the integrable and the chaotic region, which, as
aforementioned, characterizes the edge of the quantum chaos.
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Figure 3(b) depicts the computed ITEE values for various
ACSs for the case gIB = 1.0. Note that we have rescaled
the θ axis to cosθ since cosθ = Z (see the discussions in
Sec. II D). Varying the initial ACS, the ITEE value varies
accordingly. In particular, regions close to (cosθ = 0, ϕ = π )
and (cosθ = ±0.8, ϕ = 0, 2π ) possess significantly low ITEE
values as compared to the other places. Such a SL(θ, ϕ) profile
significantly deviates from the structure of the noninteracting
classical phase space. Instead, it bears a striking resemblance
to the phase space with an attractive Bose-Bose interaction,
with the positions for those fixed points precisely matching
those low ITEE regions [cf. Fig. 3(c), red stars]. Hence, we
note that this indicates an effective Bose-Bose attraction ex-
isting among the bosons. In Sec. IV C, we will discuss this
induced interaction in detail as well as its impact on the
bosonic dynamics.

B. Recovery of the integrability

In this section, we investigate the scenario in which the
impurity is initially pumped into a highly excited state. The
out-of-equilibrium dynamics again is triggered by a sudden
quench of the impurity-Bose interaction strength. Here, our
main aim is to show that the integrability of the bosonic
species is recovered by means of preparing the impurity in
a highly excited state. The initial condition of the impurity,
therefore, provides an additional DOF for controlling the ITC
transition of the majority bosonic species. Here, we note
that the employed notion of “integrability” specifically refers
to how close the bosonic dynamics in the interacting cases
(gIB > 0) is to the one in the noninteracting integrable case
(gIB = 0), which is different from the commonly used context
in which it is uniquely associated with the system’s Hamilto-
nian.

For illustrative purposes, we consider the impurity is
initially at |φ150〉, being the 150th excited state of the DW po-
tential, and we focus on the case for the postquench interaction
strength gIB = 1.0. The many-body state for t = 0 is again
given by |
(0)〉 = |φ150〉 ⊗ |π/2, π/4〉. The corresponding
quantum evolution of the bosonic population imbalance Sz(t )
is depicted in Fig. 4(a) (red solid line). As compared to the
classical Z (t ) dynamics [Fig. 4(a), blue dashed line], we find
a good agreement between them with negligible discrepan-
cies. Interestingly, these discrepancies are even much smaller
than the ones between Sz(t ) and Z (t ) for the case gIB = 0.01
[cf. Fig. 2(a)]. In addition, we also note that the negligible
increment of the corresponding linear EE in the course of the
dynamics alternatively signifies the recovery of the integrabil-
ity for the bosonic species [cf. Fig. 4(b)].

Having introduced a special case, let us now explore how
the ITC transition takes place among the bosons for the
impurity being pumped into the highly excited states. Fig-
ures 5(a)–5(d) depict the bosonic Sz(t ) dynamics for various
initial states of the impurity |φ10〉, |φ30〉, |φ50〉, |φ70〉 (all red
solid lines), together with the classical Z (t ) dynamics (all blue
dashed lines). We note again that the initial state for the whole
mixture is given by |
(0)〉 = |φk〉 ⊗ |π/2, π/4〉. As the im-
purity is excited from one excited state to the next, we find that
the bosonic Sz(t ) dynamics quickly approaches the classical
Z (t ) evolution, indicating the recovery of its integrability. In
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FIG. 4. Time evolution of the bosonic population imbalance
Sz(t ) for gIB = 1.0 and for the initial state |
(0)〉 = |φ150〉 ⊗
|π/2, π/4〉 (red solid line), together with the classical Z (t ) dynamics
(blue dashed line), which corresponds to the Sz(t ) dynamics for
gIB = 0. (b) The evolution of the linear EE for the corresponding
case.

addition, we compute the ITEE S
k
L for the bosons as a function

of the impurity initial state |φk〉 as well [cf. Fig. 5(e)]. Based

on our previous discussions, the monotonous decrease of S
k
L

for increasing k again manifests the observed bosonic ITC
transition.

IV. SPECTRAL ANALYSIS AND INDUCED INTERACTION

To shed light on the physics for the above-analyzed bosonic
dynamics, hereafter we perform a detailed spectral analysis
for the mixture with respect to both the energy spectrum and
the eigenstates via a numerically exact diagonalization (ED).
In particular, we would like to unveil the physical origin for
the observed ITC transition for the bosonic species manifested
by the corresponding dynamics of the population imbalance.
Moreover, we will discuss the presented Bose-Bose attraction
induced by the impurity as well as its impact on the bosonic
dynamics.

A. Spectral structure

Let us begin with the case for gIB = 0. In the absence of
the interspecies interaction, the two species are completely
decoupled. As a result, the eigenenergy of the mixture is
trivially given by E = εk + εB

l , with εk and εB
l being the kth

and lth eigenvalue for the subsystem Hamiltonians ĤI and
ĤB, respectively. Due to the neglected Bose-Bose interaction,
the many-body spectrum for ĤB is always equidistant with
the energy difference 2J0 between the two successive levels,
which accounts for the harmonic oscillation of the Sz(t ) dy-
namics for the case gIB = 0 [cf. Fig. 1(b)]. As for the impurity,
due to the rapid growth of the energy difference between
two successive eigenstates, the single-particle spectrum is
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FIG. 5. (a)–(d) Time evolution of the bosonic population im-
balance Sz(t ) for gIB = 1.0 and for the initial state of the impurity
(a) |φk (t = 0)〉 = |φ10〉, (b) |φk (t = 0)〉 = |φ30〉, (c) |φk (t = 0)〉 =
|φ50〉, and (d) |φk (t = 0)〉 = |φ70〉 (all red solid lines), together with
the classical Z (t ) dynamics (all blue dashed lines). (e) The computed

bosonic ITEE S
k
L for various initial states |φk〉 of the impurity.

inhomogeneous in which the high-energy part is much more
sparse as compared to the low-energy one [cf. Fig. 1(a)]. An
important consequence for such a spectral structure on the
mixture’s many-body spectrum is the following. For δi > �B,
with δi = εi+1 − εi being the energy difference between the
ith and the (i + 1)th single-particle eigenstates for the DW
potential (see also the discussions in Sec. II A), and �B rep-
resenting the width of the spectrum for the Hamiltonian ĤB, a
bandlike structure is naturally formed in the high-energy part
of the many-body spectrum with the band gap being δi − �B,
while the energy levels within each band are equidistant.

This simple picture, however, ceases to be valid upon the
variation of the impurity-Bose interaction. Indeed, the in-
clusion of the interspecies interaction introduces additional
coupling between the two subsystems, and, as a result, our
spectral analysis needs to be performed with respect to the
complete mixture. Figure 6 showcases the many-body spec-
trum as a function of the interspecies interaction strength gIB.
Due to the preserved spatial parity symmetry in the Hamil-
tonian Ĥ , we present here only half of the spectrum which
corresponds to the even-parity eigenstates. With the increase

FIG. 6. Energy spectrum of the mixture as a function of
impurity-Bose interaction strength gIB. (a) High-energy part of the
spectrum. (b) A zoom-in view of the high-energy spectrum. (c) Low-
energy part of the spectrum. (d) A zoom-in view of the low-energy
spectrum.

of gIB, the low-energy spectrum shows many avoided cross-
ings among the energy levels, which is in sharp contrast to
the high-energy spectrum, where only a linear growth of their
values is observed [cf. Figs. 6(a) and 6(c)]. Moreover, for the
high-energy spectrum, features like the bandlike structure as
well as the equidistant energy levels within each band that
are present in the noninteracting limit are retained in the
interacting cases as well.

The above two distinguished spectral behaviors can
roughly be understood via the structure of the impurity’s
single-particle spectrum [cf. Fig. 1(a)]. Due to the large energy
separations among those highly excited states, the transitions
for the impurity among those states are significantly prohib-
ited. From a many-body perspective, the resulting high-energy
effective Hamiltonian of the mixture reads Ĥ ′ = ĤI + ĤB +
Ĥ ′

IB, with

ĤI =
∑
i�1

εiâ
†
i âi, ĤB = −2J0Ĵx,

Ĥ ′
IB ≈

∑
i�1

2U (1)
i Ĵx + U (2)

i N̂B ≈
∑
i�1

U (2)
i N̂B. (25)

Here U (1)
i = UiiLR = UiiRL , U (2)

i = UiiLL = UiiRR, and we no-
tice that U (1)

i = gIB
∫

dx φi(x)φi(x)uL(x)uR(x) ≈ 0, due to the
negligible spatial overlap between the two localized states
uL(x) and uR(x). Before proceeding, we note the validity
condition for the above high-energy effective Hamiltonian
as δi � εIB and δi � �B, with εIB being the interspecies
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interaction energy per particle. Equation (25) explains the
observed high-energy spectral behaviors as follows: since the
interspecies interaction Ĥ ′

IB now becomes the “zero-point”
energy of the mixture, the increment of the gIB thus only raises
the energy level for those highly excited states. As a result, the
bandlike structure as well as equidistant nature that are formed
in the noninteracting case are naturally preserved.

In contrast, the densely distributed low-energy (single-
particle) spectrum of the impurity facilitates the transitions
among different (low-lying) many-body eigenstates caused by
the interspecies interaction ĤIB [cf. Eq. (17)]. With increasing
gIB, this results in the above observed avoided level crossings
among the low-energy many-body spectrum [14].

B. Eigenstate delocalization

The avoided level crossings in the low-energy spectrum
impact the characteristics of the corresponding eigenstates as
well. Specifically, it results in a significant delocalization for
those low-lying eigenvectors with respect to an integrable ba-
sis (see below), which, in turn, accounts for the chaotic nature
of the bosonic nonequilibrium dynamics. To demonstrate this,
we introduce the Shannon entropy

SS
j = −

∑
k

ck
j ln ck

j (26)

for a many-body eigenstate |� j〉 of the mixture as a mea-
sure of the delocalization [79,80]. Here ck

j = |〈ψk|� j〉|2, with
{|ψk〉} being the eigenbasis for the Hamiltonian ĤB that is
used as the “integrable basis.” The Shannon entropy thereby
measures the number of these integrable basis vectors that
contribute to each eigenstate. As a result, the lower the Shan-
non entropy value is, the closer this eigenstate |� j〉 is to
a noninteracting eigenvector. From the random matrix the-
ory (RMT), for a chaotic system described by the Gaussian
orthogonal ensemble (GOE), the amplitudes ck

j are indepen-
dent random variables, and all eigenstates are completely
delocalized [14]. However, due to the spectral fluctuations,
the weights {ck

j} fluctuate around 1/D, yielding the averaged
value SGOE = ln (0.48D) [79,80]. Here, we refer to D = NB +
1 as the Hilbert space dimension for the bosonic species,
which is different from the single-species cases [79,80].

Figure 7(a) presents the Shannon entropy of the many-body
eigenstates as a function of their quantum numbers j (sorted in
ascending order with respect to the energy) for the case gIB =
1.0. The distinguished localization nature between the low-
lying and the highly excited eigenvectors is clearly exhibited.
While those low-energy eigenvectors are delocalized with the
corresponding Shannon entropy values close to the result from
the GOE, SGOE = 3.8812, for increasing j a decrease of the
SS

j value is clearly observed, indicating that those high-energy
eigenvectors are significantly localized. Thus, we may further
conjecture that SS

j → 0 for j → ∞. Physically, the avoided
level crossings in the low-energy spectrum result in a strong
mixing of different eigenstates with respect to their physical
properties. In this way, an eigenstate from the noninteracting
basis can be largely delocalized after experiencing a series of
avoided level crossings [14]. On the other hand, the localized
nature for those high-lying excited states can also be readily
seen from the effective Hamiltonian in Eq. (25). Since here

FIG. 7. (a) Shannon entropy SS
j for the many-body eigenstates

as a function of quantum number j for the case gIB = 1.0. The red
dashed line denotes the Shannon entropy from the GOE SGOE =
3.8812. (b) von Neumann entropy SV

j for the eigenstates for the
case gIB = 1.0. (c) Expansion coefficients Aj = |〈
(0)|� j〉|2 with
respect to eigenstates for initial states |
(0)〉 = |φ0〉 ⊗ |π/2, π/4〉
(left part) and |
(0)〉 = |φ150〉 ⊗ |π/2, π/4〉 (right part) and for the
cases gIB = 0.0 (red solid line, and denoted as A0

j ) and gIB = 1.0
(blue dashed line, and denoted as A1

j ).

Ĥ ′
IB corresponds to the “zero-point” energy of the mixture, it

is not surprising that the interacting basis (eigenstates of the
mixture for gIB > 0) is similar to the noninteracting integrable
basis.

Before proceeding, let us highlight that the degree of lo-
calization for an eigenstate |� j〉 also reflects the degree of
encoded entanglement between the impurity and the majority
bosons. To see this, we employ the von Neumann entropy for
an eigenstate |� j〉 [41,81],

SV
j = −tr(ρ̂ j ln ρ̂ j ), (27)

with ρ̂ j = |� j〉〈� j | being the corresponding density matrix.
For the case in which the two species are nonentangled, the
eigenstate |� j〉 is simply of a product form with respect to the
wave functions of the two species. Correspondingly, it gives
rise to the von Neumann entropy SV

j = 0. By contrast, any
existing entanglement between the two species will lead to
an increase of the von Neumann entropy; therefore, one can
anticipate large SV

j values for those highly entangled eigen-
states. The corresponding von Neumann entropies for various
eigenstates for the case gIB = 1.0 are shown in Fig. 7(b). As
compared to Fig. 7(a), a striking resemblance between the SV

j

and SS
j distributions is transparently observed, manifesting the

existence of the correspondence between a delocalized (local-
ized) eigenstate to a large (small) von Neumann entropy value.
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FIG. 8. Time-averaged Husimi distribution for the initial state |
(0)〉 = |φ0〉 ⊗ |π/2, π/4〉 and for (a) gIB = 0.0 and (b) gIB = 1.0.
Moreover, the black solid line in (a) denotes the classical trajectory starting from the phase point (Z = 0, ϕ = π/4). (c) The evolution of
the pair-correlation function go

2(t ) (blue solid line) and gd
2(t ) (red dashed line) for the case examined in (b).

Based on this knowledge, we refer to the above eigenstate
delocalization as entanglement-induced delocalization.

Finally, let us discuss the impact of the eigenstate delo-
calization on the bosonic nonequilibrium dynamics. For the
case |
(0)〉 = |φ0〉 ⊗ |π/2, π/4〉, the initial state is mainly a
linear superposition of those low-lying eigenvectors for both
gIB = 0 and 1.0 [cf. Fig. 7(c), the left part]. Due to the delo-
calization nature for the eigenstates of the mixture for large
interspecies interactions, the expansion coefficients {A1

j} for
gIB = 1.0 are broadly distributed as compared to those ({A0

j})
for gIB = 0.0, reflecting the fact that many more eigenstates
are involved in the bosonic dynamics. Since the energy levels
for the interacting case are no longer equidistant, completely
irregular behaviors arise for the above Sz(t ) dynamics [cf.
Fig. 2(c)]. In contrast, those highly excited states in the inter-
acting basis preserve the main features of the noninteracting
basis, leaving a similar distribution of the corresponding ex-
pansion coefficients [cf. Fig. 7(c), the right part]. Together
with the equidistant nature for those high-lying energy levels,
it thereby accounts for the integrable Sz(t ) motion for the
initial state |
(0)〉 = |φ150〉 ⊗ |π/2, π/4〉 and for the case
gIB = 1.0.

C. Induced Bose-Bose attraction

The presence of the impurity not only brings the bosonic
species into the chaotic regime, yielding an irregular behavior
for the corresponding Sz(t ) motion, but it also fundamentally
changes its dynamical properties. As we will show below, the
impurity effectively induces an attractive Bose-Bose interac-
tion, which, in turn, leads to a completely different quantum
trajectory as compared to the integrable case. To show it,
we employ the time-averaged Husimi distribution (TAHD)
[20,63,82]

QH (θ, ϕ) = limT →∞
1

T

∫ T

0
QH (θ, ϕ, t )dt, (28)

with

QH (θ, ϕ, t ) = NB + 1

4π
〈θ, ϕ|ρ̂B(t )|θ, ϕ〉, (29)

and ρ̂B(t ) is the reduced density matrix for the bosonic
species after tracing out the impurity. According to

Eq. (19), QH (θ, ϕ, t ) satisfies the normalization condition∫
QH (θ, ϕ, t )d� = 1. Physically, the TAHD represents the

probability for the bosons to locate at a specific ACS |θ, ϕ〉
averaged over the entire dynamics, which, with respect to its
physical meaning, resembles the probability density function
(PDF) for a classical trajectory. In this sense, we note that the
TAHD represents a quantum trajectory in an averaged manner.

The computed TAHD for the initial state |
(0)〉 = |φ0〉 ⊗
|π/2, π/4〉 and for the case gIB = 0 is depicted in Fig. 8(a),
together with the classical trajectory governed by the Hamilto-
nian Hcl and starting from the phase point (Z = 0, ϕ = π/4)
(black solid line). Compared to the classical trajectory, we
note that the TAHD profile fully captures its main character-
istic with those high QH (θ, ϕ) regions precisely matching the
positions for this classical trajectory, which additionally man-
ifests the agreement between the quantum Sz(t ) and classical
Z (t ) dynamics for the case gIB = 0 [cf. Fig. 1(b)]. The TAHD
for gIB = 1.0, however, deviates from the noninteracting case
significantly and bears a striking resemblance to the classical
trajectory corresponding to the BH Hamiltonian in Eq. (4)
with an on-site attraction [cf. Figs. 8(b) and 3(c)]. In this
sense, we conjecture that an effective Bose-Bose attraction is
induced by the impurity in the dynamics, which, in turn, alters
the corresponding quantum trajectory.

This expectation is indeed confirmed by analyzing the pair-
correlation function [40,41,64]

g2(α, β ) = ρB
2 (α, β )

ρB
1 (α)ρB

1 (β )
(30)

for the bosons, with ρB
2 (α, β ) and ρB

1 (α) being the reduced
two- and one-body density for the bosonic species, and α, β =
L, R. Physically, ρB

2 (L, R) denotes a measure for the joint
probability of finding one boson at the left well while the sec-
ond is at the right well. Through the division by the one-body
densities, the g2 function excludes the impact of the inho-
mogeneous density distribution and thereby directly reveals
the spatial two-particle correlations induced by the interaction
[40,41]. Based on this knowledge, let us first elaborate on the
g2 function for the noninteracting case, which corresponds to
the TAHD depicted in Fig. 8(a). Since there is no interaction
among the particles, all the bosons thus can independently
hop between the two wells, which always results in go

2 =
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gd
2 = 1, with go

2 = g2(α, α) [gd
2 = g2(α, β �= α)] being the

two-particle correlations within the same well (between the
two wells). By contrast, the presence of the impurity-Bose
interaction largely changes the above g2 profile. As shown
in Fig. 8(c), the g2 function quickly deviates from the initial
values go

2 = gd
2 = 1 to go

2 > 1 and gd
2 < 1 for t < 5 and persis-

tently oscillates around their asymptotic values go
2 = 1.28 and

gd
2 = 0.72, respectively. Physically, such an evolution of the

g2 function indicates that the bosons are in favor of bunch-
ing together with a collective tunneling between the wells
in the dynamics, which evidently manifests the existence of
the Bose-Bose attraction induced by the impurity-Bose repul-
sion. It is worth noting that, in Ref. [53], a similar effective
Bose-Bose attraction induced by the impurity is predicted via
the adiabatic elimination of the impurity. While this method
is fully based on a mean-field analysis as compared to our
above discussions being in the deep quantum regime, it is
indeed interesting that two different approaches lead to similar
conclusions.

V. CONCLUSIONS AND OUTLOOK

We have demonstrated that a noninteracting ultracold
many-body bosonic ensemble confined in a 1D DW potential
can exhibit a chaotic nature due to the presence of a single im-
purity. We trigger the nonequilibrium dynamics by means of a
quench of the impurity-Bose interaction and monitor the evo-
lution of the population imbalance for the bosons between the
two wells. While the increase of the postquench interaction
strength always facilitates the chaotic motion for the bosonic
population imbalance, it becomes regular again for the cases
in which the impurity is initially prepared in a highly excited
state. Employing the linear entanglement entropy, it not only
enables us to characterize such an ITC transition, but it also
implies the existence of an effective Bose-Bose attraction in
the dynamics induced by the impurity. To elucidate the phys-

ical origin for the above observed ITC transition, we perform
a detailed spectral analysis for the mixture with respect to
both the energy spectrum as well as the eigenstates. In par-
ticular, two distinguished spectral behaviors upon a variation
of the interspecies interaction strength are observed: while the
avoided level crossings take place in the low-energy spectrum,
the energy levels in the high-energy spectrum possess the
main features of the integrable limit. Consequently, it results
in a significant delocalization for the low-lying eigenvectors,
which, in turn, accounts for the chaotic nature of the bosonic
dynamics. In contrast, those highly excited states bear a high
resemblance to the noninteracting integrable basis, rendering
the recovery of the integrability for the bosonic species. Fi-
nally, we discuss the induced Bose-Bose attraction as well as
its impact on the bosonic dynamics.

Possible future investigations include the impact on the
bosonic dynamics with the inclusion of several additional
impurities and/or the bare Bose-Bose repulsion. Since for
the latter there exists a competition between the bare Bose-
Bose repulsion and the induced attractive interaction, this
may significantly affect the bosonic ITC transition. Another
interesting perspective is the study of the chaotic dynamics for
an atomic mixture consisting of atomic species with different
masses. The impact of the higher bands of the DW potential,
beyond the two-site BH description for the bosonic species, is
also an interesting perspective.
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[38] D. Pęcak, A. S. Dehkharghani, N. T. Zinner, and T. Sowiński,
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