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Radio-frequency evaporation in an optical dipole trap
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We present an evaporative cooling technique for atoms trapped in an optical dipole trap that benefits from
narrow optical transitions. For an appropriate choice of wavelength and polarization, a single laser beam leads
to opposite light shifts in two internal states of the lowest-energy manifold. Radio-frequency coupling between
these two states results in evaporative cooling at a constant trap stiffness. The evaporation protocol is well adapted
to several atomic species, in particular to the case of Lanthanides such as Er, Dy, and fermionic Yb, but also to
alkali-earth metals such as fermionic Sr. We derive the dimensionless expressions that allow us to estimate the
evaporation efficiency. As a concrete example, we consider the case of 162Dy and present a numerical analysis
of the evaporation in a dipole trap near the J ′ = J optical transition at 832 nm. We show that this technique can
lead to runaway evaporation in a minimalist experimental setup.
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I. INTRODUCTION

A key step to achieve Bose-Einstein condensation [1] is the
evaporative cooling technique introduced in the 1990s [2–5].
Such a mechanism is qualitatively simple to understand; parti-
cles with high energy, above a given cutoff energy, εc, are lost
from the system followed by subsequent thermalization. The
truncated Boltzmann distribution readjusts, and the tempera-
ture falls at the cost of particle loss.

This process has proved successful in cold atom experi-
ments, in both magnetic and optical traps [6–10]. In magnetic
traps, a magnetic field gradient ensures that atoms prepared in
a low-field seeking internal state are trapped while atoms in
a high-field seeking state are expelled. The coupling between
the two states is ensured by a radio-frequency (RF) photon,
whose frequency is progressively swept to reduce the cutoff
energy. For efficient evaporative cooling to occur the elastic
collision rate, �el., needs to dominate over the loss rate, �loss.
In that case, evaporative cooling accelerates over time, reach-
ing degeneracy at the cost of minimal particle loss.

Nowadays, most cold atom experiments use evaporative
cooling in optical dipole traps as it allows the cooling of dif-
ferent internal states and species with zero magnetic moment
[11–16]. However, it comes at the cost of reduced evaporation
efficiency, as the evaporation is performed by continuously
decreasing the trap depth, which softens the potential and
reduces the elastic collision rate [17]. More elaborated strate-
gies, such as addressing resonant optical transitions [18],
combining dipole traps with very different volumes [19–21],
or changing the s-wave scattering length, a, [15] during the
evaporation, allow us to mitigate this issue but lead to an
enhanced experimental complexity and secondary inelastic
processes [22].

Here, we propose to cool a sample trapped in a single
Gaussian laser beam, with wavelength λL, close to a narrow

optical transition λ1 (see Fig. 1). The two lowest-energy states,
|d〉 and |b〉, can, for a given polarization, feel opposite light
shifts. For instance, if |d〉 is not coupled to |e1〉 (see Fig. 1),
its polarizability is set by other far-detuned excited states, that
we regroup under |e2〉, from which the laser beam is detuned
by �, with |�| � δ. On the other hand, the polarizability
of the bright state |b〉 is, to a good approximation, simply
defined by the detuning from the narrow optical transition, δ,
and the transition linewidth �. For δ > 0, |b〉 has a negative
polarizability and therefore the atoms feel a repulsive potential
at the intensity maximum, while atoms in |d〉 are trapped for
� < 0. Coupling the two internal states, for instance through
radio frequency, results in evaporative cooling in an optical
trap with a fixed trap stiffness, where εc is set by the radio
frequency.

This technique is experimentally simple to implement as it
only requires a single, tightly focused, laser beam overlapping
with the atomic cloud. Several advantages of optical dipole
traps are still applicable, such as the possibility to cool two
distinct internal states, in the case of two dark states, sym-
pathetic cooling of atomic mixtures, and evaporative cooling
of states with zero magnetic moment. Moreover, the same
protocol can be extended to boxlike potentials [23]. Compared
to the cooling technique reported in Ref. [18], our method is
experimentally less demanding as we do not require a long-
lived metastable state nor antimagic wavelengths.

II. APPLICABILITY TO DIFFERENT ATOMIC SPECIES

In summary, two main ingredients are required to perform
the discussed radio-frequency evaporation in an optical dipole
trap: a ground manifold with a nonzero total spin and a narrow
optical transition. Importantly, the narrowness of the optical
transition ensures that atoms in |b〉 are not repumped into
|d〉 before escaping the laser beam spatial profile. For that
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FIG. 1. Schematic representation of RF evaporation in an optical
dipole trap. (a) Schematic energy representation of the two lowest-
energy states |d〉 and |b〉, and excited states |e1〉 and |e2〉. A laser
beam with wavelength λL induces opposite light shifts for the two
states. (b) Spatial dependence of the optical potential for the dark
state |d〉 and bright state |b〉 for �/δ < 0. Radio-frequency couples
the two states and defines the cutoff energy for atoms in |d〉.

purpose, the incoherent photon scattering rate needs to be
much smaller than the escaping rate, which translates, for
|�| � δ, into the condition δ/� �

√
Ub mw2

0/h̄2 , where
Ub = h̄�2/δ is the repulsive potential felt by atoms in |b〉, �

the Rabi frequency, w0 the laser beam radius at 1/e2, h̄ the
reduced Planck constant, and m the atomic mass.

Dysprosium and erbium atomic species verify both condi-
tions, and are thus good candidates for the envisioned cooling
protocol. In the case of dysprosium, an interesting choice
is the J ′ = J transition with wavelength λ1 ≈ 832 nm, and
linewidth � ≈ 2π × 11 kHz. A similar transition exists for
erbium around 847.5 nm [24]. Other species can also benefit
from this evaporation protocol, such as fermionic strontium
and ytterbium near the narrow optical transitions F → F ′ =
F at 689 nm and 556 nm, respectively [16,25], or in the case
of titanium, using the J ′ = J = 4 transition at 546 nm with
linewidth � ≈ 2π × 300 kHz [26].

III. RATE EQUATIONS

In order to estimate the evaporation efficiency of this
protocol we use the truncated Boltzmann distribution approx-
imation developed in Ref. [3]. Using a constant value of
η = εc/kBT , we write the instantaneous time variation of the
atom number, N , total energy, E , and temperature, T ,

Ṅ = Ṅev. + Ṅspl. + Ṅloss (1)

Ė = Ėev. + Ėspl. + Ėloss + Ėheat. (2)

Ṫ /T = Ė/E − Ṅ/N, (3)

where Nev. and Eev. are associated to atom loss and energy
reduction through evaporation, Nspl. and Espl., to parti-
cle spilling from the trap, Nloss and Eloss one-body losses
through collisions with the residual background gas, and Eheat.

heating induced by incoherent photon scattering processes
(see below). The internal energy is given by E = NkBT c̃, with

c̃ = d ln ξ/d ln T , and ξ = (1/nλ3)
∫ ∞

0 dε ρ(ε) f (ε), where

ρ(ε) = 2π (2m)3/2

(2π h̄)3

∫
U (r)�ε

d3r
√

ε − U (r), (4)

is the energy density of states, f (ε) = nλ3e−ε/kBT �(εc − ε)
the truncated Boltzmann distribution, U (r) the conservative
optical potential felt by atoms in d , n the density, λ the de-
Broglie wavelength, kB the Boltzmann constant, and �(ε) the
Heaviside step function.

Four processes define the evolution of temperature and
atom number [3–5,27]. The loss of particles through evapo-
ration leads to changes of atom number and total energy,

Ṅev./N = −�ev. nσv (5)

Ėev./E = −�ev.

c̃
κ̃ nσv, (6)

with evaporation rate �ev. = e−η Vev./Ve, where κ̃ = (η +
1 − Xev./Vev. ) and volumes Vev., Xev., Ve are given in
Appendix A. The elastic cross section is given by σ = 8πa2,
and the average speed by v = √

8kBT /πm.
Spilling also occurs as the cutoff energy is progressively

changed. This mechanism induces losses (see Appendix B)

Ṅspl./N = ξ̃
Ṫ

T
, (7)

where ξ̃ = e−ηρ(εc)εc/ξ , and an energy change

Ėspl./E = ηξ̃

c̃

Ṫ

T
. (8)

High-energy collisions with the residual background gas lead
to the atom number reduction

Ṅloss/N = −�loss, (9)

with one-body loss rate, �loss, and to an energy change

Ėloss/E = −�loss, (10)

without heating.
Finally, we also take into account the residual heating as-

sociated with incoherent light scattering processes induced by
the laser beam, which increases the total energy

Ėheat./E = (Q/c̃ kBT ), (11)

where Q = 2U0 ωrec Im[α]/ Re[α], U0 the potential depth, α

the polarizability, and h̄ωrec the recoil energy. We assume a
constant value of Q and neglect particle losses resulting from
this process.

Efficient evaporation is characterized by an increasing elas-
tic collision rate, �el. = nσv, which accelerates the sample’s
thermalization, leading to runaway evaporation. Combining
Eqs. (1)–(3) with Eqs. (5)–(11), we express the density and
velocity time evolution,

ṅ

n
= Ṅ

N
− c̃2

Ṫ

T
= −�loss + �ev. nvσ

[
(c̃2 − ξ̃ )(κ̃ − c̃)

c̃ − ξ̃ (η − c̃)
− 1

]

+ Q

kBT

ξ̃ − c̃2

c̃ − ξ̃ (η − c̃)

v̇

v
= 1

2

Ṫ

T
= −�ev.

2
nvσ

κ̃ − c̃

c̃ − ξ̃ (η − c̃)
+ Q

kBT

1

c̃ − ξ̃ (η − c̃)
,
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FIG. 2. Evolution of the normalized elastic collision rate for
Ũ0 = 1.25, η = 5.8, and s = 10−7, where Ũ0 = U0/εc(t = 0), s char-
acterizes heating due to spontaneous emission and r one-body losses.
The light blue curves correspond to values of r for which the elastic
collision rate increases monotonically with time until a gain of three
decades is reached in phase-space density. For values of r > 10−2.34

this is no longer the case (red dashed). The black (straight) line
represents the elastic collision rate evolution for the limiting case.

with c̃2 = c̃ + ξ̃ − 3/2. These expressions can be simplified
by normalizing the density and averaged speed by their re-
spective values at t = 0, n → n/n0, and v → v/v0. The time
is normalized by the initial collision timescale, t → t �

(0)
el.

where �
(0)
el. = n0σv0. The coupled equations are then given by

ṅ/n = −r + A(η, v) nv − Ũ0B(η, v)
s

v2
(12)

v̇/v = −C(η, v) nv + Ũ0D(η, v)
s

v2
, (13)

with Ũ0 = U0/εc (t = 0), and A(η, v), B(η, v), C(η, v),
D(η, v) dimensionless, positive, functions, which tend to a
constant value when v → 0 (see Appendix C). The dimen-
sionless quantities r = �loss/�

(0)
el. and s = Im[α]

Re[α] (ωrec/�
(0)
el. )

relate to experimental limitations. In detail, r characterizes
one-body losses, and s heating due to spontaneous emission.
A larger s means a larger heating and a larger r more losses.

From the coupled equations Eqs. (12)–(13), one can now
estimate if the finite values of r and s hinder an efficient evap-
oration. Since the heating rate associated with incoherent light
scattering processes gains relevance as the temperature drops,
the initial evolution of the elastic collision rate is not sufficient
to identify the limiting experimental parameters. Therefore,
we evolve the coupled equations until the phase-space den-
sity increases by three decades in logarithmic scale. As an
example, we show in Fig. 2, the time evolution of the normal-
ized elastic collision rate, �el. = nv, for Ũ0 = 1.25, η = 5.8,
s = 10−7, and different loss rate values. For r < 10−2.34 the
elastic collision rate increases monotonically with time result-
ing in a faster evaporation. This is clear from the fact that
the same gain in phase-space density is reached earlier for
smaller values of r. For r ≈ 10−2.34 the elastic collision rate

FIG. 3. Maximum value of r as a function of η for (a) Ũ0 = 100,
(b) 10, (c) 2.5, and (d) 1.25. The different lines correspond to values
of s = 10−7.5 (light blue circles), s = 10−6.5 (red diamonds), s =
10−5.5 (green squares), and s = 10−4.5 (black circles). The dashed
line corresponds to the harmonic trap result r = 0.0033, for s = 0.
The lines are a guide for the eye.

reaches a plateau as the phase-space density approaches its
final value. We define this maximum value of r as a threshold
above which accelerated evaporation is impossible. However,
this maximum does not imply a diverging elastic collision
rate.

The same analysis is performed for different values of Ũ0,
s, and η as shown in Fig. 3. In the absence of incoherent
photon scattering processes (s → 0) and an infinitely deep
trap (Ũ0 → ∞), we recover the well-known result r = 0.0033
[5],1 as the cloud only explores the harmonic part of the
dipole trap. In that limit, runaway evaporation is hindered as
spontaneous emission becomes non-negligible, typically for
s � 10−6 [see Fig. 3(a)]. From an experimental point of view,
a small value of Ũ0 is preferable, i.e., an initial cutoff energy
approximately equal to the trap depth [see Fig. 3(d)]. In that
case, the one-body loss rate condition is not too stringent for
s � 10−4. Intuitively, this could be expected from Eqs. (12)–
(13), but the dependence of B(η, v), and D(η, v) on the initial
cutoff energy makes this assumption a priori not obvious.
With that in mind, and since r and s are imposed by the initial
experimental conditions, the values of η leading to an efficient
evaporation can be extracted from the results shown in Fig. 3.

IV. SPECIFIC EXAMPLE FOR 162Dy

To demonstrate the relevance of the cooling protocol,
we consider the specific example of 162Dy (nuclear spin
I = 0), with atoms trapped in a circular polarized (σ−)
laser beam, blue detuned from the J ′ = J optical transi-
tion with wavelength λ1 ≈ 832 nm. For δ ≈ 2π × 40 GHz
the two lowest-energy states |d〉 = |J,−J〉 and |b〉 = |J,

1See also C. Cohen-Tannoudji lectures at Collège de France,
December, 3, 1996.
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FIG. 4. Results of RF evaporation in a single optical dipole trap.
(a) Gain in phase-space density as a function of time for η = 7 (red
dashed line) and η = 9 (light-blue straight line). (b) Logarithmic plot
of the phase-space density as a function of the total atom number for
η = 7 (red dashed line) and η = 9 (light-blue straight line), resulting
in γ ≈ 3.95, and 5.52, respectively. (c) Initial evaporation efficiency
γ , as a function of η. The line is a guide for the eye.

−J + 1〉 have opposite polarizabilities αd = −αb = 190.4 α0,
with α0 = 4πε0a3

0 and a0 the Bohr radius [28]. The other
internal states feel a strong nonlinear Zeeman shift induced
by the laser beam and are not coupled by radio frequency.
The ratio of real and imaginary parts of the polarizabil-
ity for the two states are (Re[αd ]/ Im[αd ]) ≈ 2.8 × 107 and
(Re[αb]/ Im[αb]) ≈ −3.2 × 106 ∼ −δ/�, which ensures that
repumping from state |b〉 to |d〉 is negligible over the time
needed for atoms in |b〉 to leave the spatial extend of the laser
beam.

We consider a spin-polarized atomic ensemble with ini-
tial temperature T (t = 0) = 30 μK, and initial density n0 =
1013 cm−3, resulting in �

(0)
el. = 750 s−1, s = 5.3 × 10−7 and

initial phase-space density D0 = nλ3 = 1.6 × 10−4. Further-
more, we assume a one-body loss rate �loss = 1/60 s−1, corre-
sponding to r = 2.2 × 10−5, and consider the case Ũ0 = 1.25.

In Figs. 4(a)–4(b), we show the gain in phase-space density
for η = 9 (blue) and η = 7 (red). A standard way to optimize
the evaporation efficiency is obtained by maximizing the ini-
tial gain in phase-space density per particle loss, correspond-
ing to a large value of γ = − dlog10(D) / dlog10(N ) |t→0 In
Fig. 4(c), we show the evolution of γ as a function of η, which
peaks at γ ≈ 6 for η ≈ 10.8. This result suggests that heating
due to incoherent photon scattering processes is negligible and
efficient evaporation in deep optical dipole traps is possible. In
that case, the critical phase-space density Dc ≈ 2.6 is reached
over a time t = 4.8 s with a final atom number ≈1/4 its initial
value. One can contrast this result to another example, for
instance η = 6, for which runaway evaporation also occurs.
In that case, degeneracy is reached after solely ≈0.2 s, with

4% of the initial atom number. The choice of η is therefore
setup dependent as it depends on the scientific goal and the
initial experimental conditions. It is important to stress that
these values are merely indicative, as the truncated Boltzmann
distribution approximation is not applicable near quantum
degeneracy [3].

V. DISCUSSION AND CONCLUSION

One should note that as the elastic collision rate increases,
so does the density and therefore three-body losses are en-
hanced. We have not considered such effect as it depends
on the s-wave scattering length of the species under consid-
eration. A related discussion of that effect can be found in
Ref. [18]. For 162Dy with a ≈ 130 a0, we do not expect these
processes to be dominant.

In conclusion, the radio-frequency evaporation technique
in an optical dipole trap, here reported, constitutes a viable
path towards efficient evaporative cooling in experiments
involving atomic species where a relatively narrow optical
transition is available and for which the ground-state manifold
has a nonzero total spin. After a general presentation of the
method, we considered the specific example of dysprosium
in an optical dipole trap with wavelength λL ≈ 832 nm. We
have shown that this technique is promising to reach quantum
degeneracy in a minimalist experimental setup. Compared to
standard evaporation techniques, our method benefits from
runaway evaporation, which is usually unreachable for a sin-
gle beam optical dipole trap.
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APPENDIX A: DESCRIPTION OF THE EVAPORATION
MECHANISM

We here summarize the derivation of the rate equations,
Eqs. (1)–(11), starting from the kinetic Boltzmann equation.
This derivation was originally described in Ref. [3].

1. Truncated Boltzmann distribution

We start from the Boltzmann kinetic equation(
∂

∂t
+ 
p

m
. 
∇
r − 
∇
rU . 
∇
p

)
f (
r, 
p) = I (
r, 
p) (A1)

where the left-hand side is the hydrodynamic derivative of the
phase-space distribution function f (
r, 
p), and the right-hand
side the collision integral, which describes the speed at which
f (
r, 
p) changes after an elastic collision

I (
r, 
p4) = σ

(2π h̄)3m

∫∫
d3 p3 d�′q

× [ f (
r, 
p1) f (
r, 
p2) − f (
r, 
p3) f (
r, 
p4)], (A2)

where 
p3 and 
p4 correspond to the momenta of the two parti-
cles before the collision, and 
p1 and 
p2 the momenta after the
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collision, σ = 8πa2, m the atomic mass, h̄ the Planck constant
and a the scattering length. We write 
P = 
p1 + 
p2 = 
p3 + 
p4,

q′ = 
p1−
p2

2 , 
q = 
p3−
p4

2 , and define u (u′) as the cosine of the
angle between 
P and 
q ( 
q′), and �′ the solid angle defined by
the orientation of 
q′ with respect to 
q.

We assume that the system is sufficiently ergodic, i.e., that
the distribution function f (
r, 
p) has the same value, f (ε),
for all positions 
r verifying H(
r, 
p) = 
p2

2m + U (
r) = ε. The
hydrodynamic derivative then reduces to a partial derivative
over time,

∂

∂t
f (
r, 
p) = Iout(
r, 
p) − Iin(
r, 
p), (A3)

with Iin and Iout the input and output contributions to
the collision integral, respectively. We replace 
p by 
p4,
multiply Eq. (A3) by 1

(2π h̄)3 (H(
r, 
p4) − εe), such that
εe is linked to 
p4, and integrate over 
r and 
p. Us-
ing the relations f (Hi) = ∫

dεi δ(Hi − εi ) f (εi ), and ρ(ε) =
1

(2π h̄)3

∫∫
d3r d3 p δ(ε − H(
r, 
p)), where Hi = H(
r, 
pi ), we

get

ρ(εe) ḟ (εe)

= σ

(2π h̄)6m

∫
dεa dεb dεd [ f (εa) f (εb)

− f (εd ) f (εe)] ×
∫

d3r d3 p4 d3 p3 d�′q δ(H1 − εa)

× δ(H2 − εb)δ(H3 − εd )δ(H4 − εe). (A4)

The first part of the right-hand side of the integral depends on
the properties of the system and the second part accounts for
the properties of the trap.

Using the relations

H1 − εa = U (
r) + P2

8m
+ q2

2m
+ Pqu′

2m
− εa

H2 − εb = U (
r) + P2

8m
+ q2

2m
− Pqu′

2m
− εb

H3 − εd = U (
r) + P2

8m
+ q2

2m
+ Pqu

2m
− εd

H4 − εe = U (
r) + P2

8m
+ q2

2m
− Pqu

2m
− εe,

δ(ax) = 1
|a|δ(x),

∫
dx δ(x − x1)δ(x − x2) = δ(x1 − x2), and

dq2 = 2qdq, we get

ρ(εe) ḟ (εe) = σ

(2π h̄)6m

∫
dεadεbdεc[ f (εa) f (εb)−f (εd ) f (εe)]

× 2(2π )3m3
∫

d3r dP δ(εa + εb − εd − εe).

(A5)

The integral of Eq. (A4) is non-zero only if the arguments
of the Dirac functions can be equal to zero, which im-
poses U (
r) < εmin such that the integral over 
r reduces to∫

U (
r)<εmin
d3
r. Without loss of generality we assume pa =

min(pa, pb, pd , pe), such that pa + pb < pd + pe and pb −
pa > pe − pd , where pe > pd . The integral over P is thus
limited to the domain [pb − pa, pa + pb] with pa = pmin =√

2m(εmin − U (r)). These intermediate results allow us to
rewrite Eq. (A4) as

ρ(εe) ḟ (εe) = 4(2π )3m2

(2π h̄)6
σ

∫
dεadεbdεd [ f (εa) f (εb) − f (εd ) f (εe)]

∫
U (r)�εmin

dr3
√

2m(εmin − U (r)) δ(εa + εb − εd − εe)

= 8πm

(2π h̄)3
σ

∫
dεadεbdεd [ f (εa) f (εb) − f (εd ) f (εe)]ρ(εmin) δ(εa + εb − εd − εe), (A6)

where ρ(εmin) = 2π (2m)3/2

(2π h̄)3

∫
U (r)�εmin

d3r
√

εmin − U (r).
The authors of Ref. [3] numerically solved the Boltzmann

kinetic equation with the boundary condition f (ε) = 0 for
ε > εc, where εc is the cutoff energy. It was shown that f (ε)
is accurately described by a Boltzmann distribution truncated
at the depth of the trap

f (ε) ≈ nλ3e−ε/kBT �(εc − ε), (A7)

where �(x) is the Heaviside step function, λ the thermal de-
Broglie wavelength and n = n(
0)/(Erf(

√
η) − 2

√
η/πe−η )

is a density that tends towards the peak density for η =
εc/kBT → ∞. We also assume, which is verified in the main
text, that the elastic collision rate dominates over the evap-
oration rate. This implies that the system is always in a
quasiequilibrium state with an effective temperature T . The
atom number is given by

N =
∫ ∞

0
dερ(ε) f (ε) = nλ3ξ (ε), (A8)

with ξ (εc) = ∫ εc

0 dερ(ε)e−ε/kBT the partition function ac-
counting for the truncation at εc. For mathematical conve-
nience we define an effective volume Ve such that Ve = N/n =
λ3ξ (εc). The internal energy is given by

E =
∫ ∞

0
dε ε f (ε)ρ(ε) = nλ3kBT 2 dξ (ε)

dT
= NkBT c̃,

(A9)

where c̃ = d ln ξ/d ln T . We note that for a constant η and in
the case of power-law traps dE/dT = E/T . We also verify
that for optical dipole traps dE/dT ≈ E/T for large values
of η as those considered in the main text.

2. Atom number and energy variation due to evaporation

Using Eq. (A6), with εa → ε1, εb → ε2, εd → ε3, εe → ε4,
and ε4 > εc, such that f (ε4) = 0 and ε3 = εmin, the number of
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particles lost due to evaporation is given by

Ṅev. = −
∫ ∞

ε4

dε4ρ(ε4) ḟ (ε4)

= − 8πmσ

(2π h̄)3

∫ ∞

εc

dε4

∫ εc

0
dε3

∫ εc

ε3

dε2

×
∫ εc

εc+ε3−ε2

dε1δ(ε1 + ε2 − ε3 − ε4) ρ(ε3) f (ε1) f (ε2)

= − 8πmσ

(2π h̄)3
kBT (nλ3)2e−η

∫ εc

0
dε ρ(ε)[(εc − ε − kBT )

× e−ε/kBT + kBTe−η] (A10)

which simplifies into Ṅev. = −n2σve−ηVev. where Vev. is an
effective volume of evaporation

Vev. = λ3

kBT

∫ εc

0
dερ(ε)

[
(εc−ε−kBT )e− ε

kBT +kBTe−η
]
, (A11)

and v = √
8kBT/πm is the average speed. The corresponding

energy reduction is given by

Ėev. = −
∫ ∞

εc

dε4ε4ρ(ε4) ḟ (ε4)

= Ṅev.

[
εc +

(
1 − Xev.

Vev.

)
kBT

]
, (A12)

with Xev.= λ3

kBT

∫ εc

0 dερ(ε)[kBT(e− ε
kBT −e−η )−(εc−ε)e−η].

APPENDIX B: SPILLING MECHANISM

For efficient evaporation, the cutoff energy is progressively
decreased at a rate 1/τ = −ε̇c/ε > 0, leading to particle loss

Ṅspl. = − 1

τ
N (εc), (B1)

where N (εc) = ρ(εc) f (εc)εc. For a constant η = εc/kBT and
f (εc) = N

Ve
λ3e−η, we get that

Ṅspl./N = η kBṪ
λ3e−ηρ(εc)

Ve
= ξ̃

Ṫ

T
, (B2)

where

ξ̃ = λ3e−ηρ(εc)

Ve
ηkBT = e−ηρ(εc)

ξ
εc. (B3)

Accordingly, the energy change is given by

Ėspl. = εcṄspl. = ξ̃η

c̃

Ṫ

T
E , (B4)

where E = NkBT c̃.

APPENDIX C: DETAILED DESCRIPTION OF EQS. (12)–(13)

We here give the detailed expressions for the dimensionless
functions A(η, v), B(η, v), C(η, v), and D(η, v) introduced
in Eqs. (12)–(13)

A(η, v) = �ev.

[
(c̃2 − ξ̃ )(κ̃ − c̃)

c̃ − ξ̃ (η − c̃)
− 1

]

B(η, v) = 2η
c̃2 − ξ̃

c̃ − ξ̃ (η − c̃)

C(η, v) = �ev.

2

κ̃ − c̃

c̃ − ξ̃ (η − c̃)

D(η, v) = η
1

c̃ − ξ̃ (η − c̃)
,

where κ̃, ξ̃ , c̃, c̃2, and �ev. are functions of η and v. For v →
0 and a constant, finite η, these expressions tend to the solu-
tions of a harmonic trap. Namely, �ev. = e−η[η − 4R(3, η)],
κ̃ = η + 1 − P(5,η)

P(3,η)
e−η

�ev.
, ξ̃ = 3[1 − R(3, η)], c̃ = 3R(3, η). and

c̃2 = 3/2, where P(a, z) is the incomplete � function, and
R(a, z) = P(a + 1, z)/P(a, z) [5].
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