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Decoherence-free radio-frequency-dressed subspaces
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We study the spectral signatures and coherence properties of radio-frequency-dressed hyperfine Zeeman
sublevels of 87Rb. Experimentally, we engineer combinations of static and RF magnetic fields to modify the
response of the atomic spin states to environmental magnetic field noise. We demonstrate analytically and
experimentally the existence of “magic” dressing conditions where decoherence due to electromagnetic field
noise is strongly suppressed. Building on this result, we propose a bichromatic dressing configuration that
reduces the global sensitivity of the atomic ground states to low-frequency noise, and enables the simultaneous
protection of multiple transitions between the two ground hyperfine manifolds of atomic alkali species. Our
methods produce protected transitions between any pair of hyperfine sublevels at arbitrary (low) DC-magnetic
fields.
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I. INTRODUCTION

The sensitivity to environmental field fluctuations of
atomic transitions in quantum systems represents a major
challenge for improving the accuracy and reliability of ap-
plications such as atomic clocks [1], low-frequency field
sensing [2], quantum memories [3] and information proces-
sors [4–6]. The sensitivity problem arises since, typically,
the transition frequency between pairs of quantum states is
affected by temporal and spatial variations of the electro-
magnetic environment, which results in a rapid dephasing of
the system’s wave function. The ubiquity of this problem,
identified in ultracold atomic ensembles [7], superconducting
devices [8], nitrogen-vacancy centers in diamond [9], and
doped silicon [10], has driven the development of passive
and active stabilization techniques for magnetic field shielding
(e.g., Refs. [11,12]) as well as various flavors of dynamical
coherent control (pulsed [13], concatenated [14], and contin-
uous [15,16]) that isolate such systems from unwanted noise
sources and improve their coherence time by several orders of
magnitude [17]. In atomic systems, in particular, reduction of
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the frequency broadening can be achieved partially by choos-
ing appropriate states, which are less magnetically sensitive.
However, often it is necessary to apply additional electro-
magnetic fields (static magnetic field (DC) [18], microwaves
(MW) [19], radio-frequency (RF) [20], optical radiation [21])
tuned to suppress the differential Zeeman or Stark energy
shifts between selected pairs of states (clock/qubit states),
which, effectively, protects the transition frequency against
field fluctuations.

Here we demonstrate the control of the magnetic field
sensitivity of the electronic ground state of 87Rb, dressed by
a radio-frequency magnetic field. The dressing is achieved by
applying an oscillating magnetic field, BRF, with frequency,
ωRF, close to the Larmor frequency (or Zeeman splitting)
and controlled by an applied static magnetic field, BDC. We
use microwave spectroscopy [22,23] to determine the energy
difference and linewidth of transitions between dressed states
[24,25] and study their dependence with respect to the dress-
ing configuration. We observe that, in general, for any pair
of dressed states there is a dressing condition for which the
atoms decouple from fluctuations of the static field, which
results in a significant reduction of the line broadening. In our
setup, using a linearly polarized RF dressing field, we find
that the broadening of dressed transitions lines (∼0.1 kHz) is
one order of magnitude smaller than that of equivalent bare
transitions (∼1.0 kHz), limited mainly by amplitude noise of
our RF generator [26]. We also find that the optimal dressing
condition (i.e., that with reduced magnetic field sensitivity)
depends on the selected pair of dressed states as a result of the
difference of the gyromagnetic factors of the two electronic
ground-state hyperfine manifolds, nonlinear Zeeman shifts
[27] and Bloch-Siegert shift effects [28].

The majority of existing techniques for noise suppression
focus on qubit and clock applications. There is, however,
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a growing interest in manipulating qudit systems in atomic
[29,30] and solid-state [31] platforms, which requires the
control of d internal states [32–34]. In this paper, we propose
a dressing scheme that reduces the sensitivity of all possible
hyperfine transitions in the electronic ground state of 87Rb.
Our scheme exploits the possibility of addressing indepen-
dently each hyperfine manifold by tuning the frequency of
each circular component (σ±) of the dressing field [35].

As a figure of merit in the improvement in the stability
against low-frequency noise, and thus of the atomic resilience
to decoherence [36,37], we evaluate the root-mean-square
(rms) average of the first derivative of the atomic transitions
frequencies with respect to static field, αDC (see Sec. IV).
Using the rotating wave approximation (RWA) and neglecting
the quadratic Zeeman shift, we found a first estimate of the
ratio between the σ± frequencies that minimizes αDC. This
optimal condition should be corrected to take into account ef-
fects from nonlinear Zeeman and Bloch-Siegert shifts, which
we explain qualitatively and evaluate numerically. We found
that, although it is not possible to fully cancel the influence
of magnetic field fluctuations for all transitions, our scheme
defines dressed states with a magnetic sensitivity smaller than
that possible with bare and single-frequency-dressed atoms.
This scheme can be used to improve the robustness of qu-
dits encoded in the electronic ground state of alkali atoms,
for which control protocols have been recently demonstrated
using microwave pulses [29,38].

The structure of this paper is as follows. Section II reviews
the formalism we use to define the basis of dressed states. In
Sec. III we present experimental results for the dependence of
the transition frequencies between dressed states with respect
to the applied static magnetic field, which reflects into a de-
pendence of the linewidth and decoherence. Following this,
in Sec. IV we propose a bichromatic dressing configuration
that leads to an overall reduction of the magnetic sensitivity
(on average) of all possible transitions between dressed states.
The closing section (Sec. V) presents the conclusions of our
work.

II. RF DRESSING OF THE GROUND-STATE MANIFOLD
OF ALKALI ATOMS

The internal dynamics of an alkali atom in its electronic
ground state interacting with a magnetic field, B(t ), is gov-
erned by the Hamiltonian:

H (t ) = A

h̄2 I · J + μB

h̄
(gI I + gJJ) · B(t ), (1)

where A is the hyperfine coupling, μB is the Bohr magneton,
and the factors gI and gJ are the nuclear (I) and electronic (J)
Landé g-factors, with corresponding angular momentum op-
erators I and J. The coupling between nuclear and electronic
magnetic momenta defines two hyperfine manifolds (given
J = 1/2) with different total angular momentum, F = I ±
1/2, which are split by an energy gap of h̄ωhfs = A(I + 1/2).
This splitting defines a natural basis of states to describe the
atomic dynamics, labeled by the total angular momentum (F )
and its projection along a quantization axis (m), {|F, m〉}.

Here we study RF-dressed atoms of 87Rb prepared by the
magnetic field:

B(t ) = BDC êz +
∑

i∈{x,y,z}
BRF,i cos(ωRFt + φi )êi, (2)

where the quantization axis z is defined along the direction of
the static field BDC.

The dressed basis is defined as the set of solutions of the
Schrödinger equation resulting from Eqs. (1) and (2), with the
form:

|�Fm̄〉 = e−iĒF,m̄t/h̄|F, m̄〉, (3)

where ĒF,m̄ is the corresponding dressed energy [39]. The
ket on the right-hand side of Eq. (3) is a time-periodic linear
combination of the bare states, which can be expressed as the
Fourier series:

|F, m̄〉 =
∑

m

∑
n

U n
m,m̄einωRFt |F, m〉. (4)

The existence of this solution of the Schrödinger equation is
guaranteed by the Floquet-Bloch theorem [40].

In our experiments, see Sec. III, we transform the eigen-
states of the static Hamiltonian, {|F, m〉} into the dressed
states {|F, m̄〉}, by adiabatically varying the DC and RF fields
until reaching a final dressing configuration. We achieve high-
fidelity transformations from the bare to the dressed basis by
defining temporal trajectories of the field configuration that
avoid the degeneracy of the dressed energies {ĒF,m̄} [40]. Fur-
thermore, the absence of level crossings during the switchover
to the dressed basis allows us to establish a one-to-one corre-
spondence between the bare and the dressed basis, such that
we can use the same set of quantum numbers for labeling the
two bases.

In the limit of weak dressing and linear Zeeman shift, the
Fourier coefficients in Eq. (4) can be approximated using the
RWA with the dressed energy [41] (see Appendix A):

ĒF,m̄ = EF + gF

|gF | m̄
√[

h̄ω0 − h̄ω
sgn(gF )
RF

]2 + 2
∣∣h̄�

sgn(gF )
RF-

∣∣2
,

(5)

where EF = A[F (F + 1) − I (I + 1) − J (J + 1)]/2,
ω0 = |μBgF BDC/h̄| the Larmor angular frequency, ω

sgn(gF )
RF

denotes the rotating frequency of the σsgn(gF )-polar component
of the RF field, defined with respect to the local direction of
the static magnetic field (z axis), and the Rabi coupling:

�
sgn(gF )
RF = μBgF

23/2h̄
[−sgn(gF )BRF,xe−iφx + iBRF,ye−iφy ] (6)

with sgn(gF ) ∈ {+1,−1}.
The general definition of the dressed states, |F, m̄〉 as the

Fourier series in Eq. (4) allows us to calculate corrections
to the RWA and include the full dependence of the Zeeman
shifts with the static magnetic field. This formulation can be
extended to the case of polychromatic dressing with N incon-
mensurable frequencies, using the multidimensional Fourier
decomposition of the dressed state:

〈F, m|F, m̄〉 =
∑

�n
U �n

m,m̄ei�n· �ωt , (7)
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where the N-dimensional vectors �ω = (ω1, ω2, . . . , ωN ) and
�n ∈ ZN [42]. We apply this formalism in Sec. IV to evaluate
the dressed energies when applying a bichromatic RF field.

A. Resonant condition in RF-dressed states

In the experiments described in Sec. III, we perform mi-
crowave spectroscopy of the dressed atoms by applying a
short and weak MW pulse to the dressed ensemble, followed
by the detection of the fraction of atoms remaining in (and
transferred to) the initial (the final) hyperfine manifold [23].

To calculate the response of the dressed atom to this pulse,
we should express the MW coupling in the dressed basis,
using the transformation rule:

H̄MW = U †
F (t )HMWUF (t ), (8)

where HMW is the atomic coupling to the microwave field
expressed in the basis of Zeeman states [see Eq. (1)], and
UF (t ) is the unitary time-dependent transformation defined in
Eq. (4).

The harmonic components of UF (t ) combine with the os-
cillation of the MW field, to produce a resonant condition for
transitions between dressed states, |F, m̄〉 ↔ |F ′, m̄′〉:

ωMW = nωRF + ωm̄′,m̄, (9)

with n ∈ Z and the transition angular frequency:

ωm̄′,m̄ = ĒF ′,m̄′ − ĒF,m̄

h̄
, (10)

where the dressed energy ĒF,m̄ is defined in Eq. (3).
The resonant condition between dressed states, Eqs. (9)

and (10), is a consequence of couplings of Zeeman substates
within each hyperfine manifold, mediated by RF photons.
Since the RF-dressed states in the m̄ basis are coherent super-
positions of m states (Zeeman states), the MW field leads to
couplings between the dressed m̄ states in different hyperfine
manifolds (F , F ′), which are resonant at frequencies ωMW/2π

that depend on the energy difference between two m̄ states.
One may also understand this effect as an ac Stark shift of
the eigenenergies of the m states mediated by their coupling
through RF photons.

Using the RWA and considering near-resonant RF dress-
ing, this resonant condition becomes (see Appendix A):

ωMW = nωRF + ωhfs + gF+1

|gF+1| m̄′√2|�+
RF| − gF

|gF | m̄
√

2|�−
RF| +

(
gF+1

|gF+1|
m̄′

|�+
RF|

− gF

|gF |
m̄

|�−
RF|

)
ω2

rf

23/2

−
(

m̄′gF+1

|�+
RF|

− m̄gF

|�−
RF|

)
ωRF

μBBDC√
2h̄

+ 1

23/2

[
gF+1

|gF+1|
m̄′g2

F+1

|�+
RF|

− gF

|gF |
m̄g2

F

|�−
RF|

](μBBDC

h̄

)2

, (11)

where ωhfs = (I + 1/2)A/h̄ is the hyperfine splitting.
Experimentally, we scan the MW frequency and determine

the resonant condition as a function of the static magnetic
field BDC. Thus, we determine the energy difference be-
tween dressed states h̄ωm̄′,m̄ = (ĒF ′,m̄′ − ĒF,m̄), observing a
quadratic dependence of which we give details below.

III. SPECTROSCOPY AND PROTECTION OF
RF-DRESSED 87Rb

In this section, we describe the experimental procedure to
achieve decoherence-free pairs of dressed Zeeman sublevels
with an ultracold cloud of 87Rb atoms. We focus on the
dependence of the microwave resonances with the dressing
configuration, which is here controlled by the applied static
magnetic field. The main components of our experimental
setup are a crossed red-detuned optical trap, a pair of coils
that define the magnetic field and our z axis, and three pairs of
coils to produce static and RF magnetic fields. For a detailed
description we refer to Ref. [23].

We use trapped ultracold atoms so as not to be limited
by the free-fall time of the cloud. Instead, our background
collisional lifetimes close to two minutes impose no limit
on detecting the target coherence times in this work, e.g.,
τcoherence ≈ 100 ms. Furthermore, using an optical dipole trap,
instead of a magnetic trap [35], we can generate a state-
independent trapping potential and ensure that the applied
RF and DC magnetic fields are nearly homogeneous over the

atomic sample. All these features of our setup enable a clean
interrogation of the energy difference between RF-dressed
states, limited mainly by fluctuations of the dressing field
amplitude and polarization.

In our system the magnetic field, taken to be in the z
direction, is defined by a homogeneous DC field driven by
a pair of Helmholtz coils. However, since we do not im-
plement any magnetic compensation or shielding, both the
Earth’s magnetic field and fields generated by the equipment
nearby, contribute to the total static field. We determine this
offset field, Boffset

DC , by measuring the resonant frequency of
transitions between bare states with a known applied DC field
and fitting the Breit-Rabi formula. These measurements are
done between the experimental runs that register the dressed
spectrum (for details, see Ref. [43]), and we find an offset
field with Boffset

DC,z = (−0.252 ± 0.014) G and a component in
the x-y plane of magnitude Boffset

DC,⊥ = (0.264 ± 0.012) G. This
field adds to the one produced by the Helmholtz coils to
define total magnetic field BDC = BH

DC + Boffset
DC . We denote its

magnitude by BDC.

A. Preparation of the atomic cloud

Our initial sample is a cold cloud of 87Rb prepared in the
bare electronic ground state |F = 1, m = −1〉 [in Fig. 1(a)]
via the methods described in detail in Ref. [23]. This cloud is
evaporated in a hybrid crossed dipole trap plus a quadrupole
(with the gradient α = 10 G/cm) until reaching a temperature

033307-3



G. A. SINUCO-LEON et al. PHYSICAL REVIEW A 104, 033307 (2021)

FIG. 1. (a) Schematic of the energy level diagram that indi-
cates available microwave transitions from the initial dressed state
|1, m̄F = −1〉 state to the upper F = 2 manifold dressed sublevels.
The solid (dashed) arrow lines indicate allowed (nonallowed) tran-
sitions for the field configuration shown in the inset. Both the MW
and the DC field point in the z direction (purple and green lines,
respectively). The RF field is linearly polarized along the x direction.
(b) Schematic of the experimental sequence. The red dotted line
tracks the DC field, the dashed blue line tracks the RF frequency,
and the purple dashed line tracks the RF amplitude, represented
by the Rabi frequency. All curves are shown in frequency units.
The grayed-out areas represent the MW (green) and imaging (blue)
pulses, respectively. The shaded yellow are represents the adiabatic
dressing of the atoms. The ramp times of BDC, νRF = ωRF/(2π ), and
�RF are those described in Sec. III. The extent of the “MW on” and
“Imaging” grayed-out areas does not represent their real duration.

of 100 nK with a typical population of n = 2 × 105 atoms
in the bare state |1,−1〉. A bias field in the vertical direc-
tion BH

DC ≈ 1.2 G, produced by a pair of Helmholtz coils, is
present at this point, too. The dipole trap has been tuned at
α = 2 G/cm so that the trapping frequencies are ωρ/2π ≈
180 Hz and ωaxial/2π ≈ 30 Hz. We subsequently switch off
the current to the quadrupole coils, leaving a residual mag-
netic quadrupole field with a maximal measured field-gradient
of α < 0.05 G/cm.

In the next step, the atoms are dressed through the pro-
cedure sketched in Fig. 1(b): The current in the pair of
Helmholtz coils is ramped up to increase the applied static
field from BH

DC = 0ẑ G to BH
DC = 5ẑ G in �t = 200 ms. At

that point, a linearly polarized RF field in the x direction
with angular frequency ωRF/2π ≈ 2.3 MHz and Rabi cou-
pling

√
2|�±

RF|/2π ≈ 350 kHz is switched on, followed by
an adiabatic linear ramp (of duration �t = 0.475 s) from

BH
DC = 5ẑ G to BH

DC = 3ẑ G. After this, the magnitude of the
Helmholtz field, BH

DC, is increased to a final value so that the
total field BDC is within the range [3.1, 3.3] G. Finally, we
probe the RF-dressed atom with a MW pulse and take qua-
sisimultaneous independent absorption images of the F = 1
and F = 2 manifolds, shortly after switching off the dipole
trap that holds the cloud [43]. We will refer to the number of
atoms measured in F = 2 (F = 1) as n2 (n1), and the fraction
of atoms in F = 2 as f2 = n2/(n1 + n2).

B. Protected transitions with ultracold RF-dressed atoms

After preparing the atomic cloud in the dressed state
|1, m̄ = −1〉, we fix the dressing frequency ω±

RF/2π =
2.263410 MHz and Rabi couplings

√
2|�±

RF|/2π ≈ 350 kHz.
Then we determine the resonant frequency of three transitions
in the vicinity of the zero field hyperfine splitting [23] as
functions of the applied static field BH

DC. For each value of the
total static magnetic field, BDC, we extract the resonant transi-
tion frequency after fitting Lorentzian curves to measurements
of the transferred atomic-state population following a short
microwave pulse and scanning the microwave frequency. The
transitions investigated have the final states |2, m̄ = 1〉 (at
ωMW ≈ ωhfs), |2, m̄ = 2〉 (at ωMW ≈ ωhfs + √

2|�+
RF|), and

|2, 0〉 (at ωMW ≈ ωhfs − √
2|�+

RF|), and the corresponding res-
onant frequencies can be estimated from Eq. (9). Results of
these measurements are shown in Fig. 2. When sampling the
total field BDC near the resonant condition of the RF field with
the Larmor frequency, we observed a linear dependence of
the resonant transition frequency to the state |2, m̄ = 1〉, and
a quadratic dependence for the transitions to |2, m̄ = 2〉 and
|2, m̄ = 0〉, which is in qualitative agreement with Eqs. (5)–(9)
after taking into account the difference between Landé factors
of the two hyperfine manifolds. Even though we represented
the transition to the |2, 1〉 state as nonallowed in Fig. 1, this
occurs only in the idealized case where all fields are aligned
as the inset of this figure indicates, see Ref. [23].

We also observe that the transition lines from the dressed
state |1, m̄ = −1〉 to |2, m̄ = 0〉 and |2, m̄ = 2〉 narrow down
to a linewidth of only �ν ≈ 110 Hz (for a MW pulse dura-
tion of �t = 10 ms) when the static field is adjusted to the
extrema of the quadratic line shifts, even without using active
stabilization of BDC or magnetic shielding.

In Fig. 3 we show the line shape of the transition |1, m̄ =
−1〉 → |2, m̄ = 2〉 for three particular total fields BDC =
3.197 G, 3.216 G, and 3.247 G. This figure shows the fraction
of atoms transferred to the F = 2 manifold as a function of the
applied microwave frequency, in the vicinity of the hyperfine
splitting frequency, ωhfs. The most striking feature of these
measurements is the narrowing of the line shape as the static
field approaches the turning point of the quadratic line shift
in Fig. 2(a), where the transition becomes protected against
fluctuations of the DC field.

Our data in Fig. 2(b) shows that the transition to |2, m̄ =
1〉 presents a remarkably different behavior compared to the
other two. In this case, the resonant frequency presents a linear
dependence with the static field in the vicinity of the single
MW photon transition [i.e., with n = 0 in Eq. (9)], preventing
us from finding a condition to null the DC field sensitivity of
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FIG. 2. Detuning of the resonant frequencies of the transitions
between the dressed states (a) |1, −1〉 → |2, 2〉, (b) |1,−1〉 →
|2, 1〉, and (c) |1,−1〉 → |2, 0〉 as functions of the applied static
magnetic field. The symbols correspond to experimental values ob-
tained from spectral signals. The solid lines are fits to our model, in
Sec. II, which take into account nonlinear Zeeman shifts and beyond
RWA effects. The long-dashed (short-dashed) lines are fits to a model
considering the RWA and nonlinear (linear) Zeeman shifts. The am-
plitude of the RF field is the only free parameter of our models since
we measure the total static magnetic field. For the full model (long-
dashed) we obtained B+

RF = (1.07 ± 0.09) G, while for for the solid
lined B+

RF = (1.08 ± 0.09) G, with Bsgn(gF )
RF = √

2|�sgm(gF )
RF /(μBgF )|.

The short-dashed line is evaluated using B+
RF = 1.075 G and the

measured DC magnetic field.

this transition. However, as shown in Fig. 4(a), the resonant
frequency displays a turning point when the magnitude of the
DC field enables a two-photon transition, which corresponds
to the resonant condition with n = 1 in Eq. (9) [23]. Under
this condition, we consistently measured coherence times >

50 ms in a Ramsey type experiment in the crossed-dipole trap,
which quickly shortens when setting the DC field away from
the turning point [44].

Figures 4(a) and 4(b) illustrate the behavior of the transi-
tion |1, m̄ = −1〉 → |2, m̄ = 1〉 far from the resonant point of
the RF frequency with the Larmor frequency and with atoms
trapped in a crossed-dipole potential, as before. Figure 4(a)
shows the dependence with the static field of the detuning
of the resonant frequency defined as δMW = (ωMW − ωhfs −

FIG. 3. Experimental demonstration of line narrowing in the
dressed RF system. The measurements (dots) of the transition
|1, m̄ = −1〉 → |2, m̄ = 2〉 for three different total fields BDC:
3.195 G (red), 3.247 G (blue), and 3.216 G (black). The latter case
is chosen to be optimal at ω0/2π = 2.25059 MHz, which defines
zero on the horizontal axis and corresponds to the minimum of the
parabola in Fig. 2(a). In all cases the MW pulse duration is �t = 10
ms. The horizontal axis is the detuning �ω0 = ωMW − ω0 with re-
spect to the minimum of the parabola, which we have labeled ω0. The
vertical axis shows the fraction of measured population in F = 2,
that we defined as f2 in Sec. III A. The lines are fits to Lorentzian
curves for the three total magnetic fields: BDC = 3.195 G (dashed
red), BDC = 3.247 G (dotted blue), and BDC = 3.216 G (solid black).
One can see that the randomness of the transition increases as
one interrogates further away from the condition that minimizes
the parabola in Fig. 2(a). This is due to the higher sensitivity to
DC magnetic field fluctuations. The fitted Lorentzian linewidths are
as follows: �ν = (132 ± 13) Hz, �ν = (347 ± 54) Hz, and �ν =
(427 ± 189) Hz for the black, red, and blue curves, respectively.

ωRF)/2π , where ωhfs is the hyperfine splitting frequency and
ωRF/2π = 2.27 MHz. The black dots correspond to the cen-
ter of the Lorentzian fits in Fig. 4, and the black dotted
line is included as a guide to the eye. We also observe the
intermittent appearance of a second, weaker peak (see Ap-
pendix B) marked by gray squares and a dashed line. This
feature comes from transitions from the bare state |1, 1〉,
which becomes populated by nonadiabatic effects when
sweeping the applied DC field [45]. In the same panel, the
vertical dashed line (blue) indicates the turning point of the
curve, where ∂δMW/∂BDC = 0, and the vertical dotted line
(red) points to a static field with a comparatively large gradient
of δMW.

Figure 4(b) shows two sets of data in a Ramsey-type ex-
periment. The blue set of data is taken at the turning point
of the inverted parabola in Fig. 4(a), corresponding to BDC =
2.56 G. The red set of data is taken with BDC = 2.87 G,
i.e., where the vertical red dotted line indicates in (a). For
these experiments, we detune the driving MW pulse from
each transition by δνR = νMW − ν0, where ν0 is the transition
frequency and νMW is the MW frequency, and then drive the
transition off-resonantly with two MW pulses separated by
τRamsey. We then scan τRamsey and observe the free temporal
evolution of the population in the upper dressed state |2, 1〉.
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FIG. 4. Line shift and Ramsey fringes observed in 87Rb dressed
with the Rabi frequency �RF/2π = 300 KHz and the RF frequency
ωRF/2π = 2.27 MHz, as functions of the static magnetic field.
(a) The line shift for the |1, m̄ = −1〉 → |2, m̄ = 1〉 transition. We
observe a second weaker peak in the range of the static field ex-
plored (see Appendix B). Inset: A typical spectral signal with two
Lorentzian peaks matched to data in the main panel. (b) Ramsey
fringes of the atomic population of the upper hyperfine manifold,
nF=2, when BDC = 2.87 G (red line) and BDC = 2.56 G (blue line).
The vertical dashed and dotted lines in (a) indicate the values of the
magnetic fields used to obtain the Ramsey fringes in (b). Also in (b),
the red dots with error bars are rms values and standard deviations,
respectively, obtained from five repetitions per point. Red and blue
dots without error bars are single measurements of the total number
of atoms in the F = 2 manifold, n2. To highlight the contrast between
the noise-sensitive (red dots) and the protected (blue data) dressing
configurations, we only show the first 65 ms of a longer experi-
mental run (not shown). Considering Ramsey fringes modelled with
exponential decay, the protected configuration (blue dots) displays a
dephasing time of τ = 17 ms while the noise-sensitive case shows a
dephasing time of τ = 1.65 ms.

In both cases we fit the atom number to f2 = (n2/2)[1 +
e− t2σ2

2 cos (2πtδνR)], where σ is the standard deviation of a
Gaussian-shaped noise profile associated with the two-level
system defined by the states |1, m̄ = −1〉 and |2, m̄ = 1〉.
The fit to the blue set of data gives δνR = 216 ± 2 Hz and
σ = 79 ± 8 Hz, whereas the fit to the red set of data gives
δνR = 1972 ± 35 Hz and σ = 883 ± 112 Hz. The MW pulse
detuning in the red (blue) set of data was chosen to be δνR =

2000 Hz (δνR = 200 Hz), which agrees with the fit estimate.
The difference in dephasing rates of the two Ramsey oscilla-
tions is a result of the distinct DC-field noise sensitivity of the
dressed transitions (quantified by the gradient ∂δMW/∂BDC,z)
at the chosen static fields on Fig. 4(a). The different amplitude
of the oscillations is due to the relative shift of the driving field
detuning with respect to resonant driving, which in the case of
the red curve it is as much as 2 kHz.

In both cases, the fluctuations of the RF field still shift the
transitions and contribute to the broadening of the line shape.
For instance, in the transition |1, m̄ = −1〉 → |2, m̄ = 1〉, we
measured a line shift of 7 Hz per kHz of Rabi frequency
caused by the RF amplitude noise. It is evident in any case that
the DC-noise fluctuations result in a much larger dispersion of
the measurements as the lines are further detuned from the ex-
treme of the parabola-shaped line shift. This produces a better
Lorentzian fit for the black data set in Fig. 3 and worse fits for
the blue and red data sets. Both Fig. 3 and Fig. 4(b) show that
transitions between Zeeman substates can be narrowed down
in the RF-dressed regime by choosing field parameters where
the sensitivity to DC fields of the differential energy shifts
become minimal, although the optimal configuration depends
on the pair of states involved.

IV. SIMULTANEOUS DC PROTECTION OF MULTIPLE
DRESSED TRANSITIONS

A. Principles of extended protection

The protection against DC-field fluctuations demonstrated
in the previous section (Sec. III) occurs at different DC fields
for different transitions. In particular, we observed how the
dressing configuration can be adjusted to reduce strongly
the sensitivity of the dressed transitions |F = 1, m̄ = −1〉 →
|F = 2, m̄ = 2〉 (see Fig. 3) and |F = 1, m̄ = −1〉 → |F =
2, m̄ = 1〉 (see Fig. 4). This configuration is possible thanks
to the nearly identical dependence of the dressed energies
involved with the applied static field. These dependencies
result in a condition where, to first order, variations of the
static field do not affect the transition angular frequency:

∂ωm̄′,m̄

∂BDC

∣∣∣∣
B0

DC

= 0. (12)

at a particular value of the static field, B0
DC. In this section,

we propose to use a combination of two RF fields to ma-
nipulate the dressed energy of the hyperfine manifolds F = 1
and F = 2 independently of each other, and investigate how
this scheme can be used to reduce the DC-magnetic field
sensitivity of several transitions at the same value of the static
field.

Considering only the RWA, the upper and lower hyper-
fine manifolds are dressed independently by different circular
component of the RF dressing field. Also, assuming that
a static magnetic field of amplitude B0

DC produces a linear
Zeeman shift, we find that all transitions between dressed
states become protected when the frequency of each polar
component is set according to:

h̄ω
sgn(gF+1 )
RF = μB|gF+1|B0

DC, (13)

h̄ω
sgn(gF )
RF = μB|gF |B0

DC, (14)
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FIG. 5. Resonant frequencies of all hyperfine transitions in RF
dressed 87Rb, as functions of the static magnetic field. An offset
is applied to each resonant frequency to define a simple vertical
scale with a similar range for all cases. In all panels, the dressing
field configuration is given by Eqs. (13)–(15), with B0

DC = 6.0 G,
m̄ = −m̄′ = 1, and the B+

RF = 0.12 G. The dressed energies are cal-
culated using (a) the RWA and (b) the dressing scheme in Eq. (7) with
two frequencies. Solid, dashed, and short-dashed lines correspond to
transitions with the initial states |F = 1, m̄〉 = |1, −1〉, |1, 0〉, |1, 1〉,
respectively. The labels indicate the final states as |F = 2, m̄′ =
N − m̄〉. In panel (b), the nonlinear Zeeman shift and beyond RWA
effects break the degeneracy of the transitions observed in panel (a).

i.e., the resonant dressing of each hyperfine manifold ensures
that Eq. (12) is satisfied exactly for all transitions.

Furthermore, the RWA also tells us that when the polar
components of the dressing field satisfy the condition:

Bsgn(gF+1 )
RF

Bsgn(gF )
RF

= m̄

m̄′
gF

gF+1
, (15)

with Bsgn(gF )
RF = √

2|�sgn(±)
RF /(μBgF )|, all transitions between

states with the same sign of the magnetic moment are also
stable to second order:

∂2ωm̄′,m̄

∂B2
DC

∣∣∣∣
B0

DC

= 0. (16)

The mechanism behind the reduction of the sensitivity
of multiple transitions is shown in Fig. 5, where we plot
the detuning of the resonant frequencies of all 15 possible
transitions, δm̄′,m̄ = (ωm̄′,m̄ − ωhfs)/2π , as functions of the DC
field. To see the effect, in Fig. 5(a), we use B0

DC = 6.0 G and
B+

RF = 0.12 G along with Eqs. (13)–(15) for the frequencies
and amplitudes of the circular components of the RF field. In
this case, the resonant frequency of all transitions, δm̄′,m̄, dis-
play one equilibrium point at our chosen value B0

DC = 6.0 G
(i.e., ∂δm̄′,m̄/∂BDC|B0

DC
= 0, ∀{m̄′, m̄}), which corresponds to

ensuring first-order (i.e., linear) protection against noise in the
static field. In Fig. 5(b), we plot the dressed energy calculated
taking into account nonlinear Zeeman shifts and beyond RWA
effect, using the method outlined in Sec. II. In contrast to the
previous case, now the equilibrium points of δm̄′,m̄ occur at dif-
ferent values of the static field, significantly distinct from BDC.
We conclude that, in general, the conditions Eqs. (13)–(15),
do not protect the states against fluctuations of the DC field
at the applied field BDC because of nonlinear effects breaking
the regularity of the energy spectrum assumed by our RWA
model. Note, however, that with these conditions all resonant
conditions experience a similar, but not identical, shift toward
BDC ≈ 5.93 G.

B. Sensitivity of the bichromatic driven atom to DC
amplitude noise

We quantify the average DC sensitivity of the dressed atom
using the rms of the first derivative of the 15 microwave
transition frequencies with respect to the static field:

αDC = 1

2π

√√√√ 1

15

1∑
m̄=−1

2∑
m̄′=−2

(
∂ωm̄′,m̄

∂BDC

)2

. (17)

The dressed transition frequencies in Fig. 5(b) indicate that the
nonlinear Zeeman shifts and beyond RWA effects frustrate the
exact first-order stability expected when applying the RWA
when we obtain αDC = 0.

Setting the dressing frequencies and amplitudes according
to Eqs. (13) and (14), we evaluated numerically αDC for a
typical range of experimentally relevant parameters. Our nu-
merical results, in Fig. 6, show that, when using the conditions
indicated by the RWA and for sufficiently strong RF fields
(e.g., B+

RF > 0.08BDC), the atomic sensitivity αDC depends
linearly on the amplitude of the RF field and is independent of
the applied static field. For weaker RF fields, αDC depends on
the static field since both beyond-RWA and nonlinear Zeeman
effects become comparable.

The residual sensitivity observed in Fig. 6 can be reduced
by adjusting the dressing frequencies to bring them back into
resonance after taking into account energy shifts induced by
the driving. Such energy shifts occur because, while each
circular component of the RF field dresses one hyperfine
manifold, they also cause off-resonant perturbations of the
other one [28]. Using a second-order perturbative expansion
of the RWA dressed energy, these energy shifts translate into
a correction of the resonant condition given by (see Appendix
C):

h̄�ω
�F
RF = 1

2

∣∣μBgF B−�F
RF

∣∣2

μB|gF |BDC + h̄ω
−�F
RF

, (18)

with �F = sgn(gF ) and F = I ± 1/2.
With these arguments as a guide for our calculations, we

numerically optimize the combination of frequencies that
minimize αDC, using field amplitudes at the ratio given by
Eq. (15). The fractional frequency shift with respect to the
conditions given by the RWA is shown in Fig. 7, which is
in qualitative agreement with Eqs. (18). Note that, although
the relative frequency shift is of order ∼10−3, this translates
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FIG. 6. Average sensitivity αDC of the dressed atomic transitions
with respect to the static field [Eq. (17)], calculated using the field
configuration given by the RWA Eqs. (13)–(15). Panel (a) shows
αDC as a function of the ratio B+

RF/BDC for the DC fields 0.5 G
(short-dashed red), 1.70 G (dashed green), 3.08 G (dotted blue),
4.28 G (dot-dashed cyan), and 6.0 G (solid black). The inset shows
the expanded region of weak fields. Panel (b) shows αDC as a function
of the static field, BDC, for RF fields of amplitude 0.5 G (short-dashed
red), 1.70 G (dashed green), 3.08 G (dotted blue), 4.28 G (dashed-
dot cyan), and 6.0 G (solid black).

into an important correction in absolute terms, typically cor-
responding to a shift of a few kHz of the RF frequency.

When using the optimized frequencies, αDC is reduced by
one order of magnitude and becomes weakly dependent on the
amplitude of the RF field (since we compensate for their main
contribution to the energy shifts). It also becomes linearly
dependent on the static field, as shown in Fig. 8 [46].

The effect of using corrected RF frequencies is presented
in Fig. 9, where we plot the 15 dressed transition frequencies
as functions of the static magnetic field. Note that in this case
the extrema of all curves ωm̄′,m̄ return to the vicinity of BDC =
6.0G [compare with Figs. 5(a) and 5(b)].

C. Fractional frequency fluctuations of a bichromatic
dressed atom

Finally, we illustrate quantitatively the improved stability
enabled by the optimized bichromatic RF dressing using the

FIG. 7. Fractional correction of the frequencies required to re-
duce the average atomic linear sensitivity with respect to the static
field: Frequency of the σsgn(gF+1 ) (dashed) and σsgn(gF ) (solid) polar
components of the dressing fields. This shift is independent of the
applied static field.

fractional frequency fluctuation due to noise in the DC field,
defined by:

σm̄′,m̄ = 1

ωm̄′,m̄

∂ωm̄′,m̄

∂BDC
× �BDC. (19)

For concreteness, in Table I, we consider all transitions
between the state |1, m̄ = −1〉 to the five states of the up-
per hyperfine manifold, and perform this calculation for
four comparable field configurations: (A) bare atom, (B)
monochromatic linearly polarized RF dressing with frequency
ωRF = μB|g2 − g1|BDC/(2h̄) and BRF,x = 0.2BDC, (C) bichro-
matic dressing with the dressing field given by the RWA,
Eqs. (13)–(15) and using B+

RF = 0.1BDC, and (D) optimized
bichromatic driving with B+

RF = 0.1BDC. In all these cases, we
consider DC fluctuations of amplitude �BDC = 0.1 mG.

The best stability is obtained for the transition |1, m =
−1〉 → |2, m = 1〉 of the bare atom (A) at the magic field
BDC = 3.22 G. However, all dressing configurations consid-
ered provide a global improvement over the fluctuations of
two orders of magnitude for all transitions. In particular, the
optimized bichromatic driving configuration (D) defines all
transitions with the same level of protection.

Noise in the amplitude of the dressing field contributes
to the linewidth of the spectral lines of transitions between
dressed states. Temporal variations of each polar component
of the RF field affect the transition frequencies by mod-
ifying the dressed energy of the manifold it dresses and
induce corrections to the perturbative energy shift of the
other hyperfine manifold. We use the rms variation of the
transition frequencies [ωm̄,m̄′/(2π )] with respect to each po-
lar component to quantify these effects in Appendix C. The
average first-order sensitivity of the transition frequencies
are of order ≈102 Hz mG−1; much larger than the residual
DC sensitivity αDC � 10 Hz mG−1 achieved by tuning the
frequencies of each polar component of the RF field. Thus,
the improved stability of the bichromatic dressing scheme
becomes useful when there is equally good stability of the
RF source. The bichromatic dressing configuration has been
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FIG. 8. Average sensitivity αDC of the dressed atomic transitions
with respect to the static field [Eq. (17)], calculated using the field
configuration optimized numerically. Panel (a) shows αDC as a func-
tion of the ratio B+

RF/BDC for the DC fields 0.5 G (short-dashed red),
1.70 G (dashed green), 3.08 G (dotted blue), 4.28 G (dot-dashed
cyan), and 6.0 G (solid black). Panel (b) shows αDC as a function of
the static field, BDC, for RF fields of amplitude 0.5 G (short-dashed
red), 1.70 G (dashed green), 3.08 G (dotted blue), 4.28 G (dot-dashed
cyan), and 6.0 G (solid black).

demonstrated in Ref. [35] for the case of atoms trapped
in a magnetic quadrupole field. The two circular compo-
nents can be produced by using two pairs of Helmholtz
coils that point along the x and y directions, respectively.
Each pair of coils is driven with an RF signal that contains
both frequencies, with the appropriate phases (for details, see
Ref. [35]).

V. CONCLUSION

Using an ultracold atomic cloud of 87Rb in an optical
dipole trap, we showed characteristic features of transi-
tions between RF dressed states of the ground-state hy-
perfine manifolds. First, considering the trio of transitions
between dressed states |1, m̄ = −1〉 → {|2, m̄ = 0〉, |2, m̄ =
1〉, |2, m̄ = 2〉}, we observe a quadratic dependence of their
transition frequencies as functions of total magnetic field
BDC, with a significantly weaker curvature when �m̄ = 0. We
found that our measurements can be explained quantitatively
only after taking into account nonlinear Zeeman shifts and

FIG. 9. Detuning of the resonant frequencies of all hyperfine
transitions in RF dressed 87Rb, as functions of the static magnetic
field. The field configuration is numerically optimized to minimize
the rms of the linear sensitivity of all bichromatic dressed transitions
(see text). In all cases B0

DC = 6.0 G and the B+
RF = 0.12 G. Solid,

dashed, and short-dashed lines correspond to transitions with the
initial states |F = 1, m̄〉 = |1,−1〉, |1, 0〉, |1, 1〉, respectively. The
labels on the right-hand side indicate the final states as |F = 2, m̄′ =
N − m̄〉.

beyond-RWA effects. However, a good qualitative description
of the observed quadratic differential energy shifts can be ob-
tained using well-known expressions for the dressed energies
valid in the regimes of linear Zeeman shift and RWA.

We also study the coherence and linewidth of the transi-
tions between RF-dressed states |1, m̄ = −1〉 → |2, m̄ = 1〉
and |1, m̄ = −1〉 → |2, m̄ = 2〉, as functions of the applied
static field. We observe a significant increase in the decay
time of Ramsey-type fringes for the transition |1, m̄ = −1〉 →
|2, m̄ = 1〉 at a particular “magic” point. Following the same
method, we observed a significant reduction of the linewidth
of the transition |1, m̄ = −1〉 → |2, m̄ = 2〉, reaching fluctu-
ations of the order �ν/ν ≈ 10−8. These experimental results
demonstrate how monochromatic RF dressing can be tuned
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TABLE I. Comparison of the fractional frequency fluctuations
(�ωm̄′,m̄/ωm̄′,m̄) for the transitions from the state |1, −1〉 to all final
states (FS) of the F = 2 manifold of Zeeman sublevels [see Eq. (19)].
The transition frequencies and sensitivities are calculated for transi-
tions between (A) bare states, (B) monochromatic RF dressed states,
and bichromatic RF dressed states with ω±

RF (C) given by the RWA
[Eqs. (13) and (14)] and (D) corrected to minimize αDC, as shown
in Fig. 7. In all cases, the field fluctuations are �B = 0.1 mG. In
(B) the dressing fiield is BRF = 0.2BDC, while in (C) and (D) we use
B+

RF = 0.1BDC. In (D), �ω�
RF/ω

�
RF = 2.46 × 10−3 and 2.50 × 10−3

for � = + and −, respectively.

BDC FS A B C D

|2, −2〉 2.7 × 10−7 5.0 × 10−9 6.8 × 10−9 3.3 × 10−11

|2, −1〉 1.8 × 10−7 4.5 × 10−9 4.5 × 10−9 4.6 × 10−11

0.5 |2, 0〉 9.2 × 10−8 4.0 × 10−9 2.2 × 10−9 6.6 × 10−11

|2, 1〉 3.1 × 10−10 3.6 × 10−9 2.0 × 10−11 6.6 × 10−11

|2, 2〉 9.1 × 10−8 3.2 × 10−9 2.2 × 10−9 2.3 × 10−11

|2, −2〉 2.7 × 10−7 4.8 × 10−9 6.7 × 10−9 1.9 × 10−10

|2, −1〉 1.8 × 10−7 4.2 × 10−9 4.2 × 10−9 3.5 × 10−10

3.2 |2, 0〉 9.1 × 10−8 3.7 × 10−9 1.8 × 10−9 4.2 × 10−10

|2, 1〉 4.0 × 10−12 3.3 × 10−9 3.4 × 10−10 3.7 × 10−10

|2, 2〉 9.1 × 10−8 3.0 × 10−9 2.3 × 10−9 1.7 × 10−10

|2, −2〉 2.7 × 10−7 4.7 × 10−9 6.5 × 10−9 4.0 × 10−10

|2, −1〉 1.8 × 10−7 3.8 × 10−9 3.7 × 10−9 7.9 × 10−10

7.0 |2, 0〉 9.1 × 10−8 3.2 × 10−9 1.3 × 10−9 9.2 × 10−10

|2, 1〉 4.2 × 10−10 2.9 × 10−9 7.8 × 10−10 7.9 × 10−10

|2, 2〉 9.1 × 10−8 2.8 × 10−9 2.5 × 10−9 3.8 × 10−10

to produce pairs of selected transitions protected against DC-
field noise. To further reduce the transition linewidth to the
order of Hz with this scheme, the fluctuations of the amplitude
of the RF fields need to be stabilized at the level of order
10 μG. Recent reports using one [23], two [35], three [47],
and four [48] RF-frequency dressing components also find
this to be a limiting factor, and indicate that active control of
the RF-field amplitude is therefore necessary [49].

Furthermore, we propose a bichromatic RF-dressing con-
figuration to reduce the global sensitivity of the dressed atom
to noise in the static field. We demonstrate that by indepen-
dently tuning the frequencies of the two circular components
of the RF field, it is possible to reduce the average linear DC
sensitivity to the level of Hz mG−1. This dressing scheme
enables the protection at arbitrary DC-magnetic fields of up
to (2F + 1) × (2F ′ + 1) = 15 atomic microwave transitions
in RF-dressed 87Rb, only limited by the noise in the RF
generator. Also, this bichromatic dressing configuration can
stabilize more than just one single atomic transition, which is
useful to define stable qdits with d > 2. Such systems present
advantages for applications in quantum metrology [50] and
enhanced fault tolerance for quantum information [33,34]. In
addition, since the energies of the dressed states can be tuned
precisely, these dressed states are attractive also for applica-
tions in quantum simulations [51] and for hybrid quantum
systems that include devices operating in the RF/MW regime
(e.g., superconducting resonators, NV centers, and trapped
ions). Further research will be directed to determine multi-
parametric magic configurations in the regime of strong RF
dressing, where multi-level atomic transitions can be made
less sensitive to noise in DC and ac fields.

The techniques presented in this work are aimed at sit-
uations where the spatial extent of the atomic ensemble is
limited (e.g., to ∼100s microns), such as in atom interferom-
etry based on spin-dependent manipulation of ultracold atom
clouds in adiabatic traps [18,25,30,44,47]. In many of these
situations, the amplitude of the fluctuations of the transition
frequencies of interest depends on the relative stability of
the magnetic field, which can be enhanced with passive and
active shielding techniques. Notice, however, that because
of its bulkiness and limitations on optical access, shielding
techniques [11,12] are better suited for applications with free
atomic ensembles (i.e., not trapped) and working with intrin-
sically robust transitions (e.g., the |F = I − 1/2, mF = 0〉 →
|F = I + 1/2, mF = 0〉 of the electronic ground manifold of
alkali atoms; see Appendix D). In contrast, dynamical decou-
pling and RF-dressing focus on manipulating the response of
the atoms to fluctuations of the magnetic environment and,
as we demonstrate here, allows us to synthesise robust tran-
sitions. These two techniques are therefore complementary
and, indeed, RF-dressed protected states can become helpful
to reduce the thickness—and thus the weight and cost—of
magnetic shields.

Additionally, the use of a nondestructive imaging system
(see, e.g., Reference [52]) allows real-time interrogation of
the spin-dynamics of the system, which may become useful
in both determining amplitude and polarization drifts and
noise in a fast frequency range—at the timescale of the Rabi
frequency—compared to the current single-shot measurement
rate, which is limited by the experiment cycle time at the
timescale of 10vs.

The datasets generated for this paper are available in Ref.
[53].
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APPENDIX A: DRESSED STATES IN THE RWA

In the main text, Eq. (4) defines the unitary transformation,
UF , between the bare and dressed basis as:

〈F, m |F̄ , m̄〉 =
∑

n

einωRFtU n
F,m;F̄ ,m̄. (A1)

The Fourier coefficients of this expansion are determined
by the Schrödinger equation and the condition Eq. (3), which
translates into:

U †
F (t )[H (t ) − ih̄∂t ]UF (t ) =

∑
F̄ ,m̄

ĒF̄ ,m̄|F̄ , m̄〉〈F̄ , m̄|. (A2)

This last expression gives us a straightforward physical
interpretation of the dressed basis: the dressed states are the
eigenenergy states observed in a frame of reference where the
Hamiltonian is time independent. This concept is commonly
used in quantum physics in the figure of RWA, where, after
moving to a rotating frame of reference the time dependence
of the Hamiltonian either cancels completely or can be ne-
glected following perturbative arguments [41].

In the present case, we consider oscillating fields with a
frequency comparable to the Zeeman splitting induced by a
static magnetic field, but much smaller than the hyperfine
splitting (h̄ωRF ≈ μBgF BDC � �EHyperfine). Under these con-
ditions, we can neglect the intermanifold coupling and apply
the RWA within each hyperfine manifold, where the transfor-
mation to the dressed basis can be written as a combination of
rotations in the space of angular momentum [23]:

UF (t ) = eiθyFy e−i gF
|gF | ωRFtFz , (A3)

with

tan(θy) =
√

2
∣∣�sgn(gF )

RF

∣∣
ω0 − ωRF

, (A4)

where h̄ω0 = |μBgF BDC| defines the Larmor frequency and
the Rabi frequency |�sgn(gF )

RF | is defined in Eq. (6). The corre-
sponding dressed energies are

ĒF,m̄ = EF + sgn(gF )m̄
√

(h̄ω0 − h̄ωRF)2 + 2
∣∣h̄�

sgn(gF )
RF

∣∣2
,

(A5)

where EF = A[F (F + 1) − I (I + 1) − J (J + 1)]/2 is the hy-
perfine splitting. This dressed energy leads to the dependence
of the resonant condition with respect to the field configura-
tion:

ωMW = nωRF + (I + 1/2)A

h̄

+ gF+1

|gF+1| m̄′√2|�+
RF| − gF

|gF | m̄
√

2|�−
RF|

+
(

gF+1

|gF+1|
m̄′

|�+
RF|

− gF

|gF |
m̄

|�−
RF|

)
ω2

RF

23/2

−
(

m̄′gF+1

|�+
RF|

− m̄gF

|�−
RF|

)
ωRF

μBBDC√
2h̄

+ 1

23/2

×
[

gF+1

|gF+1|
m̄′g2

F+1

|�+
RF|

− gF

|gF |
m̄g2

F

|�−
RF|

](μBBDC

h̄

)2

, (A6)

FIG. 10. Spectra for selected values of DC field in Fig. 4(a).
From top to bottom, BDC = 2.63 G, 2.66 G, 2.69 G, 2.72 G, and
2.75 G. The Rabi frequency is �RF/2π kHz and the RF frequency is
ωRF/2π = 2.27 MHz. Just like in the rest of the text, n2 is the atom
number measured with absorption imaging in F = 2. Each point
corresponds to one measurement. We fit Lorentzian curves for each
observed peak. We observe the intermittent appearance of a second
weaker peak due to transitions from atoms that did not adiabatically
follow the dressing sequence.

which is valid for intermanifold transitions, |F, m̄〉 → |F +
1, m̄′〉 and in the vicinity of the condition of resonant RF
dressing, μB|gF BDC| ≈ h̄ωRF.

This formulation can be easily extended to situations with
polychromatic driving. The time-evolution operator should
be then expressed as a multidimensional Fourier series with
as many dimensions as the number of applied fields with
incommensurately frequencies. More explicitly, the dressed
state defined in Eq. (A1) becomes

〈F, m |F̄ , m̄〉 =
∑

�n
ei�n�ωtU �n

F,m;F̄ ,m̄, (A7)

with �ω = (ω1, ω2, . . .) as the vector formed with all the
applied frequencies and �n a vector with integer compo-
nents. After plugging this ansatz in the Schrödinger equation
Eq. (A2) we obtain a standard eigenproblem defining the
coefficients U �n

F,m;F̄ ,m̄ and generalized dressed energies ĒF̄ ,m̄.

APPENDIX B: MICROWAVE SPECTROSCOPY OF THE
DRESSED TRANSITION |1, −1〉 → |2, 1〉 NEAR THE

TWO-PHOTON CONDITION

We measured the line shift of the transition |1, m̄ = −1〉 →
|2, m̄ = 1〉 in Fig. 4(a). We intermittently observed a second
weaker peak, with some examples in Fig. 10. Here we inter-
rogate the first group of transitions, i.e., those with N = 1,
following Eq. (9), with ωRF/2π = 2.27 MHz. A qualitative
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analysis indicates that the each peak is produced by atoms in
different dressed states, with the intensity of each correspond-
ing to their population. This second resonance indicates that
some atoms do not follow adiabatically our dressing sequence
[45].

APPENDIX C: OFF-RESONANT CORRECTIONS TO THE
RWA AND LINEAR SENSITIVITY OF THE

BICHROMATIC-DRIVEN ATOM TO RF
AMPLITUDE NOISE

The susceptibility of the dressed transitions with respect
to variations of the dressing parameters can be calculated
correcting the RWA dressed energy by including perturbative
shifts of the Zeeman states:

ĒF,m̄ = EF + gF

|gF | m̄

×
√

(μB|gF |BDC − h̄ωF + h̄�F )2 + 2h̄
∣∣�sgn(gF )

RF

∣∣2

with EF = A[F (F + 1) − I (I + 1) − J (J + 1)]/2 and where
�F has contributions from the fields which are counter-
rotating in the dressed frame of reference. The total shift can
be approximated by:

h̄�F = 1

2

gF

|gF |

∣∣μBgF
[
B−sgn(gF )

RF + �Bsgn(gF )
RF

]∣∣2

μB|gF |BDC + h̄ω0
, (C1)

where ω0 = (ω+ + ω−)/2 and �B�
RF is the counter-rotating

component of the field oscillating at frequency ω�.
Another important contribution to the broadening of the

transition lines is their instability with respect to variations
in the amplitude of the dressing fields. In this case, we can
distinguish four contributions emerging from the decompo-
sition of the variations of each dressing frequency into σ+
and σ− polarizations. To evaluate the effects of fluctuations
of the RF field, we split the noise of each polar compo-
nent of the RF field into corotating and counter-rotating
contributions:

B�
RF = B�

RF,0 + δB�
RF,� + δB�

RF,−�, (C2)

where � ∈ +,−, B�
RF,0 is the rms value of the field, and

δB�
RF,(−)� is the component of the fluctuation corotating

(counter-rotating) with the σ� (σ−�) component of the RF
field. As in Sec. IV, we quantify these effects by defining
average linear sensitivities, α�

RF,m for each component of the
(m ∈ {+,−}) of the two dressing fields � ∈ {+,−}:

αm
RF,� =

√√√√ 1

15

1∑
m=−1

2∑
m′=−2

(
∂ωm̄,m̄′

∂δB�
RF,m

)2

(C3)

In Fig. 11 we show the atomic sensitivity associated with
the corotating noisy components of the dressing fields (m =
�), when using the optimized frequency configuration. The
corotating noise modifies the amplitude of the dressing field,
leading to a sensitivity that weakly depends on the static field.

Another effect due to noise of the dressing field comes
from the counter-rotating noisy component, which causes off-
resonant energy shifts similar to the ones described before in
Eq. (C1), but this time oscillating at the same frequency of the

FIG. 11. The rms susceptibility of the dressed transition frequen-
cies of 87Rb with respect to corotating variations of the (a) σ+ and (b)
σ− dressing fields as functions of the dressing field amplitude. The
static field are 0.5 G (dashed line), 1.5 G (long-dashed line), 3.0 G
(dotted line), 4.5 G (dashed-dotted line), and 6.0 G (solid line). For
each dressing configuration, we evaluate the optimal combination of
σ± frequencies that minimize αDC Eq. (17).

corresponding dressing component. In Fig. 12 we show the
a rms linear susceptibility of all transitions, α�

RF,−�, induced
by counter-rotating variations of the dressing fields, using the
frequency configuration that minimize the sensitivity to static
fields.

The scaling and order of magnitude of αm
RF,� can be ob-

tained by calculating second-order perturbative energy shifts
and applying the RWA (see Appendix B). Note that the sen-
sitivity to variations of the dressing fields is two orders of
magnitude larger than the sensitivity to variations of the static
field with the optimized parameters (compare with Fig. 8).
To reduce the line broadening of resonant transitions to the
level of a few Hz, the fluctuations of dressing RF fields should

FIG. 12. The rms linear sensitivity of the dressed transition
frequencies of 87Rb with respect to the counter-rotating polar com-
ponents (a) σ+ and (b) σ− of the variations of the dressing fields
σ− (a) and σ+ (b). The scaled amplitudes of the dressing fields are
0.02 BDC (dashed line), 0.03 BDC (long-dashed line), 0.1 BDC (dotted
line), 0.15 BDC (dashed-dotted line), and 0.2 BDC (solid line). For
each dressing configuration, we evaluate the optimal combination of
σ± frequencies that minimize αDC.
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of order ≈10 μG, which corresponds to a relative amplitude
fluctuation of the order 10−5–10−6.

APPENDIX D: COMPARISON WITH
OTHER TECHNIQUES

In our experiment, we optimized the RF-dressing con-
figuration and observed fractional frequency fluctuations of
�ω1,−1/ω1,−1 ≈ 8.6 × 10−9 [see Fig. 4(b)]. Our measure-
ments are consistent with an effective suppression of effects
due to variations of the static magnetic field, with the remain-
ing fluctuations due to contributions from other experimental
variables. Furthermore, our theoretical analysis demonstrates
that by tuning a bichromatic RF-dressing field to attain a
global optimum over all the hyperfine transitions in the
manifold, it would be possible to reach fractional frequency
fluctuations of order 10−11. This level of fluctuations would be

that associated with variations of the static field with a relative
stability of 10−4 (see Table I).

These results can be compared with observations of fre-
quency fluctuations for the transition between the states |F =
1, mF = −1〉 and |F = 2, mF = 1〉 of 87Rb. Szmuk et al.
[18] demonstrates shot-to-shot frequency fluctuations of or-
der ∼10−13 in a well-shielded environment that provides a
relative stability of the DC magnetic field of 10−6. Kazakov
and Schumm [20] explore theoretically the use of off-resonant
RF dressing for protection against variations of the amplitude
of the DC and RF fields. For a typical optimal configuration,
they estimate that the fractional frequency fluctuations due to
variations of the DC field are of order 10−12 for a relative
stability of 10−4 (see Fig. 6a in Ref. [20]). Finally, Sárkány
et al. [19] explore theoretically and experimentally the use of
off-resonant MW dressing in a shielded environment and find
fractional frequency fluctuations of the order of 10−12 for a
DC relative stability of 10−4 (see Fig. 3 in Ref. [19]).

[1] B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof,
X. Zhang, W. Zhang, S. Bromley, and J. Ye, Nature 506, 71
(2014).

[2] I. Baumgart, J.-M. Cai, A. Retzker, M. B. Plenio, and C.
Wunderlich, Phys. Rev. Lett. 116, 240801 (2016).

[3] R. Zhao, Y. Dudin, S. Jenkins, C. Campbell, D. Matsukevich, T.
Kennedy, and A. Kuzmich, Nat. Phys. 5, 100 (2009).

[4] J. Preskill, Proc. R. Soc. A 454, 385 (1998).
[5] D. Gottesman, Chaos Solitons Fract. 10, 1749 (1999).
[6] G. A. Sinuco-León and B. M. Garraway, New J. Phys. 18,

035009 (2016).
[7] G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann,

S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82,
4619 (1999).

[8] F. Meier and D. Loss, Phys. Rev. B 71, 094519 (2005).
[9] D. A. Golter and H. Wang, Phys. Rev. Lett. 112, 116403 (2014).

[10] T. D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, and K. M.
Itoh, Phys. Rev. B 71, 014401 (2005).

[11] S. Dickerson, J. M. Hogan, D. M. Johnson, T. Kovachy,
A. Sugarbaker, S.-w. Chiow, and M. A. Kasevich, Rev. Sci.
Instrum. 83, 065108 (2012).

[12] L. Botti, R. Buffa, A. Bertoldi, D. Bassi, and L. Ricci, Rev. Sci.
Instrum. 77, 035103 (2006).

[13] L. Viola and E. Knill, Phys. Rev. Lett. 90, 037901 (2003).
[14] J. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness, K. D.

Jahnke, F. Jelezko, M. B. Plenio, and A. Retzker, New J. Phys.
14, 113023 (2012).

[15] A. Bermudez, P. O. Schmidt, M. B. Plenio, and A. Retzker,
Phys. Rev. A 85, 040302(R) (2012).

[16] A. Laucht, R. Kalra, S. Simmons, J. P. Dehollain, J. T.
Muhonen, F. A. Mohiyaddin, S. Freer, F. E. Hudson, K. M. Itoh,
D. N. Jamieson et al., Nat. Nanotechnol. 12, 61 (2017).

[17] N. Timoney, I. Baumgart, M. Johanning, A. Varón, M. B.
Plenio, A. Retzker, and C. Wunderlich, Nature 476, 185 (2011).

[18] R. Szmuk, V. Dugrain, W. Maineult, J. Reichel, and P.
Rosenbusch, Phys. Rev. A 92, 012106 (2015).

[19] L. Sárkány, P. Weiss, H. Hattermann, and J. Fortágh, Phys. Rev.
A 90, 053416 (2014).

[20] G. A. Kazakov and T. Schumm, Phys. Rev. A 91, 023404
(2015).

[21] H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D.
Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003).

[22] S. Haroche, C. Cohen-Tannoudji, C. Audoin, and J. P.
Schermann, Phys. Rev. Lett. 24, 861 (1970).

[23] G. A. Sinuco-León, B. M. Garraway, H. Mas, S. Pandey, G.
Vasilakis, V. Bolpasi, W. von Klitzing, B. Foxon, S. Jammi, K.
Poulios, and T. Fernholz, Phys. Rev. A 100, 053416 (2019).

[24] B. M. Garraway and H. Perrin, J. Phys. B: At., Mol. Opt. Phys.
49, 172001 (2016).

[25] S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V. Bolpasi,
G. Vasilakis, K. Poulios, and W. von Klitzing, Nature 570, 205
(2019).

[26] O. Morizot, L. Longchambon, R. K. Easwaran, R. Dubessy, E.
Knyazchyan, P.-E. Pottie, V. Lorent, and H. Perrin, Eur. Phys. J.
D 47, 209 (2008).

[27] G. Sinuco-León and B. M. Garraway, New J. Phys. 14, 123008
(2012).

[28] F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
[29] A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H.

Deutsch, and P. S. Jessen, Phys. Rev. Lett. 111, 170502 (2013).
[30] D. Trypogeorgos, A. Valdés-Curiel, N. Lundblad, and I. B.

Spielman, Phys. Rev. A 97, 013407 (2018).
[31] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,

H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[32] S. Choi, N. Y. Yao, and M. D. Lukin, Phys. Rev. Lett. 119,
183603 (2017).

[33] E. T. Campbell, Phys. Rev. Lett. 113, 230501 (2014).
[34] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.

Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and
A. G. White, Nat. Phys. 5, 134 (2009).

[35] H. Mas, S. Pandey, G. Vasilakis, and W. von Klitzing, New J.
Phys. 21, 123039 (2019).

[36] P. J. J. O’Malley, J. Kelly, R. Barends, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi,
E. Jeffrey, A. Megrant, J. Mutus, C. Neill, C. Quintana, P.

033307-13

https://doi.org/10.1038/nature12941
https://doi.org/10.1103/PhysRevLett.116.240801
https://doi.org/10.1038/nphys1152
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1016/S0960-0779(98)00218-5
https://doi.org/10.1088/1367-2630/18/3/035009
https://doi.org/10.1103/PhysRevLett.82.4619
https://doi.org/10.1103/PhysRevB.71.094519
https://doi.org/10.1103/PhysRevLett.112.116403
https://doi.org/10.1103/PhysRevB.71.014401
https://doi.org/10.1063/1.4720943
https://doi.org/10.1063/1.2173846
https://doi.org/10.1103/PhysRevLett.90.037901
https://doi.org/10.1088/1367-2630/14/11/113023
https://doi.org/10.1103/PhysRevA.85.040302
https://doi.org/10.1038/nnano.2016.178
https://doi.org/10.1038/nature10319
https://doi.org/10.1103/PhysRevA.92.012106
https://doi.org/10.1103/PhysRevA.90.053416
https://doi.org/10.1103/PhysRevA.91.023404
https://doi.org/10.1103/PhysRevLett.91.173005
https://doi.org/10.1103/PhysRevLett.24.861
https://doi.org/10.1103/PhysRevA.100.053416
https://doi.org/10.1088/0953-4075/49/17/172001
https://doi.org/10.1038/s41586-019-1273-5
https://doi.org/10.1140/epjd/e2008-00050-2
https://doi.org/10.1088/1367-2630/14/12/123008
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1103/PhysRevA.97.013407
https://doi.org/10.1103/PhysRevLett.121.023601
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1103/PhysRevLett.113.230501
https://doi.org/10.1038/nphys1150
https://doi.org/10.1088/1367-2630/ab5ca1


G. A. SINUCO-LEON et al. PHYSICAL REVIEW A 104, 033307 (2021)

Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Phys. Rev.
Appl. 3, 044009 (2015).

[37] S. Brouard and J. Plata, Phys. Rev. A 68, 012311 (2003).
[38] B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch,

and P. S. Jessen, Phys. Rev. Lett. 114, 240401 (2015).
[39] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[40] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S.

Vajna, and M. Kolodrubetz, Phys. Rep. 688, 1 (2017).
[41] G. Series, Phys. Rep. 43, 1 (1978).
[42] G. A. Sinuco-León, SoftwareX 12, 100603 (2020).
[43] H. Mas, Ph.D. thesis, University of Crete, 2019.
[44] D. M. Harber, H. J. Lewandowski, J. M. McGuirk, and E. A.

Cornell, Phys. Rev. A 66, 053616 (2002).
[45] K. A. Burrows, H. Perrin, and B. M. Garraway, Phys. Rev. A

96, 023429 (2017).
[46] When using the RWA conditions, we have ∂αDC

∂BDC
≈ 0 and

∂αDC
∂BRF,+

> 0. With the optimized RF frequencies ∂αDC
∂BDC

> 0 and
∂αDC
∂BRF,+

≈ 0.

[47] T. L. Harte, E. Bentine, K. Luksch, A. J. Barker, D.
Trypogeorgos, B. Yuen, and C. J. Foot, Phys. Rev. A 97, 013616
(2018).

[48] E. Bentine, T. L. Harte, K. Luksch, A. J. Barker, J. Mur-Petit,
B. Yuen, and C. J. Foot, J. Phys. B: At., Mol. Opt. Phys. 50,
094002 (2017).

[49] B. Merkel, K. Thirumalai, J. Tarlton, V. Schäfer, C. Ballance,
T. Harty, and D. Lucas, Rev. Sci. Instrum. 90, 044702
(2019).

[50] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222
(2011).

[51] P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106,
190501 (2011).

[52] W. Dubosclard, S. Kim, and C. L. Garrido Alzar, Commun.
Phys. 4, 35 (2021).

[53] G. A. Sinuco-Leon, H. Mas, S. Pandey, G. Vasilakis,
B. M. Garraway, and W. von Klitzing, Data cite for
“Decoherence-free radio-frequency-dressed subspaces”,
doi:10.25377/sussex.14770803 (2021).

033307-14

https://doi.org/10.1103/PhysRevApplied.3.044009
https://doi.org/10.1103/PhysRevA.68.012311
https://doi.org/10.1103/PhysRevLett.114.240401
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1016/j.physrep.2017.05.003
https://doi.org/10.1016/0370-1573(78)90070-4
https://doi.org/10.1016/j.softx.2020.100603
https://doi.org/10.1103/PhysRevA.66.053616
https://doi.org/10.1103/PhysRevA.96.023429
https://doi.org/10.1103/PhysRevA.97.013616
https://doi.org/10.1088/1361-6455/aa67ce
https://doi.org/10.1063/1.5080093
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1038/s42005-021-00541-3
https://doi.org/10.25377/sussex.14770803
https://doi.org/10.25377/sussex.14770803

