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Dynamics of spin-polarized impurity in ultracold Fermi gas
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We show that the motion of spin-polarized impurity (ferron) in ultracold atomic gas is characterized by a
certain critical velocity which can be traced back to the amount of spin imbalance inside the impurity. We have
calculated the effective mass of ferron in two dimensions. We show that the effective mass scales with the surface
of the ferron. We discuss the impact of these findings; in particular, we demonstrate that ferrons become unstable
in the vicinity of a vortex.
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I. INTRODUCTION

The ultracold atomic gases with nonzero spin polar-
ization offer the possibility to investigate the existence
of metastable structures that may spontaneously occur in
such systems. These include realizations of the Fulde-
Ferrell-Larkin-Ovchinnkov phase (FFLO) [1,2] leading to
the possible formation of liquid crystals [3], supersolids [4],
which also include polarized vortex cores [5–7], and the
Sarma phase [8–10]. Although the experimental confirmation
of these phases is still lacking, the progress in experimental
techniques allow to treat spin imbalance as a controllable
experimental “knob” and, thus, offers the possibility to in-
vestigate the superfluid gas as a function of spin polarization
[11–14]. In particular, the evolution of spin-imbalanced sys-
tems from the deep BCS regime through the unitary limit
to the Bose-Einstein condensate side is predicted to generate
various exotic phases [15–17]. Although the phase diagram
as a function of spin polarization remains still merely a
theoretical prediction, yet another question may be posed:
Does the ultracold atomic gas with nonzero spin polariza-
tion admit the presence of metastable structures inside the
superfluid where the polarization could be effectively stored?
One such structure in the form of a ferron, resembling the
Larkin-Ovchinnikov droplet, has been recently investigated in
Refs. [18,19]. In this case, it was found that one can generate
dynamically the local spin imbalance in the form of a droplet
in an otherwise unpolarized medium corresponding to the
unitary Fermi gas. Due to the particular nodal structure of
the pairing field, the ferron appears as an excitation mode of
a metastable character. On the other hand, one may expect
that under the condition of nonzero spin imbalance spatially
separated ferrons may appear spontaneously in the cooling
process. This situation may occur in the limit when the spin
imbalance is too small to generate the FFLO phase in the bulk.
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The structure of ferrons is stabilized by the existence of
Andreev states, induced by the spatial variations of the pairing
field � where the majority of spin particles are stored, see
Fig. 1. It was shown that at the unitarity the structure of
the droplet remains preserved even under dynamic evolution
including stretching and collisions with other droplets [18].
In the case of a single ferron, the lowest-energy condition
guarantees that the shape of the ferron remains spherical, and
its radius is a function of polarization. The relation between
radius and polarization reflects the fact that spin excess can
be stored in Andreev states, and their number scales with the
radius. Therefore, it is easy to realize that in the case of a
spherical three-dimensional (3D) ferron, the size (radius) R
scales as |N↑ − N↓|1/2, whereas in the case of the 2D system
(or cylindrical ferron), the relation is linear [19]. It is also
possible to create a spherical ferron with multiple concen-
tric nodal surfaces. Recently, the ferronlike structures have
been generated within an extension of the Ginzburg-Landau
(GL) approach, which allows for consideration of the spin-
imbalanced system [20]. Within a certain parameter range of
the GL model stable circular solutions in 2D have been found
corresponding to circular ferrons with single or multiple nodal
lines. They have been described as ring solitons although their
structure coincides with that of ferrons. The interaction be-
tween ferrons mediated by the superfluid has been determined
[21].

In this paper, we investigate the dynamic properties of a
ferron from the BCS regime towards the unitary point. We
show that the ferron possesses a certain effective mass that
scales with its surface. It is also characterized by a critical
velocity that cannot be exceeded whereas moving through the
superfluid environment, proportional to the chemical potential
difference between the majority and the minority spin compo-
nents. We discuss the implications of these findings.

II. EFFECTIVE MASS

In the case of nonzero polarization, the nodal line (surface)
of the pairing field may acquire stability as soon as Andreev
states become populated. Clearly, the nodal line shares the
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FIG. 1. Schematic presentation of the ferron structure in two
dimensions (2D). It is characterized by a nodal line where the order
parameter � changes phase by π . The localized Andreev states
reside around the nodal line (red area), and they accumulate majority
(spin-up) particles. These states are almost degenerate with excita-
tion energies about

μ↑−μ↓
2 .

property of the vortex line (the phase changes abruptly by π )
which cannot end inside a superfluid. It may either form the
closed structure (e.g., sphere in 3D) or end at the boundary
where the density drops to zero. Similarly, as in the case of a
vortex, one may ask the question: What are the laws of dynam-
ics governing the motion of such nodal structures traveling
through the superfluid? In the case of vortices, the answer to
these questions gave rise to the formulation of the filament
model, which accurately predicts dynamics of vortices and
can be applied to describe turbulence phenomenon [22]. In
order to be able to formulate an effective theory, one needs to
extract the inertia of the object and determine the conservative
and dissipative forces present when moving in a superfluid
environment. In this paper, we focus on the effective mass
of the ferron. Although, in general, the determination of the
mass of an impurity immersed in a fermionic environment is
a challenging problem [23] due to the presence of the pairing
gap the problem facilitates considerably.

We determine the mass as the response of the system with
ferron, being exposed to the superflow characterized by the
wave-vector 2q. Namely, we consider the pairing field �(r)
which in the limit of long-distance R from the ferron be-
haves as limR→∞ �(r) = |�| exp(i2q · r + iφ), with φ being
an arbitrary overall phase. However, instead of considering the
superflow, we change the reference frame to the one moving
with velocity q (we use units: h̄ = m = 1). In this case it
is sufficient to apply the transformation: un,↑↓(r) → exp(iq ·
r)un,↑↓(r), vn,↑↓(r) → exp(−iq · r)vn,↑↓(r) to transform the
initial Bogoliubov–de Gennes (BdG) equations (for un,↑, vn,↓
components) with the superflow to

H(q)

(
un,↑(r)
vn,↓(r)

)
= En

(
un,↑(r)
vn,↓(r)

)
, (1)

with Hamiltonian,

H(q) =
(− 1

2 (∇ + iq)2 − μ↑ �(r)

�∗(r) 1
2 (∇ − iq)2 + μ↓

)
, (2)

where μ↑,↓ are chemical potentials for two spin components.
The quasiparticle wave functions define densities,

nσ (r) =
∑

n

|vn,σ (r)|2 fβ (−En), (3)

τσ (r) =
∑

n

|∇vn,σ (r)|2 fβ (−En), (4)

ν(r) =
∑

n

v∗
n,↓(r)un,↑(r)

fβ (−En) − fβ (En)

2
, (5)

jσ (r) =
∑

n

Im[vn,σ (r)∇v∗
n,σ (r)] fβ (−En), (6)

where σ denotes the spin orientation and fβ (En) = 1/(eEn/T +
1) is the Fermi-Dirac distribution. The finite temperature T
has been used for numerical convenience with T/Tc ≈ 10−5

where the critical temperature is calculated from well-known
BCS result �/Tc = 1.76. The pairing field �(r) is calculated
self-consistently,

�(r) = −geffν(r), (7)

where geff is the coupling constant which is tuned to obtain
the required strength of the pairing field. For more details of
2D calculations see Appendix A.

The transformation of un,↑, vn,↓ amplitudes to the moving
frame induces the transformation of the currents: j↑↓(r) →
j↑↓(r) − qn↑↓(r), where the term qn↑↓(r) corresponds to the
uniform motion of spin-up (n↑) and spin-down (n↓) com-
ponents, respectively. Consequently, in this reference frame,
the resulting currents represent perturbation to the superflow
induced by the presence of impurity. As a result we may define
the effective mass of the ferron as a static response R,

Meff = lim
q→0

R(q) = lim
q→0

|∫ d3r(j↑ + j↓)|
|q| . (8)

The effective mass contains two components. The first
one is related to the number of majority spin particles that
are accumulated inside the ferron and are dragged through
the superfluid by the nodal structure. The second component
comes from the modification of the surrounding environment
by moving impurity,

Meff = Mpol + δM = (N↑ − N↓) + δM. (9)

Note that the term Mpol scales with the surface since Mpol ∝
R2 (∝R in 2D) due to the relation between the polarization
and the ferron radius (see Ref. [19]). The second term δM
scales with the volume of the impurity, but it also depends
on the difference between densities inside and outside the
ferron and vanishes when they are equal [see Eqs. (C5) and
(C6)]. Consequently, in the limit of large ferron radius, the
densities inside and outside become the same, and, therefore,
the contribution Mpol becomes dominant. On the contrary, for
smaller radii, δM may contribute significantly to the effective
mass. One may also expect that the effective mass is modified
with increasing pairing strength (�/εF) as it corresponds to
moving towards the irrotational hydrodynamic limit.

In order to resolve quantitatively these issues we have
performed a series of calculations in 2D and determined the
response function (8). We have applied the BdG approach
varying the value of �/εF from 0.36 to 0.55. Subsequently,
we have determined the limit |q| = q → 0 numerically and
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FIG. 2. The excitation energy of the system Eex(q) as a function
of velocity q obtained in BdG calculations (lines). The kinetic en-
ergy of the ferron Ef (q) obtained using the extracted effective mass
(points). Both energies are shown in units of noninteracting Fermi
gas Effg. The spin imbalance in the system is δN = 41. The lattice
size is (70k−1

F )2 where kF ≈ 1.

extracted the effective mass as a function of spin imbalance
and pairing gap. The calculations have been performed in a
box with lattice size 702 with Fermi momenta for kF↑↓ ≈ 1.
The W-SLDA toolkit has been used for the calculations [24–26].
We have evaluated the total current for a series of velocities
q/vF = 0.01, 0.02, 0.03 · · · until the ferronic configuration
is destroyed by the currents. For velocities q � 0.04, we found
that the linear relation between the current and the velocity
holds with very good accuracy. We have also analyzed the
stability of the results with respect to the size of the box by
evaluating effective mass in a box with lattice size 1002 and
found an agreement with accuracy better than 1%. Finally,
we have checked that extracted effective mass, when plugged
into equation Ef (q) = 1

2 Meffq2, reproduces reasonably well
the behavior of the energy change (computed as the volume
integral of the BdG functional) Eex(q) = E (q) − E (0). There-
fore, Eex(q) gives the contribution to the energy coming from
the ferron’s response to the superflow. In Fig. 2 we compare
these values to the kinetic energy of the ferron moving in
a superfluid environment Ef (q), where Meff is extracted by
means of Eq. (8). For low-q values, good agreement between
two approaches is obtained. For additional technical details of
the effective-mass extraction procedure see Appendix B.

The results, for the effective mass, shown in the Fig. 3
indicate that the contribution coming from the flow which
is induced in the superfluid medium δM is a correction to
the dominating term Mpol, except for the small ferron size
on the order of coherence length. In order to understand this
result one may note that in pure irrotational hydrodynamics
in 2D the contribution to δM ∝ S nout−nin

nout+nin
, (where nin, nout

correspond to superfluid density inside and outside impu-
rity, respectively, and S is its area) and, thus, it vanishes if
nin → nout. For more details on irrotational hydrodynamics,
see Appendix C. Clearly, the largest discrepancy between

FIG. 3. The effective mass Meff as a function of the magnitude
of the pairing field |�|/εF and the spin-imbalance δN = N↑ − N↓.
In all cases the total number of particles in the simulation box is
N = N↑ + N↓ = 770, and the Fermi momentum is kF = √

2εF ≈ 1.
The values of δN = 21, 41 correspond to the ferron radii R ≈ 4.0ξ

and R ≈ 8.3ξ , respectively, where ξ = 1
kF

εF
|�| .

the magnitude of the pairing field inside from its bulk value
occurs for small ferrons (and weak pairing). In that case due
to the fact that coherence length is on the order of the ferron
size (i.e., ξ ≈ R) the value of the pairing gap inside is smaller
than outside. It also implies that the polarization inside the
ferron does not vanish completely. As a consequence, there is
a larger contribution coming from the flow than in the case of
the large ferron. In the latter case, the magnitude of the pairing
field inside the ferron is the same as outside, and, therefore,
the perturbation related to the flow occurs effectively around
the pairing nodal area.

III. CRITICAL VELOCITY

While moving through a superfluid the structure of the
ferron is affected. The spherical ferron has a character-
istic spectrum of Andreev states. It consists of almost
degenerate states at E± ≈ ± 1

2δμ, where δμ = μ↑ − μ↓ (see
Appendix D). In the case of a small ferron the degeneracy is
lifted due to the tunneling effect through the interior of the
ferron, which, however, decreases exponentially with its size
[28]. Due to circular (in 2D) or spherical (in 3D) symmetries
of the ferron, the states can be labeled by quantum numbers
associated with angular momenta. Namely, in the 2D case the
magnetic quantum number m = 〈L̂z〉/

∫
d2r|vi(r)|2 (i =↑,↓)

can be used to label states (the z axis is perpendicular to the
plane on which the ferron resides). The spectrum of these
states correspond to the range: −kFR � m � kFR, where R is
the ferron radius. The 3D ferron possesses the same structure
of Andreev states with an additional 2l + 1 degeneracy of
each state labeled by the orbital quantum number associated
with the L̂2 operator. Apart from these degenerate states which
accumulate the spin polarization, there is a small fraction
of states with m ≈ ±kFR, which energy varies with angular
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FIG. 4. Structure of the spectrum of Andreev states exposed to
different strengths of superflow. Left subfigure: magnetic quantum
numbers m (m = 〈Lz〉/|v|2, where |v|2 denotes occupation proba-
bility of the state) corresponding to Andreev states are shown for
two velocities of the superflow: q/vF = 0.01 (filled circles) and
q/vF = 0.05 (empty diamonds), where vF denotes Fermi velocity.
Right subfigure: the expectation value of the momentum operator
component, parallel to the direction of the superflow is shown for
Andreev states. The quasiparticle energies have been shifted by 1

2 δμ

and, therefore, the plots on both subfigures possess symmetry with
respect to E = 0. The shifted energy values corresponding to ± 1

2 δμ

have been denoted by vertical dashed lines. The spin imbalance
corresponds to δN = 31 (R ≈ 6.2ξ ) and the strength of the pairing
field |�|/εF = 0.44.

momentum. These states can be interpreted as related to peri-
odic orbits located in the nodal region representing trajectories
between pairing potential of the same phase [28].

It is important to realize that the stability of the ferron is
exclusively related to the structure of Andreev states. When
the ferron is moving through the superfluid or, equivalently,
when it is exposed to the superflow, the structure and energies
of these states are modified. The perturbation is induced by the
pairing field, which is affected by the superflow. In particular,
the phase of the pairing field is modified on both sides of
the nodal line, depending on its orientation with respect to
the direction of superflow. Namely, the spherically symmetric
pairing field becomes perturbed by the superflow in the fol-
lowing way: �0(r) → �(r) = �̃0(r) exp(2iq · r). Neglecting
in the first approximation the modification of the magnitude
of the initial pairing field associated with the ferron, i.e.,
�̃0(r) ≈ �0(r), it is easy to show that energies of Andreev
states forming degenerate branches E± = ± 1

2δμ will be split-
ted proportionally to q (see Appendix D). The modification of
the spectrum of states inside the ferron can be seen in Fig. 4.

All Andreev states inside the ferron at rest have the vanish-
ing expectation value of linear momentum. When the ferron
is moving, they acquire a nonzero component of momentum
in the direction of the flow. The most affected states are those
with small angular momenta. As the velocity increases, more
states become affected, contributing to the splitting width.
Eventually, at a certain superflow velocity, the splitting width
becomes equal to δμ and, consequently, the lowest positive
energy Andreev state reaches zero energy. This can be seen in
Fig. 4 where in the right panel the spectrum of states is plot-
ted for various superflow velocities. At the critical velocity,
the spectrum of states reaches zero energy, and quasiparticle

FIG. 5. The ferron critical velocity as a function of the magnitude
of the pairing field |�|/εF and the spin-imbalance δN . The simula-
tion settings are the same as for Fig. 3. The inset shows an example of
two different sizes of ferrons having the same critical velocity where
the smaller ferron is deformed.

excitations lead to ferron instability and subsequent decay.
Consequently, one may attribute to each ferron a certain criti-
cal velocity vcrit which constitute its maximum velocity when
moving through the uniform superfluid. Since the splitting
width of Andreev states is proportional to the superflow (see
Appendix D) one may conclude that critical velocity is pro-
portional to the chemical potential difference between the
majority and the minority spin components δμ.

In order to validate the above statement and to make a
quantitative estimation of vcrit we have performed a series
of numerical calculations in 2D. In Fig. 5 the critical veloc-
ity in units of Fermi velocity has been shown as a function
of pairing gap and ferron size. It is of no surprise that the
larger sizes of ferrons admit larger velocities. Clearly, it is
related to the fact that that they require larger spin polarization
and, consequently, larger chemical potential difference. As
a consequence, ferrons with larger polarizations can move
with higher velocities through the medium. The relation be-
tween critical velocity and polarization that turn out to be
approximately linear in 2D as expected (apart from devi-
ations induced by deformation changes at the vicinity of
critical velocities) represent an interesting manifestation of
the relation between spatial pairing field modulation and its
dynamic properties. In 3D, all the arguments remain valid,
however, one may expect that due to additional degeneracy,
the relation between critical velocity and polarization will
read vcrit ∝ √

δN . The deviations which are visible in Fig. 5
are attributed to the shell effects related to Andreev states.
Namely, for velocities close to the vcrit, some ferrons become
deformed, which can be seen in the inset in Fig. 5.

IV. INDUCED MOTION OF A FERRON AND
INTERACTION WITH A VORTEX

The results presented in the previous section can also be
looked at from another perspective. Namely, assume that one
creates a ferron as an excited configuration in an unpolarized
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FIG. 6. Velocity of the ferron in the final state as a function of
the dragging velocity. The time-dependent spin-selective potential
is dragged along the x axis during its application. The horizontal
dashed lines shows the “plateau” of the final velocity for various
sizes of ferrons corresponding to: σkF = 8, σkF = 6, σkF = 4 from
top to bottom, where σ is the width of the Gaussian potential. The
inset shows the absolute value of the pairing field in the left col-
umn, whereas in the right column, the phase of the pairing field is
shown. The images are taken after the external potential is turned
off whereas the ferron is moving. All three configurations corre-
spond to vdrag/vF = 0.06. In the simulations we used a box of size
53ξ × 31ξ × 31ξ in the x-z dimensions, respectively. Fermi momen-
tum kF ≈ 1. For full movies see the Supplemental Material [27].

superfluid medium. This can be achieved by dynamically
applying a spin-selective potential, which will locally break
Cooper pairs. If the potential is applied for a sufficiently long
time, it allows the pairing field to adjust by developing a nodal
surface. It was shown in Ref. [18] that such configuration is
stable despite the fact that the ferron is surrounded by phonon
excitations. Taking into account results from the previous
section, one may ask the following question: What is going
to happen if one attempts to accelerate ferron beyond the
critical velocity? In order to investigate this issue, we have
performed the following time-dependent simulations in 3D.
We have applied a spin-selective potential in the form of the
Gaussian, by following the procedure described in Ref. [18].
The procedure is based on the application of time-dependent
potential of the form

Vs(r, t ) = λsA(t ) exp

[
− (x0 + vdragt )2 + y2 + z2

2σ 2

]
. (10)

This potential is repulsive for spin-up components, λ↑ = +1,
and attractive for spin-down components λ↓ = −1. The width
of the Gaussian potential σ sets the size of the ferron. The
amplitude A(t ) is a time-dependent function that starts as
0 and is slowly increased to its maximum value, and then
it is decreased back to 0. Details of the implementation
of the spin-selective potential are provided in Appendix E.
When the ferron is created, we have accelerated the poten-
tial, which was dragging the ferron through the superfluid
with velocity vdrag. Subsequently, we have removed the po-
tential allowing the ferron to move freely. It has been found
that the ferron, after switching off the potential, continues
its motion although it always slows down to the velocity
vfinal (see Fig. 6). Still, for velocities vdrag � vcrit, the rela-
tion between vdrag and vfinal is approximately linear. However,
when vdrag becomes large enough, the velocity vfinal saturates

FIG. 7. Snapshots showing the attempt to create a stable ferron
solution in the presence of the vortex. The time-dependent potential
to generate the ferron is turned off at tεF = 150. The vortex with the
core located in the center creates currents rotating counterclockwise.
It is visible that the ferron is destroyed because of these currents. The
polarization inside the ferron is pushed to the boundary of the sys-
tem. For detailed information and full movies see the Supplemental
Material [27].

and attempts to increase the ferron velocity beyond a cer-
tain value fail. Note that the results shown in Fig. 6 for
different sizes of the ferron are consistent with the static
results; the critical velocity increases with the size of the
ferron.

The existence of the critical velocity has yet another impor-
tant consequence when it comes to the possibility of creating
vortices in the system with ferrons. Namely, it is possible to
have a coexistence of a vortex and a spherical ferron as long
as the distance between the vortex core and the ferron is large
enough. In this case, the superflow generated by a vortex is
weak enough to support the existence of the ferron solution.
On the other hand, an attempt to create a ferron in the vicinity
of the vortex core fails which is shown in Fig. 7. In this partic-
ular simulation we generated the ferron of radius rkF = 6 (by
the spin-selective Gaussian potential) in the distance dkF = 24
from the core. At the point where the ferron is closest to the
vortex, the induced velocity v = h̄

2mr ≈ 0.028vF is higher than
the critical velocity for this case vcrit ≈ 0.024vF. Therefore,
the snapshots reveal stages of ferron decay. For more details
on simulation, see Appendix E. One expects that large ferrons
which are characterized by higher critical velocity may be
created closer to the vortex core. However, in this case, effects
related to nonuniformity of the superflow within the volume
of the ferron may become important.

V. CONCLUSIONS

We have investigated the dynamical properties of ferrons
related to their motion through the superfluid. We have ex-
tracted the effective mass of this object which turned out to
be related mainly to spin imbalance with a small correction
coming from induced superfluid flow. Only for small ferrons
(of sizes on the order of a few coherence lengths), the latter
contribution becomes important. It implies that the effective
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mass scales rather with the surface than the volume of im-
purity. We have also shown that each ferron is characterized
by a certain critical velocity that cannot be exceeded whereas
moving through the superfluid environment. The critical ve-
locity is proportional to the chemical potential difference
between the majority and the minority spin components,
and, consequently, it increases with the ferron size. It was
demonstrated that it is not possible to accelerate the ferron
dynamically by dragging it beyond a certain velocity. For the
same reason, it is not possible to create a stable configuration
of the ferron in the vicinity of the vortex core.
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APPENDIX A: DETAILS OF STATIC BDG
CALCULATIONS IN 2D SYSTEMS

The total energy density of the system in the BdG
approach is expressed through kinetic and anomalous
densities,

EBdG = τ↑ + τ↓
2

+ geffν
†ν. (A1)

We obtain the stationary configuration by minimizing the fol-
lowing functional:

F = E −
∑

s={↑,↓}
μsNs −

∑
s={↑,↓}

∫
q · js(r)dr, (A2)

where Ns = ∫
ns(r)dr denotes the particle number of the spin-

s component, μs’s are corresponding chemical potentials,
and E = ∫

EBdG(r)dr is the energy. The last term gener-
ates the flow in directions given by q. Minimization of the
F functional provides Eqs. (1) and (2) from the main pa-
per. In calculations we used velocity q directed along the x
direction.

The ferronic solution corresponds to a particular choice
of pairing field �(r) which involves a closed nodal line. To
capture the ferron geometry we imposed the constraint on the
pairing potential to have the form

�(r) =
{−�, r < Rin,

�, r > Rout,
(A3)

To get the ground state of the ferron, we applied the above
constraint to the system for a couple of iterations during the
energy minimization and, subsequently, released it. Values of
Rin and Rout are selected in such a way that after convergence,
the radius of the ferron is between these values. Consequently,
the initially imprinted pairing potential captures the main
features of the ferron, which consist of outer and inner areas
where the phase of the pairing field varies by π and the nodal
region of the size of the coherence length where the pairing
field vanishes.

The Andreev states inside the circular ferron (at q = 0) can
be labeled by eigenvalues of the angular momentum operator
component perpendicular to its area (which we denote by L̂z).
However, due to the degeneracy of states corresponding to
positive and negative eigenvalues of L̂z these states are mixed
in numerical calculations and do not have well-defined Lz

values. Therefore, in order to remove this degeneracy we add
a small perturbation to the system of Eqs. (2) in the form:
− 1

2 (∇ + iq)2 − μ̃ − ωLz where ω is the radial frequency. We
typically set this value to ω ≈ 0.01εF. The perturbation is
added only to extract and visualize the Andreev states (see
Fig. 3 in the paper) and is not applied to get the self-consistent
solution.

For 2D static calculations, we use a simulation box with a
lattice size of 70k−1

F in the x and y directions. We set the Fermi
momentum kF = √

2π (n↑ + n↓) ≈ 1.

APPENDIX B: EXTRACTION OF THE EFFECTIVE MASS

We introduce a superflow corresponding to the velocity
of q/vF = 0.01, 0.02, 0.03, and 0.04 and calculate the mo-
mentum to velocity ratio by executing the formula (9) from
the main text. Next, we extrapolate results to the q → 0 limit
using the cubic Hermite interpolation. In Fig. 8 we show two
examples for different pairing strengths. As shown in the main
text, a ferron in a system with weaker pairing strength has
lower critical velocity. Consequently in panel (a) of Fig. 8 the
response function exhibits more pronounced dependence on
q than in the strong pairing limit shown in panel (b). This is
due to the fact that in the former case the critical velocity is
lower and the shape of the ferron becomes affected already at
relatively small-q values.

APPENDIX C: MASS OF CIRCULAR IMPURITY IN 2D
IRROTATIONAL HYDRODYNAMICS

In this Appendix, we present a derivation of the effective
mass of circular impurity that can be obtained in irrotational
hydrodynamics. Let us consider an impurity of radius R mov-
ing with velocity v through the superfluid characterized by the
velocity potential �,

∇2�(r) =
(

∂2

∂x2
+ ∂2

∂y2

)
�(r) = 0. (C1)

Inside the impurity the density is denoted by nin whereas
outside—by nout. Conditions for the velocity potential at
infinity and at the boundary of impurity lead to

lim
r→∞ �(r) = 0,

�(r)|r=R− = �(r)|r=R+ ,
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FIG. 8. The response function [see Eq. (8) in the main text]
as a function of the superflow velocity q. Symbols correspond to
numerical calculations. Lines are obtained as a result of interpolation.
The value of effective mass is extracted in the limit of q → 0 and
denoted by symbols. The results for two values of the pairing field
are shown: �/εF = 0.365 [panel (a)] and for �/εF = 0.552 [panel
(b)]. The lattice size is (70k−1

F )2 where kF ≈ 1.

nin
∂�

∂r

∣∣∣∣r=R− − nout
∂�

∂r

∣∣∣∣
r=R+

= (nin − nout )v · n, (C2)

where the last equation is a consequence of the continuity
relation for the fluid and n denotes the unit vector, normal
(outward) to the boundary. The solutions of Eq. (C1) reads

�in(r) = nin − nout

nin + nout
v · r, (C3)

�out (r) = nin − nout

nin + nout

R2

r2
v · r. (C4)

One can now evaluate the energy of the system, which is
stored in the flow,

E = 1

2

∫
r<R

nin(∇�in )2d2r

+ 1

2

∫
r>R

nout (∇�out )
2d2r

= 1

2
πR2 (nin − nout )2

nin + nout
v2. (C5)

From this relation it is clear that one can associate the effective
mass of the impurity with the expression ME

eff = πR2 (nin−nout )2

nin+nout
.

Another way to extract the effective mass is to evaluate
the component of the momentum of moving fluid in the
direction of v,

p · v
v

=
∫

r<R
nin

(
∇�in · v

v

)
d2r +

∫
r>R

nout

(
∇�out · v

v

)
d2r

= πR2 nin − nout

nin + nout
ninv. (C6)

The above expression allows to extract the effective-mass
M p

eff = πR2 nin−nout
nin+nout

nin which differs from ME
eff . Differences are

due to the fact that in M p
eff only the component of the current

parallel to velocity v was taken into account. Note, however,
that both contributions are proportional to the area of impurity
and both disappear when nin → nout.

APPENDIX D: ANDREEV STATES IN THE PRESENCE
OF SUPERFLOW

We consider the impact of superflow on Andreev states
inside the ferron. To capture the ferron geometry we use the
schematic potential of the form

�(r) = �[θ (r − Rout ) − θ (Rin − r)] exp(2iq · r), (D1)

where � is real and positive and θ denotes the Heaviside step
function. The pairing potential reflects the main features of
the ferron, which consists of outer and inner areas of radii
Rout and Rin, respectively. The phase of the pairing field varies
by π between inner and outer regions in the absence of su-
perflow. The nodal region [where �(r) = 0] is of the size of
the coherence length ξ . In the presence of the superflow, the
phase pattern is modified by the factor exp(2iq · r), where q
defines the direction and magnitude of the superflow.

According to the Andreev approximation, one decomposes
amplitudes u and v by separating the fast oscillation at the
length scale of the Fermi wavelength and slow variations
related to ξ . In the case of spin-imbalanced system this
prescription works as long as the difference between Fermi
spheres of the majority and minority components is not too
large. Providing that this is the case one may associate fast
oscillations with kF, which is related to the average of chem-
ical potentials 1

2 k2
F = 1

2 (μ↑ + μ↓) and BdG equations can be
reduced to first-order differential equations,(−ikF · ∇ �(r)

�(r)∗ ikF · ∇
)(

ũ↑(r)
ṽ↓(r)

)
= E (+)

(
ũ↑(r)
ṽ↓(r)

)
, (D2)

where E (+) = E + δμ

2 and δμ = μ↑ − μ↓. Another set of
equations, for components ũ↓(r), ṽ↑(r), one obtains by replac-
ing �(r) → −�(r) and E (+) → E (−), where E (−) = E − δμ

2 .
Thus, within the pure Andreev approximation (i.e., neglect-
ing small deviations of quasiparticle energies from the Fermi
energy), each particle is exactly retroreflected as a hole, and
the above equation describes, in practice, the family of one-
dimensional problems associated with each trajectory. For the
pairing field of the form (D1) Eq. (D2) provides a quantization
condition along each trajectory of length L which reads

E (±)
n L

kF
− arccos

(
E (±)

n

�

)
+ 1

2
δϕ = πn, (D3)

where n is an integer and δϕ denotes the difference of phases
of the pairing field �(r) between the points at which retrore-
flections occur. L is the length of the trajectory which the
particle or hole follows during the retroreflections. Since L
may vary continuously, the above formula provides a con-
tinuous set of solutions parametrized by the length of the
trajectory. In the case of no superflow (q = 0) the trajec-
tory between inner (Rin ) and outer (Rout ) areas correspond to
particle or hole bouncing back and forth inside the pairing
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FIG. 9. An example of a spectrum of Andreev states in the case
of no superflow q = 0 for a ferron of radius R ≈ 8.5ξ . The bulk
strength of the pairing field is �/εF = 0.365. The quasiparticle ener-
gies are shifted by δμ/2 and, thus, the branch is centered around zero.
The dashed vertical line shows E = 0 whereas the dotted vertical
line points the value of δμ/2�. In the inset the Andreev states
for various ferron sizes are shown in the presence of superflow of
velocity q/vF = 0.03.

potential of phase difference δϕ = π . One solution which
always exists in such a case correspond to E (±) = 0 (n = 0)
and gives rise to two degenerate branches (if we neglect tun-
neling through the ferron interior) with energies E± = ± 1

2δμ.
Since the quantization condition given by Eq. (D3) assumes
retroreflection and does not provide a quantization condition
for the transverse particle or hole motion the number of
states in these branches cannot be deduced from this equation.
The number of states can be found by associating with each
trajectory quantum numbers related to angular momentum.
This quantity is conserved in retroreflection, and the quanti-
zation of angular momentum provides information about the
number states. Note that Eq. (D3) provides the same result
irrespective of dimensionality of the problem. Indeed the only
difference between 2D (circular) and 3D (spherical) ferrons
is related to the density of states due to the fact that in the
2D case the number of states in each branch corresponds to
the number of angular momentum eigenstates Lz, spanned
between ±kFRin, whereas in the 3D case, the number of
states correspond to orbital quantum number varying between
0 and kFRin with additional 2l + 1 degeneracy. A typical
spectrum of the 2D ferron, obtained by solving a full BdG
equation, can be seen in Fig. 9. The single branch of nearly
degenerate states corresponding to E+ ≈ 1

2δμ is clearly vis-
ible. A small fraction of subgap states with absolute values
of angular momenta exceeding kFRin but less than kFRout

is seen as having energies strongly dependent on angular
momentum.

In the case of imposed superflow, the situation is more
complicated since the phase difference depends now on the
orientation of a particular trajectory with respect to the di-
rection of the superflow. Nevertheless, the phase differences
vary between δϕ− = π − 2qL and δϕ+ = π + 2qL. Solving
Eq. (D3) for these two limiting values δϕ± under assumption
that |E/�| � 1 one gets for positive energy solutions,

E+ ≈ 1
2δμ ± α(L)kFq, (D4)

where α(L) = 1
1
2 + ξ

L

(ξ = kF
2�

). Therefore, one expects that the

influence of the superflow on Andreev states will lead to
splitting of initial spectrum E± = ± 1

2δμ which grows lin-
early with superflow velocity q. The numerical simulations
presented in Fig. 4 show that this estimate works surprisingly
well even for relatively large values of q when the ferron is
on the verge of instability. It can be also seen, in the inset of
Fig. 9, that the amount of splitting does not depend on the
ferron size. Namely, in the inset one can see Andreev states
for various sizes of ferrons in the presence of superflow which
was set to q/vF = 0.03. Clearly the slope represented by states
around E = 0 is practically the same for various sizes of
impurity. Therefore, it is concluded that the coefficient α in
Eq. (D4) is weakly dependent on the ferron size.

APPENDIX E: DETAILS OF 3D
TIME-DEPENDENT SIMULATIONS

We start from the initial solution for unpolarized uni-
tary Fermi gas. Subsequently, to create local polarization
we apply the spin-selective time-dependent external Gaus-
sian potential given in Eq. (10). Calculations are executed
on the spatial lattice of size 68k−1

F × 40k−1
F × 40k−1

F in the
x–z directions with periodic boundary conditions and kF =
[3π2(n↑ + n↓)] ≈ 1. A(t ) is the time-dependent amplitude of
the potential and has the following form:

A(t ) =

⎧⎪⎪⎨
⎪⎪⎩

A0s(t, ton), 0 � t < ton,

A0, ton � t < thold,

A0[1 − s(t − thold, toff − thold )], thold � t < toff ,

0, t � toff ,

(E1)

where s(t,w) denotes the function which smoothly varies
from 0 to 1 within the time interval [0,w],

s(t,w) = 1

2
+ 1

2
tanh

[
tan

(
πt

w
− π

2

)]
. (E2)

A0 denotes the amplitude of the potential, which we set to be
about A0 ≈ 2εF.

To drag the ferron, we set the potential in motion by using
vdrag 
= 0 in Eq. (10) where x0 is the initial position of the
center of the Gaussian potential along the x axis. We extract
the velocity with which the ferron travels on its own (vfinal) by
following the position of the center of the polarized sphere. In
Fig. 10 we provide an example for a potential width σkF = 6.
During the switching on the potential, the polarized sphere
experiences an acceleration and the potential creates a force
responsible for breaking the Cooper pairs. After the potential
reaches its maximum amplitude, it is kept on until the nodal
sphere is formed. We then turn the potential off and observe
the moving impurity.

As vdrag increases, vfinal eventually reaches a critical value
beyond which the ferron cannot be accelerated further (Fig. 5).
If vdrag is increased, even more, we observe that the ferron is
destroyed during its movement. There are two effects respon-
sible for this: When the final velocity gets closer to the critical
value, the ferron undergoes deformation and finally ceases
to exist. Moreover, during the acceleration of the ferron, the
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FIG. 10. The position of the moving ferron inside a box corre-
sponding to lattice size 68 × 40 × 40 which corresponds to 53ξ ×
31ξ × 31ξ where ξ is the coherence length. The width of the polariz-
ing potential is σkF = 6, and its amplitude is A0 = 2εF. The potential
is switched on at tεF = 50 and completely removed at tεF = 150.
Different data sets correspond to different dragging velocities.

external potential excites phonons in the system. These
phonons scatter inside the simulation box and interact with

the ferron. Although for low dragging velocities the ferron
is stable against these perturbations for high velocities the
strength of the perturbation increases with the number of
excited phonons and eventually the ferron loses its stability.
This effect hastens the destruction of the ferron.

The numerical simulations with the presence of a vortex
are conducted at the unitary limit. For these calculations we
have used a box with the lattice size of 80 × 80 × 32 which
corresponds to 62ξ × 62ξ × 25ξ with kF ≈ 1. A straight vor-
tex line along the z direction is obtained by imposing on the
static solution the following structure of the pairing field:
�(x, y) = |�(x, y)|e[i tan−1(y/x)]. Next, the ferron is generated
dynamically by applying the spin-selective potential (10) with
v = 0 and x0 controls the distance of the ferron from the
vortex core.

In addition to the results presented in the main article, we
present in the Supplemental Material [27] the dynamics of the
ferron placed at the center of the vortex. The movie shows
that the polarization that forms the ferron is absorbed into the
vortex.
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