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Toolbox for elementary fermions with a dipolar Fermi gas in a three-dimensional optical lattice
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There has been growing interest in investigating properties of elementary particles predicted by the standard
model. Examples of such studies include exploring their low-energy analogs in a condensed-matter system,
where they arise as collective states or quasiparticles. Here we show that a toolbox for systematically engineering
the emergent elementary fermions, i.e., Dirac, Weyl, and Majorana fermions, can be built in a single atomic
system composed of a spinless magnetic dipolar Fermi gas in a three-dimensional optical lattice. The designed
direction-dependent dipole-dipole interaction leads to both the basic building block, i.e., in-plane p + ip super-
fluid pairing instability, and the manipulating tool, i.e., out-of-plane Peierls instability. It is shown that the Peierls
instability provides a natural way of tuning the topological nature of p + ip superfluids and can transform the
fermion’s nature between distinct emergent particles. Our scheme should contribute to the search for elementary
particles through manipulating the topology.
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I. INTRODUCTION

Fundamental particles are either the building blocks of
matter, called fermions, or the mediators of interactions,
called bosons. These elementary particles, such as Dirac,
Weyl, and Majorana fermions [1–5], can be understood within
the framework of the relativistic quantum field theory [6,7].
However, only Dirac fermions have been observed as elemen-
tary particles in nature so far. For many years now, another
promising approach to observe particle properties that have
no realization in elementary particles is the investigation of
their low-energy analogous quasiparticles, such as in con-
densed matter or atomic systems. It paves a different way
for exploring fundamental particles without paying the steep
price of a high-energy particle collider and thus has attracted
a tremendous amount of research interest in various fields
of physics. There has been some exciting progress in the
search for the emergent Dirac, Weyl, and Majorana fermions.
Recent examples include graphene [8–13], several topological
phases in solids containing quantum Hall states, topological
insulators and superconductors, etc. [14–16]. Another exciting
perspective is the recent realization of artificial materials such
as cold atoms [17–35] or photonic crystals [36,37]. However,
finding a single material that can systematically transform the
fermion’s nature and realize distinct elementary fermions in
its equilibrium state is highly nontrivial and still stands as an
obstacle yet to be overcome.

Here we show that ultracold gases of magnetic dipolar
atoms or polar molecules, as presently developed in the
laboratory, provide us with opportunities for constructing a
toolbox for systematically engineering all three kinds of el-
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ementary fermions listed above. The attractiveness of this
idea rests on the fact that the strength and even the sign
of dipolar interaction in cold atoms are highly tunable [38].
The direction of dipole moments can be fixed by applying an
external magnetic field. Let the external field be orientated at a
small angle with respect to the xy plane and rotate fast around
the z axis. The time-averaged interaction between dipoles is
isotropically attractive in the xy plane and repulsive in the z
direction. Such a scheme has been realized in the experimental
system of dysprosium atoms [39]. In general, the xy-plane
attraction is expected to cause superfluid pairing instability
and leads to an in-plane p + ip superfluid in a spinless dipolar
Fermi gas. The repulsion should restrict the pairing in the z
direction and results in the Peierls instability in the presence of
lattice potential. Such a spontaneously formed density modu-
lation provides a natural tool to manipulate the topological
nature of p + ip superfluids and thus allows us to build a
toolbox for systematically engineering all three of the above
kinds of elementary fermions through tuning the topology
of our proposed single atomic system. Such a heuristically
argued result is indeed confirmed by our detailed analysis
through the model to be introduced below.

II. EFFECTIVE MODEL

Consider a spinless dipolar Fermi gas, such as 161Dy
[40,41] or 167Er [42,43], subjected to an external ro-
tating magnetic field B(t ) = B[ẑ cos ϕ + sin ϕ(x̂ cos �t +
ŷ sin �t )], where � is the rotation frequency, B is the mag-
nitude of the magnetic field, z is the rotation axis, and ϕ

is the angle between the magnetic field and the z axis. In
strong magnetic fields, dipoles are aligned parallel to B(t ).
With fast rotations, i.e., � being much larger than typi-
cal frequencies of particle motion and simultaneously much

2469-9926/2021/104(3)/033312(10) 033312-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3607-6694
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.033312&domain=pdf&date_stamp=2021-09-10
https://doi.org/10.1103/PhysRevA.104.033312


LI, ARZAMASOVS, LI, LI, AND LIU PHYSICAL REVIEW A 104, 033312 (2021)

FIG. 1. (a) Zero-temperature phase diagram as a function of dipolar interaction strength at average filling n0 = 0.6. The dashed and solid
lines stand for the pairing and CDW order parameters, respectively. The spontaneously formed density modulation serves as a natural tool
to manipulate the topological nature of the system, leading to distinct topological phases marked by various colors. (b) Table of examples
showing the distinct topological nature of various phases in (a). The other parameters are tz/t = 0.5 and az/a = 3.5.

smaller than the level splitting in the field, the effective in-
teraction between dipoles is the time-averaged interaction
V (r) = d2(3 cos2 ϕ−1)

2r3 (1 − 3 cos2 θ ) ≡ d ′2
r3 (1 − 3 cos2 θ ), where

d ′2 ≡ d2 3 cos2 ϕ−1
2 , with the magnetic dipole moment d . Here

r is the vector connecting two dipolar particles and θ is
the angle between r and the z axis. The effective in-plane
attraction is created by making cos ϕ <

√
1/3, which can

be realized by changing the amplitudes of static and rotat-
ing parts of the magnetic field. We further consider these
dipolar atoms loaded in a three-dimensional optical lat-
tice Vopt(r) = −V0[cos2(kLxx) + cos2(kLyy)] − V0z cos2(kLzz),
where kLx, kLy, and kLz are wave vectors of laser fields and
the corresponding lattice constants are defined as ax = π/kLx,
ay = π/kLy, and az = π/kLz. Here V0 and V0z are lattice depths
in the xy plane and z direction, respectively. In this work, we
consider an anisotropic three-dimensional (3D) lattice with
ax = ay ≡ a < az. When the lattice depths are large enough,
the system can be described by the Fermi-Hubbard model in
the tight-binding regime

H = −
∑

α=x,y,z

∑
i

tα (c†
i ci+eα

+ H.c.) − μ
∑

i

c†
i ci

+1

2

∑
i �= j

Vi− jc
†
i c†

j c jci, (1)

where tx = ty ≡ t and tz are the hopping amplitudes describ-
ing tunneling in the x, y, and z directions, respectively;
i ≡ (ix, iy, iz ) is the site index denoting the lattice site Ri ≡
(aix, aiy, aziz ); μ is the chemical potential; and eα represents
the unit vector. The dipole-dipole interaction is given by

Vi− j = d ′2 |Ri−R j |2−3(iz− jz )2a2
z

|Ri−R j |5 .

A. Self-consistent Hartree-Fock-Bogoliubov method

To study the many-body instabilities of the Hamiltonian
(1), we perform both mean-field theory and Monte Carlo
(MC) simulations. By employing the self-consistent Hartree-
Fock-Bogoliubov (HFB) method, the zero-temperature phase
diagram is obtained as shown in Fig. 1(a). Furthermore, dis-
tinct many-body phases in Fig. 1(a) are identified through MC
simulations. In the HFB method, the Peierls instability can be
described by writing the density distribution of the system as

ni = n0 + C cos(Q · Ri ), where Q represents the periodicity
of density pattern and n0 = ∑

i〈c†
i ci〉/NL is the average filling,

with NL denoting total lattice site. The order parameter de-
scribing this charge density wave (CDW) can thus be defined
as δ±Q = V (±Q)C/2, where V (k) = ∑

n �=0 Vn exp(−ik · rn).
We also introduce the superfluid pairing order parameter as
�(k) = 1

NL

∑
k′ V (k − k′)〈c−k′ck′ 〉, where 〈· · · 〉 means the

expectation value in the ground state. Then the Hamiltonian
(1) can be further expressed in the mean-field approximation
as

HMF =
∑

k

ξkc†
kck +

∑
k

(
�(k)

2
c†

kc†
−k + H.c.

)

+
∑

Qm=±Q

∑
k

(
δQm

2
c†

kck+Qm
+ H.c.

)
− EI , (2)

where ξk = εk + �k − μ, with the band energy εk =
−2t (cos kxa + cos kya) − 2tz cos kzaz, μ the chemical poten-
tial, and �k the Hartree-Fock self-energy given by �k =
V (0)n0 − 1

NL

∑
k′ V (k − k′)nk′ , with V (0) = ∑

n �=0 Vn. For
example, V (0) = −5.62Jt when az/a = 3.5, where J ≡
|d ′2/(ta3)| captures the strength of the dipolar interaction. In
addition, EI = 1

2

∑
i �= j Vi− j (nin j − |〈c†

i c j〉|2 + |〈c jci〉|2). The
mean-field Hamiltonian (2) can be diagonalized through the
Bogoliubov transformation and the corresponding eigenen-
ergies are labeled as En. Straightforward calculations
lead to the mean-field thermodynamic potential �MF =
− kBT

4

∑
n ln[1 + exp(− En

kBT )] + 1
2

∑
k ξk − EI . In the T →

0 limit, −kBT
∑

n ln[1 + exp(− En
kBT )] = ∑

n En�(−En), with
the Heaviside step function �.

The order parameters defined above can be obtained by
minimizing �MF and the average filling of the system can be
determined by the relation n0 = − 1

NL

∂�MF
∂μ

. We find that the
period of the CDW order is highly tunable through simply
changing the average filling of the system. There is a region
of n0, i.e., 0.5 � n0 < nA ≈ 0.67, where Q is located at Q =
(0, 0, π/az ). For example, as shown in Fig. 2(a), when n0 =
0.6, the mean-field thermodynamic potential is minimized at
Q = (0, 0, π/az ), indicating that the density modulation is in
the z direction and its period is 2az. When further increasing
n0, i.e., nA < n0 < nB ≈ 0.85, the period of the z-directional
CDW order can be changed to 3az. For instance, as shown in
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FIG. 2. Mean-field energy of the model Hamiltonian in Eq. (2)
as a function of Q for (a) n0 = 0.6 and J = 1.1 and (b) n0 = 0.73
and J = 1.1. The other parameters are the same as in Fig. 1.

Fig. 2(b), when n0 = 0.73, the mean-field thermodynamic po-
tential is minimized at Q = (0, 0, 2π/3az ). We also find that
the superfluid order parameter �(k) behaves like an in-plane
p + ip superfluid, i.e., �(k) = �(kz )[sin(kxa) + i sin(kya)],
where �(kz ) records very slight variation for different kz as
shown in Fig. 3. Therefore, we can express the superfluid
order parameter as �[sin(kxa) + i sin(kya)]. Note that in the
HFB method the momentum grid is chosen as 120 × 120 ×
120 to perform the lattice momentum summation, which is
a sufficiently large size, since both pairing and CDW orders
have already converged, as shown in Fig. 4.

B. Variational Monte Carlo method

To further verify the existence of CDW and superfluid
orders, we have performed a variational Monte Carlo (VMC)
[44–48] calculation on an 8 × 8 × 8 lattice system with pe-
riodic boundary conditions. The VMC method is one of
the promising methods to study strongly correlated sys-
tems and there is no sign problem in studies of fermionic
systems since the weight of Monte Carlo sampling is pos-
itive definite. To simplify the simulation, we consider the
strongest dipole-dipole interaction between nearest neighbors.

FIG. 3. Pairing order parameter �(k) as a function of momen-
tum. (a) and (b) Plot of �(k) behaving like an in-plane p + ip
superfluid; here we choose kzaz = 0. (c) Slight variation of the
pairing order parameter along the kz axis, where kxa = π/2 and
kya = 0. The other parameters are J = 0.78, n0 = 0.6, tz/t = 0.5,
and az/a = 3.5.

FIG. 4. Momentum grid Ngrid chosen as 120 × 120 × 120 to per-
form the lattice momentum summation in the HFB calculation. It is
sufficiently large where both pairing and CDW orders have already
converged. Here J = 1.8 and the other parameters are the same as in
Fig. 1.

The wave function employed in our many-variable variational
Monte Carlo simulation [44,45] can be expressed as |φref〉 =
PJ |φpair〉, where |φpair〉 = (

∑NL
i, j=1 fi jc

†
i c†

j )
N/2|0〉 is the Pfaf-

fian pairing wave function [46] and PJ = exp[ 1
2

∑
i �= j vi j (ni −

1)(n j − 1)] is the Jastrow factor [47], which accounts for
long-range density correlations. Here N refers to the number
of fermions. Such a flexible variational wave function with a
large number of variational parameters can be simultaneously
optimized by using the stochastic reconfiguration method
[48], which can be applied to efficiently compute the ground
state of our proposed system.

To investigate the superfluid pairing order in the ground
state, we study the pairing correlation defined as

P(R‖)= 1

2NL

∑
Ri

〈�†(Ri )�(Ri+R‖)+�(Ri )�
†(Ri + R‖)〉,

with �(Ri) ≡ cici+ex − cici−ex + i(cici+ey − cici−ey ) captur-
ing the in-plane p + ip symmetry of the superfluid pairing.
Here R‖ is an in-plane vector. As shown in Fig. 5(a), the

FIG. 5. (a) In-plane superconducting correlation P(|R‖|) as a
function of |R‖|. Here P(|R‖|) shows saturated long-range correla-
tion, indicating the existence of in-plane p + ip superfluid pairing
order. (b) Structure factor S(Q) as a function of momentum, where
its peak is located at (0, 0, π/az ), indicating the existence of the
z-directional CDW order with the period being 2az. Here J = 1.2
and the other parameters are the same as in Fig. 1.
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long-range saturation behavior of the in-plane pairing correla-
tion P(R‖) indicates the existence of superfluid pairing order
in the ground state. To identify the existence of CDW order
in the ground state, we calculate the density structure factor
defined as

S(Q) = 1

N2
L

∑
i, j

〈c†
i cic

†
j c j〉eiQ·(Ri−R j ).

The peak in density structure factor provides information on
the CDW order. As shown in Fig. 5(b), the structure factor
S(Q) is peaked at (0, 0, π/az ), indicating the existence of a z-
directional density modulation pattern with the period of 2az,
which is consistent with our mean-field calculation as shown
in Fig. 1(a).

III. PHYSICAL MECHANISM FOR TUNING THE
TOPOLOGICAL NATURE

To understand how we can utilize the spontaneously
formed density modulation as a tool to manipulate the topo-
logical nature of the system, let us start with our basic building
block, i.e., in-plane p + ip superfluids. It is known that the
topology of 2D p + ip superfluids can be changed by tuning
the system filling and thus results in distinct topological re-
gions: a topological trivial region and two distinct topological
regions with opposite chirality [49]. In our proposed system,
the spontaneously formed z-directional density modulation
can serve as a natural tool to tune the fillings of p + ip
superfluid layers through effectively altering their respective
chemical potential and thus changes their topological nature,
which is confirmed by our detailed analysis below.

For instance, let us consider the case of the period
of z-directional density modulation being 2az, i.e., Q =
(0, 0, π/az ). The topology of the system can be under-
stood through the Bogoliubov–de Gennes (BdG) Hamiltonian,
which can be expressed as

Hπ
BdG =

⎛
⎜⎝

ξk �(k) 2δ 0
�∗(k) −ξ−k 0 −2δ

2δ 0 ξk+Q �(k)
0 −2δ �∗(k) −ξ−k−Q

⎞
⎟⎠, (3)

where the Nambu spinors are chosen as (c†
k, c−k, c†

k+Q,

c−k−Q). A unitary transformation can be applied to the BdG
Hamiltonian above and we obtain

H̃π
BdG =T †

π Hπ
BdGTπ =

⎛
⎜⎝

ξk 2δ �(k) 0
2δ ξk+Q 0 �(k)

�∗(k) 0 −ξ−k −2δ

0 �∗(k) −2δ −ξ−k−Q

⎞
⎟⎠,

with

Tπ =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠.

Then H̃π
BdG can be rewritten as

H̃π
BdG =

(
Hπ

CDW �2×2
k

�∗2×2
k −Hπ

CDW

)
,

where Hπ
CDW = (ξk 2δ

2δ ξk+Q
) and �2×2

k = �(k)I2×2, with I2×2

the 2 × 2 unit matrix. We then apply another unitary trans-
formation to H̃π

BdG and obtain that

H ′π
BdG = �†

π H̃π
BdG�π =

⎛
⎜⎝

Eπ
1 0 �(k) 0
0 Eπ

2 0 �(k)
�∗(k) 0 −Eπ

1 0
0 �∗(k) 0 −Eπ

2

⎞
⎟⎠,

where the unitary transformation is defined as �π =
(�πCDW 02×2

02×2 �πCDW
). Further, �πCDW can be constructed

from the relation �
†
πCDWHπ

CDW�πCDW = (Eπ
1 (k) 0
0 Eπ

2 (k)),

with Eπ
1 (k) = ξk+ξk+Q

2 −
√

4δ2 + ( ξk−ξk+Q

2 )2 and Eπ
2 (k) =

ξk+ξk+Q

2 +
√

4δ2 + ( ξk−ξk+Q

2 )2. After applying the unitary
transformation Tπ to H ′π

BdG, we eventually obtain

H π
BdG = T †

π H ′π
BdGTπ =

⎛
⎜⎝

Eπ
1 �(k) 0 0

�∗(k) −Eπ
1 0 0

0 0 Eπ
2 �(k)

0 0 �∗(k) −Eπ
2

⎞
⎟⎠

≡
(

H ′π
p-wave 02×2

02×2 H ′′π
p-wave

)
. (4)

Here H π
BdG clearly shows that the topology of the sys-

tem can be engineered by simultaneously manipulating the
two effective Hamiltonians H ′π

p-wave and H ′′π
p-wave, describing

in-plane p + ip superfluids. This can be naturally achieved
via the spontaneously formed density modulation in our
proposed scheme. To show this, let us consider the Hamil-
tonian H π

BdG at a fixed kz. The topologically distinct regions
of p + ip superfluids Hamiltonian H ′π

p-wave (H ′′π
p-wave) are (i)

μ′(μ′′) < −4t ′ and μ′(μ′′) > 4t ′, which are the topolog-
ical trivial region, and (ii) −4t ′ < μ′(μ′′) < 0 and 0 <

μ′(μ′′) < 4t ′, which are the topological regions with op-
posite chirality. Here μ′ = μ̃−√

4δ2 + (−2t ′
z cos kzaz )2 and

μ′′ = μ̃+√
4δ2 + (−2t ′

z cos kzaz )2 with the effective hoppings
t ′
α = tα − �α/2, t ′ ≡ t ′

x = t ′
y, and μ̃ = μ − V (0)n0. Note that

to simplify the discussion we consider the strongest exchange
interaction energy between nearest neighbors as �x(y) =∑

k
2J
NL

cos(kx(y)a)nk and �z = −∑
k

4Ja3

NLa3
z

cos(kzaz )nk, with

J ≡ |d ′2/ta3| capturing the strength of dipolar interaction.
The two effective chemical potentials μ′ and μ′′ can be

tuned simultaneously by changing the CDW order δ via vary-
ing J and thus can manipulate the topology of the system.
For example, considering the case of J = 0.8 in Fig. 1(a),
the CDW order δ simultaneously tunes the two effective
chemical potentials in different regions: (i) −π/2 � kzaz <

−kc
I � 0.39π or kc

I < kzaz < π/2, where 0 < μ′(μ′′) < 4t ′,
and H ′π

p-wave and H ′′π
p-wave are thus simultaneously engineered

in the same topological region with Chern number C = −1,
and (ii) −kc

I < kzaz < kc
I , where −4t ′ < μ′ < 0 and 0 <

μ′′ < 4t ′, and H ′π
p-wave and H ′′π

p-wave are thus tuned in topolog-
ical regions with opposite chirality characterized by C = ±1.
Therefore, a topological phase [phase I in Fig. 1(a)] character-
ized by the existence of a topological phase transition between
two topological regions with C = −2 and C = 0 along the kz

axis is achieved. While increasing J , for instance, to J = 1.2,
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FIG. 6. (a) Gapless points of the quasiparticle excitation in phase
III. The inset shows a contour in the (kx, ky ) plane. (b) and (c) Hedge-
hoglike topological defects formed by the vector d around two Weyl
nodes. The interaction strength J = 1.12. The other parameters are
the same as in Fig. 1.

the CDW order increases and plays a dominant role in tuning
effective chemical potentials. Distinct from smaller J , here,
for each kz within the Brillouin zone, the effective chemi-
cal potentials are set in the same region as −4t ′ < μ′ < 0
and μ′′ > 4t ′. Thus H ′π

p-wave and H ′′π
p-wave are simultaneously

engineered in a topological region with C = 1 and a non-
topological region with C = 0, respectively. Therefore, a new
topological phase [phase IV in Fig. 1(a)] characterized by a
uniform Chern number (C = 1) is obtained. Using the same
approach, two other topological phases [phases II and III in
Fig. 1(a)] can be determined. We also find that there is a
threshold of J , below which δ = 0, where the p-wave super-
fluid is favored. We can map out the zero-temperature phase
diagram as shown in Fig. 1(a). Such an analysis is readily
generalizable to the case Q = (0, 0, 2π/3az ). Another four
distinct topological phases have been obtained (see details in
Appendix A), indicating that our scheme provides a system-
atic way of engineering the topological nature of the system.

IV. TOOLBOX FOR ENGINEERING
ELEMENTARY FERMIONS

A. Weyl fermions

We now show how to engineer three kinds of elemen-
tary fermions, i.e., Dirac, Weyl, and Majorana fermions,
through manipulating the topology of the system. As shown in
Fig. 1(a), in topological phases I and III, there is a topological
phase transition occurring along the kz axis. For example, in
phase III the phase boundary along the kz direction corre-
sponds to the emergence of two gapless points in quasiparticle
excitations at (π, π,±kc

III ), as shown in Fig. 6(a). It turns out
that these two gapless points are Weyl nodes. For instance,
the effective low-energy physics around the gapless point
(π, π, kc

III ) can be captured by expanding H ′π
p-wave around that

point to the leading order and we obtain

Hπ
eff = −�(kxa − π )σx + �(kya − π )σy

+∂Eπ
1

∂kz

∣∣∣∣
k=(π/a,π/a,kc

III/az )

(
kzaz − kc

III

)
σz.

It takes the form of a 2 × 2 Hamiltonian describing chiral
Weyl fermions. The quasiparticle energy dispersion is linear
around the Weyl point. To further visualize the topological
nontrivial nature of the Weyl node, a vector field d can be
defined through the relation

H̃π
eff = σxHπ

effσx

= −�(kxa − π )σx − �(kya − π )σy

−∂Eπ
1

∂kz

∣∣∣∣
k=(π/a,π/a,kc

III/az )

(
kzaz − kc

III

)
σz

≡ d · σ.

As shown in Figs. 6(b) and 6(c), the Weyl nodes are hedge-
hoglike topological defects of the vector field d, which are
the point source of Berry flux in momentum space, with a
topological invariant NC = ∓1. Here NC is defined by NC =

1
24π2 εμνγχ tr

∮
�̄

dSχ Ḡ ∂Ḡ−1

∂kμ
Ḡ ∂Ḡ−1

∂kν
Ḡ ∂Ḡ−1

∂kγ
, where Ḡ−1 is the in-

verse Green’s function for the quasiparticle excitation, �̄ is a
3D surface around the isolated gapless points, and tr stands
for the trace over the relevant particle-hole degrees of free-
dom. Quasiparticle excitations near the gapless points realize
the long-sought low-temperature analogs of Weyl fermions
originally proposed in particle physics. These Weyl nodes are
separated from each other in momentum space. They cannot
be hybridized, which makes them indestructible, as they can
only disappear by mutual annihilation of pairs with opposite
topological charges, which is distinct from the spectral-gap
protection in insulating topological phases.

B. Dirac fermions

Furthermore, as shown in Fig. 1(a), when varying J , the
system undergoes phase transitions between various topo-
logical phases. The phase boundaries correspond to the gap
closing in quasiparticle excitations. Interestingly, we find that
these gapless points develop low-temperature analogs of Dirac
topological defect. For example, when considering the phase
boundary between III and IV, since the gapless point satisfies
the relation ∂Eπ

1
∂kz

= 0, we can obtain the effective Hamiltonian
around the gapless point as

H ′π
eff = −�(kxa − π )σx + �(kya − π )σy.

It takes the form of the effective Hamiltonian describing Dirac
fermions. To visualize this, the planar vector h near the gap-
less point can be defined through the relation

H̃ ′π
eff = σxH ′π

effσx = −�(kxa − π )σx − �(kya − π )σy

≡ h · σ.

As shown in Fig. 7(b), the vector field h forms a vortex struc-
ture in the momentum space. At the vortex core, the length of
the vector vanishes, indicating the gap closing in quasiparticle
excitations. Therefore, it forms a Dirac topological defect,
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which is confirmed by the calculation of the winding number

W = 1
2π

∮
dk[ hx

|h|
⇀

∇ hy

|h| − hy

|h|
⇀

∇ hx
|h| ] being equal to −1.

C. Majorana fermions

Besides hosting quasiparticles analogous to Dirac and
Weyl fermions, our proposed setup can also serve as a tool for
systematically engineering both paired and unpaired Majo-
rana fermions. To demonstrate the existence of highly tunable

Majorana fermions in our proposed system, we consider an
effective 2D system constructed by fixing a certain kz in
three dimensions. Then a cylinder geometry is chosen in
the xy plane, i.e., considering the open (periodic) boundary
conditions in the y (x) directions. The edge excitations can
thus be obtained by solving the BdG Hamiltonian under the
above boundary condition. For example, considering the case
of Q = (0, 0, π/az ), the edge excitations can be investigated
through the BdG Hamiltonian

∑
jy

⎛
⎜⎜⎜⎝

Hiy, jy (k̃) �iy, jy (k̃) 2δδiy, jy 0
�∗

iy, jy (k̃) −Hiy, jy (k̃) 0 −2δδiy, jy

2δδiy, jy 0 Hiy, jy (k̃ + Q̃) �iy, jy (k̃ + Q̃)
0 −2δδiy, jy �∗

iy, jy (k̃ + Q̃) −Hiy, jy (k̃ + Q̃)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

un
k̃, jy

vn
k̃, jy

un
k̃+Q̃, jy

vn
k̃+Q̃, jy

⎞
⎟⎟⎟⎟⎠ = En

⎛
⎜⎜⎜⎜⎝

un
k̃,iy

vn
k̃,iy

un
k̃+Q̃,iy

vn
k̃+Q̃,iy

⎞
⎟⎟⎟⎟⎠, (5)

where we define the momentum in the xz plane as
k̃ ≡ kxz = (kx, kz ), Q̃ ≡ Qxz = (0, Qz ), Hiy, jy (k̃) = �iy, jy (k̃)
− t (δiy+1, jy +δiy, jy+1) + (−2t cos kxa − 2tz cos kzaz − μ)δiy, jy ,
�iy, jy (k̃) = � sin(kxa)δiy, jy + �

2 (δiy+1, jy − δiy, jy+1), and �iy, jy

(k̃) = V (0)n0δiy, jy − 1
NL,xNL,z

∑
k̃′

∑
nx �=0,nz �=0 Vi− j exp[−i(k′

x −
kx )nxa] exp[−i(k′

z − kz )nzaz]〈c†
k̃′,iy

ck̃′, jy〉, with (nx, nz ) ≡
(ix − jx, iz − jz ) and NL,x and NL,z the numbers of lattice
sites along the x and z directions, respectively. The energy
spectrum can be obtained through the diagonalization of the
above Hamiltonian, as shown in Fig. 8. The zero-energy wave
function can thus be expressed as (u0

k̃,iy
, v0

k̃,iy
, u0

k̃+Q̃,iy
, v0

k̃+Q̃,iy
),

which satisfies u0
k̃,iy

= −v0∗
k̃,iy

on the left edge and u0
k̃,iy

= v0∗
k̃,iy

on the right edge, as shown in Fig. 8(c). These eigenstates
thus support one localized Majorana fermion per edge of the
system. More interestingly, the number of Majorana fermions
shows a high degree of tunability. Not only an even number
of Majorana fermions per edge, as shown in Fig. 8(b) (two
per edge), but also an odd number of Majorana fermions per
edge, as shown in Fig. 8(a) (one per edge) and Fig. 9 (three
per edge), can be hosted, which would offer possibilities

FIG. 7. (a) Gapless point of the quasiparticle excitation on the
phase boundary between III and IV in Fig. 1(a). (b) Dirac topological
defect formed by the vector h around the gapless point. The other
parameters are the same as in Fig. 1.

pointing to braiding statistics and applications to topological
quantum computing.

V. CONCLUSION

In the present experiments, for example, when considering
161Dy in a lattice with the lattice constant a = 225 nm, where
the dipolar interaction strength can be tuned as J = 3, the
critical temperature of our proposed phases, such as phase IV
in Fig. 1(a), can reach around 0.1 nK (see Appendix B for
details). Furthermore, taking advantage of recent experimen-
tal realization of Feshbach resonance in magnetic lanthanide
atoms [41,50], the dipole-dipole interaction becomes highly
tunable. The critical temperature can be estimated to reach
around 10 nK or even higher, making our proposal promising
for experimental realization.

FIG. 8. (a) and (b) Energy spectrum of the system with open
(periodic) boundary conditions in the y (x) directions for a fixed kz:
(a) one pair of chiral edge states marked by a blue dashed line in
phase IV with J = 2, n0 = 0.6, and kzaz = −π/2 and (b) doubly
degenerate chiral edge modes labeled by a blue dashed line and a
red solid line in phase I with J = 0.93, n0 = 0.66, and kzaz = −π/2.
(c) Wave function of the zero-energy state in (a). It turns out that
these zero-energy edge states are Majorana fermions. The other
parameters are the same as in Fig. 1.
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FIG. 9. Energy spectrum of the system with open (periodic)
boundary conditions in the y (x) directions for a fixed kz. (a) The
blue, red, and green branches correspond to the three pairs of chiral
edge modes in phase V, respectively, where J = 1.1, n0 = 0.77, and
kzaz = 0. (b)–(d) Close-ups of the part near the boundaries between
the edge and bulk modes in (a). There are three pairs of zero-energy
edge states, which turn out to be three Majorana fermions per edge.
The other parameters are the same as in Fig. 1.

In summary, we have shown how to construct a toolbox
for systematically engineering three kinds of emergent el-
ementary fermions by utilizing one of the most desirable
topological quantum states, i.e., p + ip superfluids. A link
between searching for fundamental particles and topologi-
cal phenomena has been made. An experimentally plausible
route to realize such an idea has been proposed in a spinless
dipolar Fermi gas. The crucial ingredient of our proposal is
the direction-dependent effective interaction between dipoles
generated by a rotating external field, which has been real-
ized in the experimental system of magnetic atoms [39]. This

approach requires neither spin-orbit coupling nor artificial
gauge fields in general, automatically avoiding the challenge
of their experimental realization in atomic Fermi gases. It has
been shown that through simply tuning the designable dipo-
lar interaction, the spontaneously formed density modulation
provides a natural tool to manipulate the topological nature of
the system and paves the way for transforming the fermion’s
nature of distinct elementary fermions. Both magnetic atoms
and polar molecules in optical lattices are good candidates to
provide a laboratory realization of our scheme. This system-
atic tool developed herein enables the controlled manipulation
of various emergent elementary fermions, with applications
ranging from fundamental physics to quantum computing.
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APPENDIX A: EFFECTIVE HAMILTONIAN DESCRIBING
THE CASE WITH Q = (0, 0, 2π/3az )

Let us discuss the case of the period of z-directional CDW
order being 3az, characterized by Q = (0, 0, 2π/3az ). The
corresponding mean-field BdG Hamiltonian can be expressed
as

H2π/3
BdG =

⎛
⎜⎜⎜⎜⎜⎝

ξk−Q �(k) δ 0 δ 0
�∗(k) −ξ−(k−Q) 0 −δ 0 −δ

δ 0 ξk �(k) δ 0
0 −δ �∗(k) −ξ−k 0 −δ

δ 0 δ 0 ξk+Q �(k)
0 −δ 0 −δ �∗(k) −ξ−(k+Q)

⎞
⎟⎟⎟⎟⎟⎠. (A1)

We then apply a unitary transformation to the BdG Hamiltonian above and obtain

H̃2π/3
BdG = T †

2π/3H2π/3
BdG T2π/3 =

⎛
⎜⎜⎜⎜⎜⎝

ξk−Q δ δ �(k) 0 0
δ ξk δ 0 �(k) 0
δ δ ξk+Q 0 0 �(k)

�∗(k) 0 0 −ξ−(k−Q) −δ −δ

0 �∗(k) 0 −δ −ξ−k −δ

0 0 �∗(k) −δ −δ −ξ−(k+Q)

⎞
⎟⎟⎟⎟⎟⎠,

with

T2π/3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠.
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Then H̃2π/3
BdG can be further rewritten as

H̃2π/3
BdG =

(
H2π/3

CDW �3×3
k

�∗3×3
k −H2π/3

CDW

)
,

where

H2π/3
CDW =

⎛
⎝ξk−Q δ δ

δ ξk δ

δ δ ξk+Q

⎞
⎠

and �3×3
k = �(k)I3×3, with I3×3 the 3 × 3 unit matrix. After applying another unitary transformation to H̃2π/3

BdG , we obtain

H ′2π/3
BdG = �

†
2π/3H̃2π/3

BdG �2π/3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E2π/3
1 0 0 �(k) 0 0
0 E2π/3

2 0 0 �(k) 0
0 0 E2π/3

3 0 0 �(k)
�∗(k) 0 0 −E2π/3

1 0 0
0 �∗(k) 0 0 −E2π/3

2 0
0 0 �∗(k) 0 0 −E2π/3

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the unitary transformation �2π/3 = (�2π/3CDW 03×3
03×3 �2π/3CDW

) can be defined through the relation

�
†
2π/3CDWH2π/3

CDW�2π/3CDW =
⎛
⎝E2π/3

1 (k) 0 0
0 E2π/3

2 (k) 0
0 0 E2π/3

3 (k)

⎞
⎠.

Here E2π/3
1 (k), E2π/3

2 (k), and E2π/3
3 (k) are the eigenspectra of H2π/3

CDW and, without loss of generality, we assume E2π/3
1 �

E2π/3
2 � E2π/3

3 . Finally, we apply the unitary transformation T2π/3 to H ′2π/3
BdG and obtain

H 2π/3
BdG = T2π/3H

′2π/3
BdG T †

2π/3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E2π/3
1 �(k) 0 0 0 0

�∗(k) −E2π/3
1 0 0 0 0

0 0 E2π/3
2 �(k) 0 0

0 0 �∗(k) −E2π/3
2 0 0

0 0 0 0 E2π/3
3 �(k)

0 0 0 0 �∗(k) −E2π/3
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
⎛
⎝H ′2π/3

p-wave 02×2 02×2

02×2 H ′′2π/3
p-wave 02×2

02×2 02×2 H ′′′2π/3
p-wave

⎞
⎠. (A2)

Therefore, the BdG Hamiltonian H2π/3
BdG can be decom-

posed into three effective Hamiltonians H ′2π/3
p-wave, H ′′2π/3

p-wave, and
H ′′′2π/3

p-wave . Through analysis similar to that in the case of
Q = (0, 0, π/az ), we find that when Q = (0, 0, 2π/3az ), the
topological nature of the system can be tuned through si-
multaneously manipulating the topology of three effective
Hamiltonians H ′2π/3

p-wave, H ′′2π/3
p-wave, and H ′′′2π/3

p-wave . For example, as
shown in Fig. 10(a), through tuning the CDW order via vary-
ing the interaction strength J , the topological nature of the
system can be engineered. Another four distinct topological
phases can be achieved. Phases VI and VIII are characterized
by uniform Chern numbers in the folded Brillouin zone along
the kz axis, i.e., kzaz ∈ [−π

3
π
3 ). The other two topological

phases [V and VII in Fig. 10(a)] are characterized by the
presence of a topological phase transition along the kz axis,
as shown in Fig. 10(b).

Applying the method similar to that in the case of Q =
(0, 0, π/az ), the low-energy effective Hamiltonian around

Weyl or Dirac nodes can also be obtained for Q =
(0, 0, 2π/3az ). For example, in phase VII we find that
the effective low-energy physics around the gapless point
(π, π, kc

VII) can be captured by

H2π/3
eff = −�(kxa − π )σx + �(kya − π )σy

+∂E2π/3
1

∂kz

∣∣∣∣
k=(π/a,π/a,kc

VII/az )

(
kzaz − kc

VII

)
σz,

which takes the form of a 2 × 2 Hamiltonian describing chiral
Weyl fermions. While at the boundary between phases VII and
VIII as shown in Fig. 10, since the gapless point satisfies the

relation ∂E2π/3
1

∂kz
= 0, the effective Hamiltonian describing the

low-energy physics around the gapless point can be captured
by

H ′2π/3
eff = −�(kxa − π )σx + �(kya − π )σy,
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FIG. 10. (a) Zero-temperature phase diagram as a function of dipolar interaction strength at average filling n0 = 0.73. The dashed and
solid lines stand for the pairing and CDW order parameters, respectively. The spontaneously formed density modulation serves as a natural
tool to manipulate the topological nature of the system, leading to distinct topological phases marked by various colors. (b) Table of examples
showing the distinct topological nature of various phases in (a). The other parameters are the same as in Fig. 1.

which takes the form of the effective Hamiltonian describing
Dirac fermions.

APPENDIX B: FINITE-TEMPERATURE PHASE
TRANSITION

In our proposed anisotropic 3D lattice system, it turns out
that the superfluid density in the z direction is much smaller
than that on the xy plane, for instance, as shown in Fig. 11(c).
Therefore, the superfluid transition temperature can be dis-
cussed within the framework of a highly anisotropic 3D XY
model [51–55]. In such a case, the transition temperature is at
most a few percent larger than TBKT [52–54]. We can thus use
the TBKT to approximate the critical temperature, where TBKT

is determined by the relation [51–54] kBTBKT = π
2 J̄ (kBTBKT)

with J̄ = Jx+Jy

2 , and Jα = nα
s,2D/4mα , where mα = 1/2tαa2

α

with α = x, y, z. Here nα
s,2D = nα

s az is the effective 2D areal

FIG. 11. Finite-temperature phase diagram as a function of dipo-
lar interaction strength when the average filling (a) n0 = 0.6 and
(b) n0 = 0.73. The blue and green lines show the mean-field tran-
sition temperature of the superfluid and CDW, respectively. The red
line indicates the Berezinskii-Kosterlitz-Thouless transition temper-
ature. (c) Superfluid density as a function of J . The other parameters
are the same as in Fig. 1.

superfluid density [52] and nα
s = ρα

s N/NLa2az, where ρα
s can

be obtained from the response function to the phase twist,

ρα
s = 2tα − �α

2Ntα

∑
k

[nk cos(kαaα ) − fα], (B1)

where

fα = −(2tα−�α )kBT
∑

k′

∫ β

0

∫ β

0
dτdτ ′ sin(kαaα ) sin(k′

αaα )

× [−δk,−k′F (k, τ, τ ′)F †(k′, τ, τ ′)

− δk,−k′−QF̃ (k, τ, τ ′)F̃ †(k′, τ, τ ′) + δk,k′G(k, τ, τ ′)

× G†(k′, τ, τ ′) + δk,k′+QG̃(k, τ, τ ′)G̃†(k′, τ, τ ′)],
(B2)

with G, F , G̃, and F̃ the Green’s functions de-
fined as G(k, τ, τ ′) = −〈Tτ ck(τ )c†

k(τ ′)〉, F (k, τ, τ ′) =
−〈Tτ ck(τ )c−k(τ ′)〉, G̃(k, τ, τ ′) = −〈Tτ ck(τ )c†

k+Q(τ ′)〉, and
F̃ (k, τ, τ ′) = −〈Tτ ck(τ )c−k−Q(τ ′)〉, respectively. In addition,
N is the total number of particles.

Through the analysis above, we can obtain the finite-
temperature phase diagram of our proposed system. For
instance, when the average filling is n0 = 0.6 [the case of Q =
(0, 0, π/az )], as shown in Fig. 11(a), TBKT is approximately
equal to the mean-field transition temperature of superfluids
T SF

MF in the weak-interaction region. However, when increasing
J , there is a discrepancy between TBKT and T SF

MF as expected,
because the mean-field analysis underestimates fluctuation
effects. In a larger interacting coupling region, the CDW phase
can survive higher temperatures, as indicated by the mean-
field transition temperature T CDW

MF . Therefore, below TBKT,
our proposed distinct topological phases, such as phases I–IV
in Fig. 1, can be achieved at finite temperature. When the
average filling is n0 = 0.73 [the case of Q = (0, 0, 2π/3az )],
the finite-temperature phase diagram is obtained as shown in
Fig. 11(b).
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Phys. 83, 1523 (2011).
[19] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature

(London) 471, 83 (2011).
[20] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji,

Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Science 354, 83
(2016).

[21] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S.
Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[22] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[23] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[24] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U.
Schneider, Science 347, 288 (2015).

[25] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[26] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[27] C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013).
[28] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[29] S.-L. Zhang and Q. Zhou, Phys. Rev. A 90, 051601(R) (2014).

[30] W. Zheng and H. Zhai, Phys. Rev. A 89, 061603(R) (2014).
[31] S. K. Baur, M. H. Schleier-Smith, and N. R. Cooper, Phys. Rev.

A 89, 051605(R) (2014).
[32] T. Müller, S. Fölling, A. Widera, and I. Bloch, Phys. Rev. Lett.

99, 200405 (2007).
[33] G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys. 7, 147

(2011).
[34] P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger,

and K. Sengstock, Nat. Phys. 8, 71 (2012).
[35] T. Kock, M. Ölschläger, A. Ewerbeck, W.-M. Huang, L.

Mathey, and A. Hemmerich, Phys. Rev. Lett. 114, 115301
(2015).

[36] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[37] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.
Kargarian, A. H. MacDonald, and G. Shvets, Nat. Mater. 12,
233 (2013).

[38] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem.
Rev. 112, 5012 (2012).

[39] Y. Tang, W. Kao, K.-Y. Li, and B. L. Lev, Phys. Rev. Lett. 120,
230401 (2018).

[40] M. Lu, N. Q. Burdick, and B. L. Lev, Phys. Rev. Lett. 108,
215301 (2012).

[41] K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev.
A 89, 020701(R) (2014).

[42] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F.
Ferlaino, Phys. Rev. Lett. 112, 010404 (2014).

[43] K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, and
F. Ferlaino, Science 345, 1484 (2014).

[44] D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16,
3081 (1977).

[45] C. Gros, Ann. Phys. (NY) 189, 53 (1989).
[46] E. Neuscamman, C. J. Umrigar, and G. K.-L. Chan, Phys. Rev.

B 85, 045103 (2012).
[47] R. Jastrow, Phys. Rev. 98, 1479 (1955).
[48] S. Sorella, Phys. Rev. B 64, 024512 (2001).
[49] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University Press,
Princeton, 2013).

[50] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C.
Makrides, A. Petrov, and S. Kotochigova, Nature (London) 507,
475 (2014).

[51] V. Cataudella and P. Minnhagen, Physica C 166, 442 (1990).
[52] B. Chattopadhyay and S. R. Shenoy, Phys. Rev. Lett. 72, 400

(1994).
[53] M. Friesen, Phys. Rev. B 51, 632 (1995).
[54] S. W. Pierson, Phys. Rev. B 51, 6663 (1995).
[55] P. Minnhagen and P. Olsson, Phys. Rev. B 44, 4503 (1991).

033312-10

https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1930.0013
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF02961314
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nphys384
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1038/nature09887
https://doi.org/10.1126/science.aaf6689
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.1259052
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nphys2789
https://doi.org/10.1142/S0217979212300010
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.89.061603
https://doi.org/10.1103/PhysRevA.89.051605
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys2128
https://doi.org/10.1103/PhysRevLett.114.115301
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nmat3520
https://doi.org/10.1021/cr2003568
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevA.89.020701
https://doi.org/10.1103/PhysRevLett.112.010404
https://doi.org/10.1126/science.1255259
https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1103/PhysRevB.85.045103
https://doi.org/10.1103/PhysRev.98.1479
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1038/nature13137
https://doi.org/10.1016/0921-4534(90)90042-D
https://doi.org/10.1103/PhysRevLett.72.400
https://doi.org/10.1103/PhysRevB.51.632
https://doi.org/10.1103/PhysRevB.51.6663
https://doi.org/10.1103/PhysRevB.44.4503

