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Enhanced transport of two interacting quantum walkers in a one-dimensional
quasicrystal with power-law hopping
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We report a robust delocalization transition of a pair of hard-core bosons moving in a one-dimensional
quasicrystal with power-law hopping. We find that in the regime of strong interactions quasiperiodicity first
suppresses the transport, as in the usual Anderson picture, and then, transport is enhanced when the quasiperiodic
modulation is increased. By introducing an effective Hamiltonian, valid for strong interactions, we unveil the
mechanism behind the delocalization transition. Stationary single-particle properties, as well as two-particle
correlations, confirm all of our findings. Extensive numerical calculations lead us to establish the values of
quasiperiodic modulation, interparticle interactions, and power hops for which the delocalization takes place.
Our results are of direct relevance to current experiments of systems with long-range interactions.
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I. INTRODUCTION

Quantum walks, the quantum counterpart of classical
random walks [1], represent optimal platforms for perform-
ing efficient quantum algorithms [2,3], exploring topological
phases [4], modeling certain photosynthesis processes [5,6],
and probing nontrivial dynamics in clean and disordered
media in the presence or absence of interactions [7–13].
The wide range of applications that quantum walkers yield
has driven its experimental realization in several platforms
such as trapped ions [14,15], photons in linear and nonlinear
waveguides [16–18], and ultracold atomic gases confined in
one-dimensional optical lattices [19–21]. As a matter of fact,
due to the high tunability and control that these systems offer,
a comprehensive study of a single or many quantum walkers
is achievable within the current experimental context.

The dynamics of quantum walkers in disordered media has
been widely used for investigating the transport properties of
systems belonging to condensed matter [8–10,12,22–24]. As
revealed by those studies, the spreading of particles is altered
since the disorder breaks the translational symmetry in an
otherwise perfectly periodic lattice. For instance, in the one-
dimensional Anderson model [25,26], any disorder strength
yields the exponential localization of the single-particle eigen-
states and consequently the absence of particle diffusion.
Another widely used model arises in a one-dimensional
quasiperiodic lattice, often called the Aubry-André (AA)
model [27–29] (or more precisely, the Aubry-André-Azbel-
Harper model), where the quasiperiodicity emerges as a
consequence of superimposing two lattices with incommen-
surate periods [30]. To avoid confusion with the uncorrelated
or random disorder, we use interchangeably quasidisorder to
indicate the quasiperiodicity introduced in the AA model.
In the AA model there is a threshold in the quasidisorder
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strength that signals the transition between extended ergodic
and localized single-particle eigenstates; therefore, the single-
particle diffusion changes from being ballistic, where the
spread of the walker grows linearly in time, to becoming
null, where the particle is constrained to its initial position
[30]. Both the Anderson and the AA models are charac-
terized by being tight-binding schemes where the tunneling
beyond nearest neighbors (NN) is exponentially suppressed.
This constraint, together with the spatial disorder, reduces
the diffusion of the walkers to the two extreme cases: bal-
listic and null regimes. To enrich the dynamics exhibited by
the walkers, one can replace the nearest-neighbor tunneling
with a hopping whose amplitude follows a power law. This
modification is of particular interest since power-law inter-
actions arise in many important systems, such as trapped
ions [14,15], polar molecules [31,32], Rydberg atoms [33,34],
nuclear spins in solid-state systems [35], photosynthetic com-
plexes [36,37], and atoms in photonic crystal waveguides
[38]. Previous studies of the resulting eigenstates in the AA
model have shown that the inclusion of power-law hopping
induces the appearance of energy-dependent mobility edges
[39,40] and multifractal states [40]. Another relevant result,
within the single-particle scheme, is a recent analysis that
considers all-to-all hopping and random disorder [41]. Ref-
erence [42] revealed a disorder-enhanced transport regime in
a one-dimensional nanostructure. For the two-body case, the
literature has focused on the NN tunneling [43,44].

The purpose of the present paper is precisely the study of
the interplay among quasidisorder, interparticle interactions,
and power-law hopping, on the spreading of two hard-core
bosons initially localized in the middle of a one-dimensional
lattice. In particular, we demonstrate that within the strongly
interacting regime, a delocalization transition arises as the
quasiperiodic modulation increases. This is in stark contrast
to the general knowledge that quasidisorder always results in
transport suppression. To explain this unusual behavior, we
introduce an effective Hamiltonian that describes the motion
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of the walkers as a bound particle whose dynamics is shielded
from the power-law hopping. The transport of the composite
object is suppressed until the quasidisorder is large enough to
close the energy gap between the bound and unbound states.
Closing the energy gap allows the walkers to dissociate and
delocalize, since unbound states are less prone to show strong
localization. Our results are of relevance in correlated two-
particle studies [45,46], quantum state transfer protocols of
long-range spin systems [47], and quasiparticle propagation
experiments in trapped ions [48,49], among other examples.
Definitely, two-body transport studies can shed light on more
complex phenomena such as the many-body localization of
interacting long-range systems [50–53]. In contrast to pre-
vious studies of quantum walkers moving in a disordered
medium [8–10,12], we demonstrate that the quasidisorder can
enhance the transport of the walkers. Additionally, we provide
a theoretical model that supports our findings.

The manuscript is organized as follows. In Sec. II we
introduce and briefly discuss the model considered to follow
the dynamics of the pair of hard-core bosons. Afterwards, in
Sec. III, we exhibit the delocalization transition and introduce
an effective Hamiltonian that describes the motion of the
walkers within the strongly interacting regime. In Sec. IV, we
employ the survival probability to characterize the delocaliza-
tion transition. Finally, in Sec. V, we summarize and conclude
the manuscript.

II. MODEL

The Hamiltonian that describes two interacting hard-core
bosons moving in a one-dimensional quasicrystal with inter-
site couplings decaying as a power law is given by

Ĥ = −J
∑
i, j �=i

1

|i − j|α b̂†
i b̂ j + �

∑
i

cos(2πβi + φ)n̂i

+ U
∑

i

n̂in̂i+1, (1)

where b̂i (b̂†
i ) is the bosonic annihilation (creation) operator at

site i, n̂i = b̂†
i b̂i is the corresponding particle number operator,

J is the tunneling amplitude between nearest neighbors, and
U is the nearest-neighbor interaction amplitude. Quasiperi-
odicity in the lattice is introduced through the second term
in Eq. (1), in which the parameter � modulates the strength,
β = (

√
5 − 1)/2 is the incommensurable parameter, and φ ∈

[0, 2π ) accounts for a random phase.. The hard-core con-
straint (b̂†

i )2 = 0 implies that no double occupancy is allowed.
However, the operators b̂i and b̂†

j satisfy the usual bosonic
commutation relations when i �= j. Here we should point out
that the double-occupancy restriction emerges naturally in
systems where only one excitation per site is allowed, for
instance, Rydberg states in neutral atoms, rotational states in
polar molecules, and hyperfine states in trapped ions. Periodic
boundary conditions n̂L+1 = n̂1, with L being the number of
sites in the lattice, shall be considered to numerically solve
the model.

Since the aim of this paper is to focus on the two-particle
dynamics, we provide in the next lines a succinct collection of
statements associated with the interacting and noninteracting

FIG. 1. Time evolution of the density distribution ni(t ) of two
walkers initially occupying adjacent sites on the center of the lattice.
Quasidisorder and power-law hops are indicated in each panel. The
interparticle interaction for all panels is U/J = 8.

cases of the Hamiltonian in Eq. (1). While for short-range
hopping, α � 1 and U/J = 0, the well-known AA model
[27–29] is recovered, for arbitrary values of α the Hamiltonian
in Eq. (1) is better known as the generalized-Aubry-André
(GAA) model [40]. The AA model exhibits extended er-
godic single-particle states for �/J < 2, multifractal states
for �/J = 2, and localized states for �/J > 2. Meanwhile,
the GAA model displays a plethora of mobility edges that
splits extended and localized states for α � 1 and multifractal
single-particle states for long-range hops of α < 1 [40]. For
the two-body case with NN hopping, it has been shown that
the interaction enhances the formation of localized pairs [43].
The effects of including power-law tunneling are not yet ex-
plored and it is the aim of this paper to address them.

III. PAIR BREAKING AS A MECHANISM
OF DELOCALIZATION

To unveil the effects of interparticle interactions, qua-
sidisorder, and power-law hopping on the two-body transport
properties, we consider the quantum walk of a pair of inter-
acting hard-core bosons initially localized at adjacent lattice
sites in the middle of a chain having L = 62 sites. The time
evolution of the initial state |ψ (t = 0)〉 = b̂†

L/2+1b̂†
L/2|0〉 is cal-

culated by using the eigenstates |φm〉 and their corresponding
eigenenergies Em obtained from the exact diagonalization of
the Hamiltonian in Eq. (1), that is,

|ψ (t )〉 =
∑

m

Cme−iEmt/h̄|φm〉, (2)

where Cm = 〈φm|ψ (0)〉. To illustrate the most distinctive
findings in the two-particle spreading, we chose a set of pa-
rameters (U/J , �/J) and three different values of α (α =
3, 1, and 1/2) for which peculiar transport effects emerge.
All the calculations for finite quasidisorder were obtained
from the average of 400 random uniformly distributed phases
φ ∈ [0, 2π ). In Fig. 1 we show the time evolution of the
single-particle density ni(t ) = 〈ψ (t )|b̂†

i b̂i|ψ (t )〉 for both null
and finite quasidisorder strength when U/J = 8. A striking
result shown in Figs. 1(a)–(c) is the clearly visible conelike
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FIG. 2. Energy spectrum of the Hamiltonian in Eq. (1) for
�/J = 0 and U/J = 8. Panels (a), (b), and (c) correspond to power-
law hopping values of α = 3, 1, and 1/2, respectively.

propagation front that appears even in the case of α = 1/2.
This is a very interesting result that deserves attention, be-
cause while such a definite cone emerges in the single
quantum walker case for short-range hops [20], in contrast,
long-range hops (α < 1) do not lead to a sharp cone [54,55].
As we shall see, this behavior must be attributed to both
interactions and power-law hopping.

For repulsive interactions (U/J > 0), the particles can bind
together into a composite object called a repulsive bound
pair (RBP), or also termed a bound nearest-neighbor dimer
[56–59]. The energy of the repulsive bound pairs is located
above the energy of the unbound states [59,60]. As can be
seen from Fig. 2, the energy spectrum of the Hamiltonian
in Eq. (1) for �/J = 0, U/J = 8, and α = 3, 1, and 1/2,
has an energy gap that separates unbound and bound states.
The black arrow in each panel indicates the location of the
high-energy states, that is, the repulsive bound pair states.
Given the fact that the energy gap is large enough, the dimer
is dynamically stable and therefore unable of dissociating by
converting the interaction energy into kinetic energy.

The RBP has the peculiarity of moving around the lat-
tice with both particles in adjacent sites; that is, the walkers
propagate as a pair. Consequently, the most relevant Fock
states participating in the dynamics of the walkers are those
where the particles are in adjacent sites, namely, those Fock
states that belong to the subspace HU = {|n1 · · · nL〉 ∈ H :
ni = ni+1 = 1 ∀i ∈ [1, L]}, with H being the Hilbert space of
all Fock states with two hard-core bosons on a lattice with L
sites. As a matter of fact, one can quantify the relevance of
the states belonging to HU on the dynamics of the walkers by

FIG. 3. Time evolution of the expectation value of the projec-
tor operator P̂ = ∑

i n̂in̂i+1. Panel (a) corresponds to �/J = 0 and
U/J = 8, whereas panel (b) considers �/J = 2 and U/J = 8. The
values of α are indicated in different colors and line patterns.

considering a projector operator P̂ acting on the states of HU .
The projector operator P̂ is defined as follows:

P̂ =
∑

i

n̂in̂i+1. (3)

In Fig. 3 we show the expectation value of the operator P̂,
P(t ) = 〈ψ (t )|P̂|ψ (t )〉, as a function of time. Figures 3(a) and
3(b) correspond to quasidisorder strength �/J = 0 and 2,
respectively, both panels are for U/J = 8, and the values of
α are indicated in colors. Since P(t ) takes values close to
unity, it is reasonable to state that the dynamics of the walkers
can be satisfactorily described by considering only the states
belonging to HU .

Having established the relevance of the subspace HU , one
can introduce an effective Hamiltonian Heff acting solely on
HU . By rewriting Ĥ in Eq. (1) as Ĥ = Ĥ0 + V̂ , where

Ĥ0 = U
∑

i

n̂in̂i+1 = UP̂,

V̂ = −J
∑
i, j �=i

1

|i − j|α b̂†
i b̂ j + �

∑
i

cos(2πβi + φ)n̂i,

(4)

and noticing that Ĥ0|�〉 = U |�〉 with |�〉 ∈ HU , then up to
first order in V̂ /U , Ĥeff = P̂(Ĥ0 + V̂ )P̂. After straightforward
algebra, one can show that

Ĥeff = P̂ − J

2αU

∑
i

n̂i+1(b̂†
i b̂i+2 + b̂†

i+2b̂i )

+ 2�

U
cos(πβ )

∑
i

cos(2πβi + ϕ)n̂in̂i+1. (5)

Since P̂ plays no role on the dynamics, it can be safely omit-
ted. Thus, in terms of the hard-core bose operators b̂†

i and
b̂i (see Appendix A), the effective Hamiltonian acquires the
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FIG. 4. Schematic representation of the density-dependent next-
nearest-neighbor hopping of the pair of walkers.

structure of a Bose-Hubbard-like Hamiltonian with the dis-
tinctiveness that the nearest-neighbor hopping is replaced by
a density-dependent next-nearest-neighbor tunneling, modu-
lated by the coefficient J/2αU , while the on-site interaction
is changed for a site-dependent nearest-neighbor interaction
whose amplitude is just the sum of the AA quasiperi-
odic modulation in adjacent sites, that is, cos[2πβi + φ] +
cos[2πβ(i + 1) + φ] = 2 cos(πβ ) cos[2πβi + ϕ], with ϕ =
φ + πβ times the factor 2 cos(πβ )�/U . Interestingly, the
motion of the walkers circumvents the power-law tunneling;
thus, the power α plays a role in the strength of the density-
dependent next-nearest-neighbor hopping J/2αU only. Notice
that as the hopping becomes short-range α � 1, this con-
tribution vanishes; in fact, this term is completely absent
for NN hopping. In contrast to previous studies [43,59,61],
the leading contribution to the mobility of the bound pair
emerges from the first-order hopping processes |1i〉|1i+1〉 →
|1i+2〉|1i+1〉 and |1i〉|1i+1〉 → |1i〉|1i−1〉 (see the schematic
representation of Fig. 4). The effective Hamiltonian in Eq. (5)
gives a clear explanation of the conelike propagations shown
in Figs. 1(a)–(c) since the walkers behave as a single compos-
ite object moving in a lattice without power-law hops.

We now turn to the behavior shown in Figs. 1(d)–(f). When
disorder takes nonzero values, the energy gap between bound
and unbound states reduces, thus jeopardizing the stability of
the pair. However, as shown in Fig. 3(b), the most relevant
Fock states involved in the dynamics of the walkers are still
those that belong to HU when �/J = 2 and U/J = 8 for the
three power-law hops α = 3, 1, and 1/2. In other words, the
dimer endures for �/J = 2.

One can suspect that the suppression of transport shown
in Figs. 1(d)–(f) is due to the localization of the eigenstates
belonging to Ĥeff when �/J = 2. This can be confirmed by
evaluating the inverse participation ratio (IPR) in the Fock
basis of the eigenstates that results from diagonalizing the
effective Hamiltonian. The IPR of a normalized state |φm〉 is
evaluated as follows:

IPRm =
∑
{n}

|〈{n}|φm〉|4, (6)

where |{n}〉 is a state of the Fock basis. In Figs. 5(a)–(c)
we plot the IPR of the eigenstates belonging to both Ĥ and
Ĥeff (inset) in their respective Fock basis when U/J = 8 and
�/J = 2 for α = 3, 1, and 1/2, respectively. From Fig. 5 one
can notice that a fraction of the low-energy states of Ĥ are
not localized, while its high-energy states show strong local-
ization. Conversely, all the eigenstates of Ĥeff are localized.
Since the dimer motion is described by Ĥeff, its transport is
suppressed, even though the original Hamiltonian Ĥ has ex-

IP
R
m

IP
R
m

IP
R
m

FIG. 5. Inverse participation ratio of the eigenstates belonging to
both Ĥ and Ĥeff (inset) for U/J = 8 and �/J = 2. Panels (a), (b),
and (c) correspond to a power-law hopping values of α = 3, 1, and
1/2, respectively.

tended states. In summary, the dimer still persists for �/J = 2
at the price of suppressing its spread.

Another quantity that allows us to recognize the coherent
motion of the walkers is the two-particle correlation 
i, j (t ) =
〈ψ (t )|b̂†

i b̂†
j b̂ j b̂i|ψ (t )〉. This two-body correlation function

provides meaningful information regarding the effects of the
interparticle interaction on the dynamics of quantum walk-
ers [7,9,62]. In Fig. 6 we show 
i, j (t ) after a propagation
time of Jt/h̄ = 20 for the same parameters as before, that
is, (�/J,U/J ) = (0, 8), (�/J,U/J ) = (2, 8), and the three
different values of α = 3, 1, and 1/2. In agreement with
the hard-core constraint, the main diagonal of the correlation
function vanishes. However, one can notice that the leading
contributions emerge from the first diagonal below and above
the main diagonal, thus confirming the formation and coher-
ent motion of the pair. In particular, it supports the above
statement that for �/J = 2, the pair motion is still a suitable
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FIG. 6. Two-particle correlation function at Jt/h̄ = 20 for two
hard-core bosons initially localized at adjacent sites in the middle
of a chain. Quasidisorder and power-law hops are indicated in each
panel; the interparticle interaction is U/J = 8.

picture of the dynamics of the walkers and the only effect of
the quasiperiodicity is to suppress the transport.

We want to illustrate now an unforeseen behavior regarding
the competence between quasidisorder and interactions. In
Fig. 7 we show the time evolution of the single-particle den-
sity ni(t ) for (�/J,U/J ) = (4, 8) and (�/J,U/J ) = (8, 8).

FIG. 7. Time evolution of the single-particle density distribution
ni(t ) of two walkers initially occupying adjacent sites on the center of
the lattice. Quasidisorder and power-law hops are indicated in each
panel. The interparticle interaction for all panels is U/J = 8.

FIG. 8. Time evolution of the expectation value of the projec-
tor operator P̂ = ∑

i n̂in̂i+1. Panel (a) corresponds to (�/J,U/J ) =
(4, 8), whereas panel (b) considers (�/J,U/J ) = (8, 8). The power-
law hopping values are α = 3 (red solid line), α = 1 (orange dashed
line), and α = 1/2 (purple dotted line).

One can notice that, for α = 3, Figs. 7(a) and 7(d) display
a similar appearance; that is, the diffusion of the walkers is
suppressed by interactions and quasiperiodicity. Surprisingly,
this is not the case for α = 1 and α = 1/2, since these pro-
files achieve expansion to greater distances for �/J = 4 and
�/J = 8 than those for �/J = 2 [see Figs. 1(e) and 1(f)], thus
contradicting the general notion that the quasidisorder yields
suppression of transport.

To understand why the quasiperiodicity restores the trans-
port of the walkers when α = 1 and α = 1/2, it is instructive
to show first that the picture of the walkers moving together
breaks down. In Fig. 8(a) we plot the time evolution of P(t )
when �/J = 4 and U/J = 8 for α = 3, 1, and 1/2, whereas
Fig. 8(b) considers �/J = U/J = 8 for the same values of α.
One can notice that now the contribution of the Fock states be-
longing to HU on the dynamics of the walkers is less relevant
than the cases exhibited in Fig. 3. In fact this is more evident
for �/J = 8. Thus, when quasidisorder competes with the
interaction, the effective Hamiltonian Ĥeff is no longer suitable
to describe the spreading of the particles.

To show the effect of quasidisorder on the energy spec-
trum, in Fig. 9 we plot the eigenenergies of the Hamiltonian
in Eq. (1) for U/J = 8 and �/J = 4 [Figs. 9(a), 9(c), and
9(e)] and for �/J = U/J = 8 [Figs. 9(b), 9(d), and 9(f)]. The
values of α are the same used throughout the paper. One can
notice that for the strengths of quasidisorder considered, the
energy gap is now negligible compared to the previous case
(see Fig. 2). Consequently, the dynamics of the walkers is
no longer exclusively concentrated in the high-energy sector,
where dimers states are located, but also in lower-energy
states. However, as one can notice from Fig. 10, the low-
energy eigenstates have the peculiarity of having an inverse
participation ratios lower than those of high-energy states.
Therefore, the participation of low-energy states, where the
pair is dissociated, enhances the transport of the walkers.
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FIG. 9. Energy spectrum of the Hamiltonian in Eq. (1) for U/J =
8. Quasidisorder strengths and power-law hops are indicated in each
panel.

To end this section, in Fig. 11 we show the two-particle cor-
relation function 
i, j (t ) after a propagation time of Jt/h̄ = 20,
for (�/J,U/J ) = (4, 8), (�/J,U/J ) = (8, 8), and the three
different values of α = 3, 1, and 1/2. In contrast with the
correlation functions shown in Fig. 6, the diagonals above
and below the main diagonal in Fig. 11 are no longer the
principal contributions to the correlation functions. Therefore,
states where the pair is dissociated contribute the most to the
dynamics of the walkers, thus allowing the particles to spread
to regions that were not accessible for the case �/J = 2.

FIG. 10. Inverse participation ratio associated with the eigen-
states of the Hamiltonian in Eq. (1) for U/J = 8. Quasidisorder
strengths and power-law hops are indicated in each panel.

FIG. 11. Two-particle correlation at Jt/h̄ = 20 for U/J = 8.
Quasidisorder strengths and power-law hops are indicated in each
panel.

IV. SURVIVAL PROBABILITY

Having established the mechanism behind the
quasidisorder-enhanced transport transition, it is suitable
to find a quantity that senses the degree of delocalization
of the walkers. For this purpose, we employ the survival
probability f (t ), which measures the probability of finding
the system in its initial state |ψ (0)〉 at time t ,

f (t ) = |〈ψ (0)|ψ (t )〉|2 = |〈ψ (0)|e−iĤt/h̄|ψ (0)〉|2. (7)

In terms of the coefficients Cm and the eigenenergies Em, the
survival probability can be written as follows:

f (t ) =
∣∣∣∣
∑

m

|Cm|2e−iEmt/h̄

∣∣∣∣
2

. (8)

Previous studies for disordered systems [63,64] have shown
that the survival probability provides meaningful informa-
tion regarding the dynamics of both noninteracting [65] and
interacting systems [66,67]. In Figs. 12(a)–(c) we plot the
time evolution of the survival probability f (t ) for U/J = 8
and α = 3, 1, and 1/2, respectively. In general, the time evo-
lution of f (t ) shows a decay from its initial value followed
by oscillations around an asymptotic value. For long times
in the quasidisorder-free case, the survival probability oscil-
lates around the value 1/L independently of the power-law
hop α, and this indicates that the walkers can spread over
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FIG. 12. Survival probability f (t ) for U/J = 8. Panels (a), (b),
and (c) correspond to power-law hopping values of α = 3, 1, and 1/2,
respectively. Quasidisorder strengths are �/J = 0 (red solid line),
�/J = 2 (brown dash-dotted line), �/J = 4 (orange dashed line),
and �/J = 8 (purple dotted line).

the whole lattice. For a small quasidisorder strength �/J =
2, the asymptotic value of f (t ) increases regardless of the
value of α. That is, for all cases, suppression of transport is
observed, as in the usual Anderson transition. Surprisingly,
when quasidisorder increases �/J = 4, the asymptotic value
of f (t ) decreases, indicating the delocalization mentioned
in the previous section. Even for α = 3, a delocalization is
observed. However, the survival probability takes values close
to unity, which makes it difficult to observe the delocalization
in the density profiles of Fig. 7. Counterintuitively, increasing
even more the quasiperiodicity strength leads, in the long-time
limit, to a lower value of the survival probability for α = 1 and
α = 1/2; thus, transport is enhanced by quasidisorder. Notice
that this is not the case when α = 3 since for �/J = 8 the
survival probability increases as expected.

To smooth the fluctuations in the time evolution of f (t ),
it is convenient to employ the time average of the survival
probability,

F (t ) = 1

t

∫ t

0
dt ′ f (t ′). (9)

In the long-time limit, F (t ) saturates to the asymptotic sur-
vival probability (ASP) [64]. The saturation point is given by
the simple expression

F (t → ∞) =
∑

m

|Cm|4 = IPR(0). (10)

To avoid confusion, we point out that IPR(0) is the inverse
participation ratio of the initial state |ψ (0)〉 in terms of the
eigenbasis |φm〉 of the Hamiltonian in Eq. (1). On the contrary,
the quantity IPRm, used in the previous section, is the inverse

FIG. 13. Asymptotic survival probability F (t → ∞) as a func-
tion of �/J and U/J . Panels (a), (b), and (c) correspond to power-law
hopping values of α = 3, 1, and 1/2, respectively.

participation ratio of the eigenstates in terms of the Fock
basis. Notice that Eq. (10) links a dynamical quantity with
the inherent structure of the eigenstates of the system under
investigation.

To establish the values of the quasiperiodic modulation
and the interaction between particles for which delocalization
occurs, in Figs. 13(a) and 13(b) we condense in a density
color scheme the full information of the ASP associated with
the competition of quasidisorder vs interactions for α = 3, 1,
and 1/2, respectively. From Fig. 13, one can notice two main
characteristics. The first one is that, for values of interaction
strength U/J > 4, the walkers with α = 3 get localized for
small quasidisorder amplitudes, while the diffusion of walkers
with α = 1 and 1/2 is more robust as they localize for larger
quasidisorder amplitudes. The second one is that, since inter-
actions yield robustness to the dimer, the delocalization of the
pair requires larger quasidisorder amplitudes as the interaction
strength increases.

FIG. 14. Asymptotic survival probability F (t → ∞) as a func-
tion of the power-law hop α for quasidisorder strengths �/J = 0
(red circles), �/J = 4 (orange squares), and �/J = 8 (purple dia-
monds). Panels (a) and (b) correspond to an interparticle interaction
of U/J = 1 and U/J = 4, respectively.
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FIG. 15. Asymptotic survival probability F (t → ∞) as a func-
tion of the power-law hop α for quasidisorder strengths �/J = 0 (red
circles), �/J = 4 (orange squares), and �/J = 8 (purple diamonds).
Panels (a) and (b) correspond to interparticle interactions of U/J = 6
and U/J = 8, respectively.

To conclude this section, we unveil the role of the power-
law hop in the delocalization transition. For this purpose, in
Figs. 14(a) and 14(b) we evaluate the ASP as a function of
α for several quasidisorder strengths and interparticle inter-
actions U/J = 1 and U/J = 4, respectively. For the smallest
interaction strength U/J = 1, the ASP increases with the
quasdisorder as in the usual Anderson scheme. However, this
is not the case for U/J = 4 since there is a value of α for
which the ASP decreases with an increase in the quasiperi-
odicity. The blue region bounded by the curves �/J = 4
and �/J = 8 indicates the space of parameters for which the
quantum walkers delocalize and, therefore, perform transport
assisted by quasidisorder. In Figs. 15(a) and 15(b), we show
the ASP as a function of α for interaction magnitudes of
U/J = 6 and U/J = 8, respectively. Figures 14 and 15 re-
veal that, as the interaction between the walkers increases,
the delocalization region enlarges. Interestingly, as shown in
Fig. 15(b), the delocalization transition can take place for
short (α > 1) and long (α < 1) tunneling ranges. In contrast
to the recently disorder-enhanced transport transition found
in a single-particle model with all-to-all hopping [42], here
we unveil the role of a power-law hopping on an interacting
two-body delocalization transition.

V. CONCLUSIONS

We have investigated the dynamics of a pair of interacting
hard-core bosons moving in a one-dimensional quasicrystal
with power-law tunneling 1/rα . In particular, by analyzing
the time evolution of the one-particle density, the survival
probability, and the two-particle correlation function, we
have found that, for strong interparticle interactions, trans-
port is suppressed for moderate values of the quasidisorder
at first, but then is enhanced as it increases. This result is

in stark contrast with the general notion that quasidisorder
always favors localization. To reveal the physics behind the
quasidisorder-enhanced transport transition, we introduced an
effective Hamiltonian that satisfactorily describes the dynam-
ics of the walkers when the interparticle interaction is the
largest energy scale. In this effective Hamiltonian, the walkers
move as a composite object whose dynamics is completely
shielded from the power-law tunneling. As a result, the dimer
gets localized for moderate quasidisorder strengths, as in the
usual Anderson picture. However, when the quasiperiodicity
competes with the interaction, the stability of the pair is jeop-
ardized and the delocalization emerges as a result of the pair
dissociation for certain tunneling ranges.

Using the asymptotic value of the survival probability, we
established the regions of parameters in which the delocal-
ization of the walkers takes place. In particular, we first fix
the power-law hop and explore the delocalization in diagrams
for the strength of the incommensurate potential and the in-
terparticle interaction. To this end, we evaluate the role of
the power-law hop for fixed quasidisorder strengths and in-
teractions. Our two-body study brings to light the relevance
of dimer formation on the transport properties of disordered
systems with power-law hopping. As demonstrated, counter-
intuitive results regarding the spreading of walkers can emerge
when dimer formation is taken into account.

The conclusions here achieved are of primary relevance
to more complex phenomena involving many-body systems,
in particular, within the experimental context, where the
possibility of setting states prepared with pairs can lead to
unexpected diffusion regimes. We hope that our work will
trigger further theoretical analysis such as, for instance, the
determination of the fractal nature of the two-body states
in intermediate and long-range hops by means of projected
Green’s function methods [46], the fate of the quasidisorder-
enhanced transport transition within the many-body regime,
and the role of dimensionality on transport properties, among
others. Our results could be of interest for experiments with
trapped ions, Rydberg atoms, and photons in crystal waveg-
uides where exotic transport phenomena with long-range
interactions are explored.
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APPENDIX: EFFECTIVE HAMILTONIAN

In Sec. III we introduced an effective Hamiltonian to de-
scribe the dynamics of the pair of walkers within the strongly
interacting regime. To show that the quasiperiodic modulation
induces a nearest-neighbor interaction between particles, we
wrote Ĥeff in terms of the creation and annihilation operators
of the hard-core bosons. However, it is instructive to define
the operators âi = b̂ib̂i+1 and â†

i = b̂†
i b̂†

i+1, which annihilate
and create a bound nearest-neighbor dimer located at sites i
and i + 1. These operators inherit the hard-core constraint of
the original bosons, that is, (âi )2 = (â†

i )2 = 0, but also acquire
the nearest-neighbor constraint âiâi±1 = â†

i â†
i±1 = 0. Addi-
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FIG. 16. Inverse participation ratio of all eigenstates of the
Hamiltonian in Eq. (A1) as a function of the quasiperiodic modu-
lation. Panels (a), (b), and (c) correspond to power-hopping values of
α = 3, 1, and 1/2, respectively. The red dashed line corresponds to
the critical quasidisorder in Eq. (A2).

tionally, within the subspace HU , âi and â†
i obey the standard

bosonic commutation relations [âi, â†
j ] = δi j and [â†

i , â†
j ] =

[âi, â j] = 0, provided j �= {i, i ± 1}. In terms of the dimer
operators, the effective Hamiltonian can be written as follows:

Ĥeff = − J

2αU

∑
i

(â†
i âi+1 + â†

i+1âi )

+ 2�

U
cos(πβ )

∑
i

cos(2πβi + ϕ)â†
i âi. (A1)

The above Hamiltonian is nothing more than the well-known
Aubry-André model with the distinction that the effective
tunneling strength is J ′ → J/(2αU ) and the quasiperiodic
modulation is �′ → 2 cos(πβ )�/U . The transition from ex-
tended to localized states takes place at |�′

c/J ′| = 2, which

FIG. 17. Average inverse participation ratio as a function of the
power-law hop α and the quasidisorder amplitude �/J . The red
dashed line corresponds to the critical quasidisorder in Eq. (A2).

yields

�c

J
= 1

2α| cos(πβ )| . (A2)

In Figs. 16(a)–(c), we show the IPRm of the eigenstates of the
Hamiltonian in Eq. (A1) as a function of the quasidisorder for
α = 3, 1, and 1/2, respectively. The horizontal dashed red line
corresponds to the critical quasidisorder in Eq. (A2).

To explore the average nature of the eigenstates on the
α-�/J plane, it is convenient to employ the average inverse
participation ratio IPR = 1

L

∑
m IPRm. In Fig. 17 we illustrate

the IPR, and as in the previous figure, the dashed red line
corresponds to the critical quasidisorder in Eq. (A2).
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