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Measuring densities of cold atomic clouds smaller than the resolution limit
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We propose and demonstrate an experimental method to measure by absorption imaging the size and local
column density of a cloud of atoms, even when its smallest dimension is smaller than the resolution of the
imaging system. To do this, we take advantage of the fact that, for a given total number of atoms, a smaller and
denser cloud scatters less photons when the gas is optically thick. The method relies on making an ansatz on
the cloud shape along the unresolved dimension(s) and on providing an additional information, such as the total
number of atoms. We demonstrate the method on in situ absorption images of elongated 87Sr Fermi gases. We
find significant nonlinear corrections to the estimated size and local density of the cloud compared to a standard
analysis. This allows us to recover an undistorted longitudinal density profile and to measure transverse sizes as
small as one-fourth of our imaging resolution. The ultimate limit of our method is the wavelength that is used
for imaging.
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I. INTRODUCTION

The cold atoms community typically uses absorption imag-
ing to explore the physics of dense clouds of atoms. In
many cases, especially in the case of in situ observations
to investigate, e.g., the equation of state of quantum fluids
[1–4] or one-dimensional (1D) gases [5], these objects are ex-
tremely small and sometimes even below the resolution limit
of the imaging system. More generally, quantum gases reveal
interesting phenomena in small local features: vortices [6]
whose size is set by condensates’ healing length and typically
cannot be resolved in situ, density fluctuations [7], Wannier
functions in optical lattices, etc. Resolving such structures
is a difficult but rewarding problem that prompted important
technical developments, using, for example, high-resolution
objectives in the quantum gas microscope approach [8] (which
are nevertheless still limited to the diffraction limit), the newly
demonstrated quantum gas magnifier [9], super-resolution
imaging [10,11], scanning probes using electrons [12] or ions
[13].

Here we focus on the in situ imaging of small and dense ob-
jects using standard absorption imaging. In practice, trapped
gases can be both extremely absorbing and smaller than the
imaging resolution, which constitutes a severe difficulty for
image analysis due to, e.g., total light absorption [14] or
diffraction of the optical fields used for imaging. We, never-
theless, show that it is still possible to accurately measure the
size and local density of an object, even when this object is
smaller than the imaging resolution.

The decrease in light intensity induced by propagation
through an atomic sample can be linked to the column density
thanks to the Beer-Lambert law. However, for objects smaller
than the imaging resolution and when light absorption is

strong, the information on the column density is partially
lost. Indeed, the Beer-Lambert law is nonlinear and cannot be
averaged over the imaging resolution. Crucially, the average
number of absorbed photons per atom depends on the cloud
size since atoms in a smaller and therefore optically thicker
medium are exposed to a reduced average light intensity.
Our main idea is to take advantage of this to reconstruct
information on size and local density at scales below the
imaging resolution.

In the first section of this paper, we explain our image
processing, which estimates the size of atomic clouds by using
the nonlinearity of the Beer-Lambert law and an additional
information. This latter, we here take to be an independent
measurement of the total number of atoms. In the second
section, we use this method to analyze images of ultracold
strontium clouds at temperature ranging from 0.14TF to 1.6TF

(where TF is the Fermi temperature). We focus on cases where
the ultracold gases have expanded while being strongly con-
fined in two dimensions, which results in a very elongated
cloud with a very small transverse dimension due to con-
finement and a longitudinal profile that reproduces the initial
momentum distribution. This very elongated cloud and, in
particular, the measurement of its transverse size is our subject
of study. In practice, using the averaged Beer-Lambert law
results in a loss of information on this transverse size (which
is smaller than the resolution limit of our imaging system)
and a strongly distorted shape along the longitudinal axis.
We show that our method enables us to deduce the transverse
size, which, in practice, was down to 0.25 times the imaging
resolution at the lowest temperature. This transverse size is in
good agreement with theoretical predictions; the longitudinal
density profile deduced from our method is also in agreement
with the expected Fermi distribution.
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II. BEER-LAMBERT LAW FOR OBJECTS
BELOW IMAGING RESOLUTION

We first describe our approach to analyze absorption
images of atomic clouds smaller than the imaging system
resolution. We will focus on a situation where the profile
of the column density is smaller than the resolution limit
in one direction only. The approach can be generalized to
structures that are smaller than the imaging resolution in the
two dimensions perpendicular to the propagation axis of the
imaging laser beam.

Under standard conditions of imaging, the propagation
along Oz of resonant light at intensities I (x, y, z) below
the saturation intensity, through an atomic cloud of density
n(x, y, z), follows the Beer-Lambert law:

dI (x, y, z)

I (x, y, z)
= −n(x, y, z)σ0dz, (1)

where σ0 = 3λ2/2π is the resonant light absorption cross
section for a single atom. λ is the photon wavelength. We will
consider the situation where the longitudinal size of the object
l along the direction of the imaging laser beam is smaller
than the Rayleigh length associated with its transverse size
σ , i.e., l < πσ 2/λ. In this regime, diffraction of the imaging
beam as it propagates through the cloud can be neglected over
the distance l such that the intensity variations along x, y, z
are independent. Then Eq. (1) can be integrated to provide a
measurement of the optical depth Dopt:

Dopt (x, y) = − ln
I (x, y)

I0(x, y)
= σ0

∫ ∞

−∞
n(x, y, z)dz, (2)

where I0(x, y) is the transmitted light intensity without
atoms and I (x, y) is the transmitted light intensity with
atoms. Dopt (x, y)/σ0, thus, provides the column density∫
R n(x, y, z)dz ≡ ñ(x, y).

Experimentally, information on light intensity is limited by
the imaging resolution, set by, e.g., the detector pixel size,
aberrations, or the diffraction limit. We, thus, consider the
collected power over a size a at position {x = ia, y = ja},
characterized by the indices (i, j),

P(i, j) =
∫∫

Di, j

I (x, y)dx dy, (3)

where Di, j = [{ia, (i + 1)a}{ ja, ( j + 1)a}] is the domain of
integration. It is possible to extract density information from
P(i, j)
P0(i, j) [where P0(i, j) is the collected power without atoms]
and Eq. (2) when I (x, y) varies slowly over the distance a, or
when absorption is negligible. However, in general, and in the
present situation,

ln

(
P(i, j)

P0(i, j)

)
�= 1

a2

∫∫
Di, j

ln

(
I (x, y)

I0(x, y)

)
dx dy, (4)

such that only measuring P(i, j) and P0(i, j) is insufficient to
provide information on either the peak or the averaged column
density.

Nevertheless, for a given total atom number, the total ab-
sorbed light power strongly depends on the extension of the
imaged object on the imaged plane when absorption is strong,
irrespective of the imaging resolution. This is due to a shad-
owing effect in which the first atoms met by the imaging light
reduce the light intensity for the subsequent atoms. This is

strongest for small size samples because of increased density.
Although this effect is well captured by the Beer-Lambert law,
Eq. (4) indicates deviations when information is derived from
images that are pixelated or blurred at the scale of the sample
size. Then, the number of absorbed photons still depends on
the size of the cloud, and, as we will now see, it is still pos-
sible to deduce this size and the local density if one provides
independent information, such as the total atom number.

In our experiment, the column density varies rapidly along
the short axis Ox and slowly along Oy, see Fig. 1. We will now
relate the total number of absorbed photons integrated along a
pixel line parallel to Ox to the local column density. We define

Rph( j) =
∑

i

P0(i, j) − P(i, j)

P0(i, j)
. (5)

For brevity, we introduce δI (x, y) = I0(x, y) − I (x, y). We
then relate the pixelated information to local intensities I (x, y)
using Eq. (3), and then use Eq. (2),

Rph( j) =
∑

i

1

P0(i, j)

∫∫
Di, j

dx dy δI (x, y)

=
∑

i

∫∫
Di, j

dx dy
I0(x, y)

P0(i, j)

×
[

1 − exp

(
−σ0

∫
R

n(x, y, z)dz

)]
. (6)

The discrete indices (i, j) and the size a can be matched
to physical pixels of the camera, or to effective pixels after
binning. In any case, Eq. (6) is valid provided the incident
intensity in the atomic plane, imaged to form I0(x, y) on the
camera, is homogeneous at the spatial scale of the resolution
limit of the imaging system.

To simplify Eq. (6), we note that I0(x,y)
P0(i, j) = 1

a2 and that∑
i

∫ (i+1)a
ia dx[··] = ∫

R dx[··] as the integrand [··] is zero far
away from the cloud. Furthermore, in our case, the atomic
density along Oy varies slowly over a pixel length such that
we can also replace

∫ ( j+1)a
ja dy f (y) [where f is the integrand

over y in Eq. (6)] by a f ( ja).
Our idea is to introduce an ansatz on the local column

density profile along Ox, which for simplicity is taken as
Gaussian,

ñ(x, y) = e−(x2/2σ 2
x )ñ(0, y), (7)

Then, in the integration along x of Eq. (6) we apply a change
in variable u = x/σx. We obtain

Rph( j) = σx

a

∫
R

[
1 − exp

(−σ0ñ(0, a j)e−(u2/2)
)]

du

≡ σx

a
F (σ0ñ(0, a j)), (8)

where we defined the transfer function F .
The total number of atoms Nat can be computed according

to the definition of the column density and to Eq. (7), and
related to Rph using Eq. (8),

Nat =
√

2πaσx

σ0

∑
j

F−1

(
a

σx
Rph( j)

)
. (9)

To obtain these equations, four assumptions have been
made. First, the density along the short axis Ox is assumed
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FIG. 1. Recovering density profiles from distorted absorption images of tightly confined gases. (a) Geometry. (b) Absorption image of a gas
tightly confined and expanding in one dimension. (c) Time-of-flight absorption image when the gas is released in all three directions. (d) Cross
section along the short axis of the column density shown in (b) at peak value. The raw data (column density deduced from the pixelated optical
depth) shows diffraction fringes locally leading to nonphysical negative optical depth (black squares). Our method does not use the optical
depth but rather estimates density by counting missing photons and assuming a Gaussian shape to the cloud in its shortest dimension. The
result of our method is shown by the red solid lines, delimiting a confidence interval (red hashes) resulting from experimental fluctuations.
The raw data underestimate the atom number by a factor of 1.5 and the peak column density by a factor of roughly 4 in this case. Our method
allows to infer an object size of only 0.25 px (pixel size). (e) Linear density along the long axis Oy, n1D(y) deduced either by integrating the
pixelated optical depth along the short axis Ox (black dashes) or by our method (red solid lines, delimiting the confidence interval).

to be a Gaussian of width σx. Second, the column density
ñ(x = 0, y) along the long axis Oy is quasiuniform along the
width of a pixel. Third, the illumination is homogeneous at
the scale of the resolution limit. Finally, we also assumed that
diffraction of the probe light by the atomic sample can be
neglected over the depth of the sample along Oz so that the
Beer-Lambert law can be applied locally.

Both Eqs. (8) and (9) give the possibility to reconstruct
the actual density profiles even when the Beer-Lambert law
cannot be directly used on the raw data. Indeed, F is nonlinear
so that a given density profile ñ(0, a j) results in distorted pro-
files Rph( j) that parametrically depend on σx. Therefore, we
can, in principle, retrieve the transverse size σx from Eq. (8)
when the longitudinal density profile is known a priori. This
is the case, for example, in our experiment at high temperature
where the longitudinal cloud shape along Oy should obey
Boltzmann statistics and be Gaussian. Alternatively Eq. (9)
simply relates the free unknown parameter σx to the total
number of atoms, which is useful provided this number can
be measured independently.

In what follows, we obtain Nat by an independent measure-
ment on expanded clouds for which the gas is larger than the
resolution in three dimensions (3D) so that the usual analysis
holds and N3D

at = a2

σ0

∑
i, j D3D

opt (i, j) (D3D
opt is the optical depth

for the images with 3D expansion). We point out that the
estimate of σx that we, thus, perform is independent from
uncertainties in σ0 (uncertainties that can arise, for example,
for atoms with a hyperfine structure due to optical pumping
effects during the imaging pulse). Indeed, setting Nat = N3D

at
from the explicit expressions of Nat and N3D

at it follows imme-
diately that σx is independent of σ0.

III. EXPERIMENTAL RESULTS

In our experiment, whose setup is detailed in Ref. [15],
the 87Sr cold atomic sample is obtained after evaporation
to reach regimes from T � 2TF down to T � 0.15TF . The

optical dipole trap is made of a horizontal anisotropic laser
beam crossed by a second laser beam at 30◦ from vertical, see
Fig. 1(a). To produce a tightly confined gas in one dimension,
we switch the horizontal beam off. This allows for an expan-
sion of the gas channeled by the second laser beam for times
ranging from 0.1 to 20 ms. We then take an absorption image,
see Fig. 1(b), using a pulse of circularly polarized resonant
light whose intensity is about 50 times below the saturation
intensity, and a nonmagnifying imaging system that uses a
telescope configuration to approximately conjugate the atomic
plane to a CCD chip with 6.5-μm-wide pixels. The telescope
is made of two achromatic lenses of local length f = 150 mm
and diameter 50 mm. The opening diameter is set to 30 mm
to reduce geometrical aberrations, and the diffraction-limited
resolution corresponds to 2.8 μm. However, in practice, the
resolution of our imaging system is limited by the pixel size of
the CCD chip. Furthermore, as a function of time, the cloud is
positioned at different depths z along the imaging axis due to
the orientation of the guiding beam [see Fig. 1(a)]. This results
in images that can be slightly out of focus. To independently
calibrate the number of atoms, we release the gas by switching
off both trapping lasers and take absorption images after a
three-dimensional free flight, see Fig. 1(c).

As can be seen in Fig. 1(b), images of tightly confined
gases are affected by pixelation and diffraction fringes per-
pendicular to the elongated direction. Figure 1(d) shows a cut
through those fringes, which are visible because the object is
slightly out of focus. The only diffraction signature is along
the transverse axis and arises because of fast variations of the
atomic density along this axis. Thus, the light is redistributed
along this direction only. Therefore, we can measure Rph( j) on
camera pixel lines without binning, even when the pixel size
a is smaller than the actual optical resolution on out-of-focus
clouds. Using Eq. (8) we deduce the transverse size and the
local density profile of the gas, also shown in Fig. 1(d).

Our approach, thus, recovers the local peak density from
which we also infer the actual density profile along the
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FIG. 2. Determination of σx based on the independently mea-
sured total atom number Nat , for two images (at 0.14TF and 0.56TF )
whose peak optical depths significantly differ. The black line is the
inverse of Eq. (9) for a specific Rph, i.e., a single image. The atom
number confidence intervals (delimited by the dotted lines) are due
to atom number fluctuations from shot to shot and are the dominant
cause for the σx confidence intervals (delimited by the dashed lines).
Qualitatively, a low optical depth results in a large slope and, thus,
large σx uncertainty.

elongated axis. As shown in Fig. 1(e) the linear density de-
rived by integrating the pixelated optical depth has a distorted
shape compared to the linear density as recovered by our
method. As far as the low-density part is concerned, the
reconstructed profile matches that deduced from integrating
the pixelated optical depth as expected for low absorption.
In contrast, the high-density region, corresponding to larger
absorption, is underestimated when using the pixelated optical
depth.

A. Analysis of the subresolution transverse size

We now focus on our measurements of σx. Figure 2 illus-
trates how the atom number from reference images is used
to recover σx. For a given picture of the elongated cloud, we
compute Rph( j), we plot the number of atoms Nat deduced
from Eq. (9) as a function of an assumed value of σx. From the
reference measurement of N3D

at and its uncertainty associated
with shot-to-shot fluctuations, we deduce the corresponding
value and confidence interval of σx that we will present in the
following figures.

In Fig. 3 we observe that σx does not vary much with the
guided time of flight (its variations are similar to the approx-
imately 10% standard deviations of the data). Such a small
variation is expected because the gas evolves while being
confined in the guiding beam with a transverse confinement
frequency which we estimate to vary from 210 Hz at the initial
position to 145 Hz after 20 ms of guided fall. Indeed, if we
assume that the transverse degrees of freedom follow adiabat-
ically such an evolution, the decrease in trapping frequency
corresponds to an increase of only 20% in the transverse size.
Our ability to measure σx for a large range of expansion times
illustrates the robustness of the method as from the short to

FIG. 3. Time dependence of σx from 2 to 20 ms channeled ex-
pansion at different degeneracies. Each point aggregates typically
ten images with error bars that show the standard deviations between
the individual measurements. Those standard deviations match the
individual picture confidence interval (see Fig. 2) and, thus, can
be attributed to mostly measurement uncertainty. The degeneracy is
deduced from the reference images.

long time of flight the peak optical density varies by a factor
of 14 because of the longitudinal expansion. Furthermore,
the method provides accurate estimates of σx even for short
expansion times (2 ms), which indicates that the longitudinal
profile varies slowly enough for the approximation made to
derive Eq. (8) to remain valid.

As shown in Fig. 4, σx depends on the temperature and
reaches 0.25 times the pixel size at lowest temperatures T �
30 nK at 0.14TF . This value of, i.e., 1.6 μm, is smaller than
the typical distortions introduced by diffraction of the imaging
beam and out-of-focus measurements. It is also smaller than

FIG. 4. Dependence of σx as a function of kinetic energy along
one direction. The kinetic energy is deduced from the reference
images. The black line shows the expected size according to equipar-
tition of energy. The error bars show the standard deviations,
aggregating data for all channeled expansion times.
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the ultimate resolution of our imaging system (set by the pixel
size).

To compare our measurements to theoretical expectations,
we use the reference images of 3D expansions, and we mea-
sure the mean kinetic energy along the longitudinal axis EK .
Based on the equipartition of energy, and neglecting inter-
atomic interactions, we expect 1

2 mω2σ 2
xth

= EK . In Fig. 4, we,
thus, compare the measured dependence of σx as a function of
the energy per atom to the expected values of σxth , using the
independently measured initial trap confinement frequency.
We find an overall good agreement with this rough theoretical
model without a free parameter with discrepancies smaller
than 15% throughout the curve. We point out that, based on
the resolution of the Boltzmann equations [16], we expect
interaction effects on the measurement of EK during the ex-
pansion to be on the order of 8% at the lowest temperature
given our experimental parameters [17], whereas the interac-
tion effects on σx are on the order of 1%.

B. Longitudinal profile

In order to further verify that our results match the ones that
are expected from the theoretical point of view, we now turn
to the longitudinal profiles that we obtain and compare them
to theory. In Fig. 5, we present both the longitudinal density
profile deduced from the pixelated optical depth and the 1D
density profile n1D deduced from our method.

Figure 5(a) shows a nondegenerate gas at 1.6TF after a
channeled expansion of 10 ms. For such a long expansion, the
longitudinal profile should reflect the momentum distribution
along this axis before expansion. Both profiles are fitted by
Gaussian distributions since at this temperature the momen-
tum distribution is almost perfectly described by Boltzmann
statistics. The residuals to the fits show that the 1D profile
deduced from the pixelated optical depth (upper residuals)
systematically distorts the shape of the cloud, whereas our
reconstruction method (lower residuals) naturally recovers the
expected Gaussian profile.

As shown in Fig. 1(a), this expansion is performed along
an axis that makes an angle with the imaging plane, which
defines a parallax for our measurements. In addition, during
the expansion, the atoms feel a position-dependent potential
due to the divergence of the Gaussian laser beam. In practice,
this results in an anticonfinement. The parallax and anticon-
finement can both be measured by comparing the size of
the expanding cloud to its temperature and measuring the
trajectory of the center of mass. For the analysis shown in
Fig. 5, the parallax and anticonfinement simply result in a
single multiplicative correction parameter C to the cloud size
for a given expansion time.

Figure 5(b) shows the linear density of a degenerate gas
at 0.21TF . We compare it to the expected density profile of
a degenerate Fermi gas expanding in 1D. There are no free
parameters since this density profile only depends on the
number of atoms, the temperature, and degeneracy, which are
all measured from the reference images, and C, measured
from Fig. 5(a). Obviously, the linear density profile from
pixelated data is in severe disagreement with the theoretical
model, unlike the reconstructed profile. The agreement with
this latter profile is good throughout the curve as can be seen

FIG. 5. Density profiles along the long axis Oy. The black hashed
surface is the confidence interval on the measured n1D(y). The dashed
line corresponds to the density deduced from the pixelated optical
depth. (a) Nondegenerate gas at 1.6TF after a 10-ms guided expan-
sion. The red lines are Gaussian fits for the linear density deduced
from the pixelated optical depth (upper normalized residual) and for
n1D(y) (lower normalized residual). The residuals show that the raw
data differ significantly from the expected Gaussian shape of a ther-
mal gas. On the contrary, our method recovers this expected Gaussian
shape. (b) Degenerate gas at 0.21TF after an 18-ms guided expansion.
In blue, the expected density profile (with no free parameter) matches
the profile recovered by our method as demonstrated by the residuals
shown below.

from the residuals. However, for the lowest momenta, we also
observe a strong noise that affects the reconstruction. These
irregularities are due to the strong nonlinearity of the transfer
function F at high density. This nonlinearity may also bias
an initially symmetric noise. This constitutes a limitation to
our reconstruction scheme when the source of the noise is
purely from technical origin; however, it also signals that our
method could unveil density fluctuations that would otherwise
be washed out by the limited optical resolution.

IV. DISCUSSION AND CONCLUSION

We introduced a method to analyze absorption images
and to measure density profiles at scales below the imaging
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resolution limit that may occur due to, e.g., pixelation, distor-
tion of the images caused by aberrations, and the diffraction
by the numerical aperture. These limitations are well known
in the community and make the analysis of very small ob-
jects particularly difficult. Here we go beyond the approach
performed in Refs. [18,19] that corrects the absorption by
a simple numerical factor. Since the deviation to the Beer-
Lambert law is nonlinear, we find that it is important to follow
such a procedure as presented here in order to recover the ex-
act local density and an undistorted density profile, even along
the direction in which the cloud is larger than the imaging
resolution.

In our experiment, we characterize objects as small as 0.25
times our pixel size, despite diffraction fringes due to out of
focus imaging as large as two pixels—these objects are, thus,
significantly below our resolution limit. Comparisons with
theoretical models of the cloud shape with no free parameter
confirm the validity of these results. We have further checked
our method by testing its sensitivity to the ansatz that is chosen
for the transverse profile. We found that using a Fermi dis-
tribution in the transverse profile barely modifies our results.
This good agreement relies on a certain similarity between
the actual density profile and the chosen ansatz. However,
our method would not be able to reveal unexpected features
in the shape along the nonresolved direction since different
density shapes could lead to the same number of scattered
photons.

We point out that although our method allows retrieving
features below the imaging resolution, its fundamental limit is
�λ as λ sets the scattering cross section of light by the atoms.
As a consequence, an object whose size would be below λ

would affect light propagation identically irrespective of its
actual size. In addition to this limit on the transverse size σ ,
there is also a limitation associated with the depth l of the
object along the axis of the imaging beam. For our equations
to hold, it is necessary that the diffraction of the light field can
be neglected over the distance l . Therefore, is is important that
l < πσ 2/λ.

Finally, we point out that our method could easily be gen-
eralized to study features smaller than the imaging resolution
within clouds otherwise larger than the imaging resolution.
For example, using the appropriate ansatz, we have in mind to
measure the size of vortex cores within a two-dimensional or a
3D superfluid, that are typically below the imaging resolution,
or other hydrodynamic structures, such as solitons [20].
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