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We investigate one-dimensional three-body systems composed of two identical bosons and one mass-
imbalanced atom (impurity) with attractive two-body and three-body zero-range interactions. In the absence
of three-body interaction, we give a complete phase diagram of the number of three-body bound states in the
whole region of mass ratio and the ratio of intra- and intercomponent interaction strength via direct calculation
of Skornyakov-Ter-Martirosyan equations. We demonstrate that other low-lying three-body bound states emerge
when the mass of the impurity particle is different from other two identical particles. We obtain the binding
energies together with the corresponding wave functions. When the mass of impurity atom is very large, there
are at most three three-body bound states. In the presence of three-body zero-range interaction, we reveal that
weak three-body interaction will not always induce one more three-body bound state. At some special parameter
points, arbitrary small three-body interaction can generate one more three-body bound state. This corresponds
to the transition of the number of three-body bound states induced only by two-body attractive interaction.
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I. INTRODUCTION

The quantum three-body problem has drawn numerous
concerns and is of central interest in the study of few-body
physics [1–4]. In the past decades, continuous efforts have
led to many theoretical breakthroughs [5–8], including the
derivation of the well-known Skornyakov-Ter-Martirosyan
(STM) equations which can be used to calculate the wave
functions and spectra of quantum identical three-body system
with short-range interactions [5], Faddeev’s formulism of the
three-body problem with discrete and continuum spectra [6],
and the finding of a distinctive Efimov effect in the spec-
trum and trimer states of the three-boson system [7,8]. The
three-boson system with short-range interactions can exhibit
an infinite number of trimer states fulfilling a discrete symme-
try, which is called the Efimov effect. The first experimental
evidence of the Efimov effect came from ultracold gases [9];
this early evidence stimulated intensive studies of few-body
ultracold physics in different dimensions [4,10–20]. Experi-
ments with a few cold atoms provide unprecedented control
of both the atom number with unit precision and the inter-
atomic interaction strength by the combination of sweeping a
magnetic offset field and the confinement-induced resonance
[21].

Recently, three-body systems in one dimension have
gained a great deal of attention [20,22–30]. As the basis of
quantum integrability, the Yang-Baxter equation describes the
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two-body scattering matrix fulfilling a certain intertwined re-
lation with at least three particles, and thus three-body systems
become important candidates for studying the integrability
and its breakdown [31–35]. An integrable three-boson system
with two-body attractive interactions is known to have only
a three-body bound state [36,37]. In general, the introduction
of mass imbalance and three-body interaction will break the
integrability condition. Nevertheless, it has been shown that
the imbalanced three-body systems exhibit more rich physics
than the integrable systems which are composed of three
identical atoms [25–28]. The zero-range three-body forces in
a quasi-one-dimensional system can be induced by the virtual
excitations of pairs of atoms in the waveguide [31,32,38,39],
which may realize the quantum droplets in a one-dimensional
(1D) system [40–42]. For 1D interaction systems, some physi-
cal properties will not disappear in the presence of three-body
interaction, for example, Bose-Fermi mapping [43–48]. For
the system of three identical particles with attractive three-
body interaction, there exists an excited trimer state in the
vicinity of the dimer threshold [22,23].

Most of the theoretical studies on mass-imbalanced
systems in one dimension have focused on the heavy-
heavy-light (HHL) system [25–28], in which case the
Born-Oppenheimer approximation (BOA) and the adiabatic
hyperspherical approximation work relatively well. This sys-
tem has a rich three-body bound-state spectrum and the
number of bound states increases with increasing heavy-light
mass ratio. Meanwhile, the experimental realizations of mass-
imbalanced systems have made tremendous progress, such as
fermionic mixtures [49–52] and bosonic-fermionic mixtures
[53–58], which has stimulated us to investigate theoretically
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mass-imbalanced three-body systems in the whole parameter
region and beyond the BOA.

In this work we study 1D three-body systems com-
posed of two identical bosons and one impurity with
zero-range two-body and three-body interactions by solving
the momentum-space STM equations. We first study the case
in the absence of three-body interaction and present the phase
diagram of the number of bound states in the parameter space
spanned by the mass ratio and the ratio of the intra- and
intercomponent interaction strengths. We find significant dif-
ferences between light-light-heavy (LLH) and HHL systems.
In particular, we reveal that the LLH system possesses at most
three three-body bound states with attractive interactions. We
then study the effect of three-body zero-range interaction and
derive the corresponding STM equations. At some special
parameter points, one more three-body bound state induced
by three-body interaction for arbitrary strength appears, to
be compared with the cases with only two-body attractive
interaction. These points correspond to the transition points
of the number of three-body bound states induced only by
two-body attractive interaction.

Our article is organized as follows. In Sec. II we introduce
our model and in Sec. III we describe the method for solving
our three-body problem in detail. In particular, we develop
some computational techniques to calculate the STM equa-
tion by mapping it to the solution of linear equations, which
enables us to get the complete phase diagram of the number of
three-body bound states in the whole parameter region, which
is shown in Sec. IV. We also present the exact Bethe-ansatz
solution of the odd-parity bound state in the limit case where
the impurity is infinitely heavy. In Sec. V the three-body inter-
action is introduced and we show how the mass ratio and the
ratio of coupling strengths effect the forming of a three-body
bound state induced by the three-body interaction. A summary
is given in Sec. VI.

II. MODEL

The general Hamiltonian for a three-particle system com-
posed of two identical bosons (1 and 2) with mass M and an
impurity particle (3) with mass m in one dimension [25] is
given by

Ĥ = − h̄2

2M

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
− h̄2

2m

∂2

∂x2
3

+ d0δ(x1 − x2)

+ g0δ(x1 − x3) + g0δ(x2 − x3), (1)

where the attractive boson-boson (BB) and boson-impurity
(BI) interactions are described by zero-range δ functions with
coupling constants d0 < 0 and g0 < 0. Note that the total mo-
mentum P̂ = ∑

i −ih̄ ∂
∂xi

is conserved. Thus, by introducing
the Jacobi coordinates

x = x3 − x1 + x2

2
, y =

√
2M/m + 1

2
(x1 − x2), (2)

the time-independent Schrödinger equation of (1) with its
binding energy E = −h̄2κ2/2μ12,3 can be reduced in the

center-of-mass frame as[
−

(
∂2

∂x2
+ ∂2

∂y2

)
+ gδ(x sin θ − y cos θ )

+ gδ(x sin θ + y cos θ ) + dδ(y) + κ2

]
ψ

= 0, (3)

where μ12,3 = 2Mm/(2M + m), θ = arctan
√

1 + 2M/m,
and the rescaling coupling constants are

d = d0
μ12,3

h̄2

√
1 + 2M/m = − 4

tan θaBB
,

g = g0
2μ12,3

h̄2

√
1 + 2M/m

2 + 2M/m
= −2

√
2 + 2M/m

tan θaBI
. (4)

The BB and BI scattering lengthes are aBB = −h̄2/μBBd0 and
aBI = −h̄2/μBIg0, with μBB = M/2 and μBI = Mm/(M +
m), respectively. The limitations M/m → ∞ and M/m → 0
are represented by θ → π/2 and θ → π/4, respectively. In
addition, θ = π/3 corresponds to the equal-mass case.

III. METHOD: STM EQUATIONS

The Hamiltonian (1) was investigated in several articles
[25,28] with M/m > 1 and has been of great interest in
recent experiments [59]. It has been confirmed that in the
limits |g0/d0| → 0 and |g0/d0| → ∞ there exists a critical
value of the mass ratio M/m where three-body bound states
emerge and the (2 + 1)-scattering length vanishes. However,
previous studies relied on the BOA in the strong-coupling
(weak-coupling) limit on the premise of M/m � 1 [60]. The
BOA is not proper near M/m = 1 or M/m < 1 and will lead
to the loss of important information on the bound states.

In this work we adopt the method developed in [22,23]
to transform the Hamiltonian (3) into three coupled inte-
gral equations. Solving these integral equations provides the
wave functions of bound states and eigenenergies and further
gives the full phase diagram of the number of bound states.
The time-independent Schrödinger equation (3) in momentum
space reads

(
p2

x + p2
y + κ2

)
u(px, py) +

3∑
i=1

gi

2π

∫
dl⊥

i u(kx, ky) = 0,

(5)

where g1 = d , g2 = g3 = g, E is the eigenenergy, and
u(px, py) is the wave function in momentum space
u(px, py) = ∫ dx dy

2π
ψ (x, y)ei(−pxx−pyy). The dl⊥

i denotes the
line integral of the complex scalar field u(kx, ky) with
the path parametrized by kx = di cos θi − ti sin θi and ky =
di sin θi + ti cos θi, where ti = −kx sin θi + ky cos θi is the ar-
clength parameter and di = px cos θi + py sin θi, representing
the integral line l⊥

i that goes through the point (px, py) and
being vertical to line li (see Fig. 1). Here θ1 = 0, θ2 = θ , θ3 =
−θ , and θ solely depends on the mass ratio M/m [see Eq. (4)].
Note that after integrating along line l⊥

i , the results can be
arranged as a one-parameter function fi(di ) = ∫

dl⊥
i u(kx, ky)
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FIG. 1. Schematic of the Hamiltonian (3). The solid lines repre-
sent the δ potentials.

and the Schrödinger equation (5) becomes

(
p2

x + p2
y + κ2

)
u(px, py) +

3∑
i=1

gi

2π
fi(di ) = 0. (6)

The integration of Eq. (6) over l⊥
i leads to(

1 + gi

2
√

k2 + κ2

)
fi(k)

=
∑
j �=i

∫
dk′

2π

−g j |sin(θi − θ j )| f j (k′)
k′2 + k2 − 2kk′ cos(θi − θ j ) + κ2 sin2(θi − θ j )

(7)

for i = 1, 2, 3, which are the STM equations in momentum
space. Substituting fi(k) into (6) and then taking the Fourier
transformation, the solutions of the Schrödinger equation (3)
are obtained.

Two remarks are necessary for solving (7): First, the
self-consistent condition

∫
dkxdkyu(kx, ky) = ∫

dk fi(k) can
be proved by integrating (7) by both sides; second, the
Hamiltonian (3) obviously possesses exchange symmetry of
two bosons and parity symmetry, which are reflected in
the eigenstates of (3) by ψ (x, y) = ψ (x,−y) and ψ (x, y) =
±ψ (−x,−y), and these two discrete symmetries are well rep-
resented in (7) by f2(k) = f3(k) for ψ (x, y) = ψ (x,−y) and
fi(k) = ± fi(−k) (i = 1, 2, 3) for ψ (x, y) = ±ψ (−x,−y), re-
spectively. The solutions fi(k) of STM equations (7) have
no pole in the bound-state sector; thus fi(k) can be safely
discretized numerically. The analysis of the scattering sector
by (7) is much more sophisticated because the singularities
of the wave function u(px, py) need careful handling. In this
work we concentrate on the bound-state sector only.

After discretization, the STM equation (7) becomes a set of
linear equations and the nonzero solutions satisfying E < Eth

are the bound states. Here Eth = −h̄2 max[(gi/2)2]/2μ12,3 de-
fines the two-body threshold energy and serves as the lower
bound of the continuous spectra. Specifically, consider the
combination of the three functions f1(k), f2(k), and f3(k)
as a vector [ f1(k), f2(k), f3(k)] → V ; then the three STM
equations (7) become a matrix equation M(E )V = V . The ex-
istence of a nonzero solution of equation det[M(E ) − I] = 0
gives the spectrum of the Hamiltonian.

For given gi and θi, to obtain the nonzero solution fi(k) in
(7), we need to search for the discrete energies −κ2, which
is a difficult task. However, we can bypass this difficulty by
solving the eigenvalue problem

(
−λ + gi

2
√

x2 + κ̃2

)
f̃i(x)

=
∑
j �=i

∫
dy

2π

−g j |sin(θi − θ j )| f̃ j (y)

y2 + x2 − 2xy cos(θi − θ j ) + κ̃2 sin2(θi − θ j )
,

(8)

where λ, which can be numerically proved to be negative
definite, on the left-hand side is the eigenvalue and κ̃ is set
to be a unit whose value can be arbitrarily chosen (for conve-
nience, we set κ̃ = 1). In this sense, solving λ gives us the
solution of Eq. (7) as κ = λκ̃ . The functions f j (k) can be
obtained by taking f j (k) = f̃ j (k/λ). Moreover, we find that
the number of bound states only depends on the mass ratio
M/m and the coupling strength ratio d/g (or d0/g0). This
phenomenon is comprehensible due to the scaling property
of the Hamiltonian (3). Note that after the scaling transitions
x′ → λx and y′ → λy, the coupling constants d and g are
rescaled as g′ → g/λ and d ′ → d/λ while the spectrum is
rescaled as ε′

n → λ−2εn. This scaling property keeps the struc-
ture of the spectra invariant; thus the number of bound states
remains constant for fixed M/m and d/g. However, when the
three-body interaction is presented, this scaling property is
broken. This will be discussed in Sec. V.

IV. PHASE DIAGRAM AND EMERGED THREE-BODY
BOUND STATES

Although the limit cases M/m → ∞ and |d|/|g| →
0 or ∞ have been discussed by Kartavtsev et al. [25] and
Mehta [26] under the one-channel approximation and BOA,
there are many regions of M/m and d/g that still remain
unexplored. By exactly solving the integral equation (7), we
get the wave function and present the full phase diagram of
the number of bound states in the parameter space spanned
by

√
M/m and |d|/|g| (see Fig. 2). In the region M/m > 1,

the number of bound states is in agreement with the results in
Refs. [26,27]. The phase diagram provides rich information
near the integrable point (|d|/|g| = 1, M/m = 1). This shows
that in the equal-mass case there is always only one bound
state. Near the integrable point the phase diagram is sensitive
to M/m: When |d|/|g| = 1, one more three-body bound state
will emerge even though M/m is slightly changed. When
M/m = 1, the number of three-body bound states remains
constant with varying |d|/|g|.

Moreover, in the HLL region M/m < 1, Fig. 2 shows the
emergence of extra excited three-body bound states near g =
d . For clarity, we present the binding energies of three-body
bound states as a function of d with M/m = 0.01 and g = −1
in Fig. 3(a). It is found that three three-body bound states exist
when d/g → 1, one with odd-parity symmetry (the middle
one) and two with even-parity symmetry.

In the limit M/m → 0 (or θ → π/4) with arbitrary pa-
rameters g and d , there exists a Bethe-ansatz solution for the
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FIG. 2. Phase diagram of the number of three-body bound states.
The X axis is the square root of the mass ratio and the Y axis is the
ratio of the absolute value of the coupling strength d and g. Here we
consider the attractions with d < 0 and g < 0. The red (dark gray)
solid line represents the relation between |d|/|g| and

√
M/m with

|g0|/|d0| = 4, where |d|/|g| = |d0|/|g0|
√

1/2(1 + M/m).

odd-parity wave function of the Hamiltonian (3) with energy
E = −h̄2(κ2

1 + κ2
2 )/2μ12,3,

FIG. 3. (a) Binding energies of three-body bound states as a
function of d with M/m = 0.01 and g = −1. The gray area denotes
the continuous spectrum. The orange (light gray) dashed lines denote
the critical values where the odd-parity excited three-body bound
state emerges at |d| = a = 0.707 and disappears at |d| = a′ = 1.414
The red (dark gray) dashed lines denote the critical values where
the even-parity excited three-body bound state emerges at |d| = b =
0.929 and disappears at |d| = b′ = 1.058. The wave functions of the
odd-parity excitation states [the yellow line with triangle markers in
(a)] are shown near the critical values (b) |d| → a and (c) |d| → a′.

ψ (x, y) =
{

C
( d−√

2g
d−g/

√
2
e−κ1x−κ2y + g√

2d−g
e−κ2x−κ1y − e−κ2x+κ1y

)
for 0 < y < x

C(e−κ1x−κ2y − eκ1x−κ2y) for y > |x|, (9)

where κ1 = d/2 − g/
√

2, κ2 = −d/2, and C is the normaliza-
tion factor of the wave function. The wave function in other
regions can be obtained through the symmetries of the wave
function: ψ (x, y) = ψ (x,−y) and ψ (x, y) = −ψ (−x,−y).
The wave function in Eq. (9) is confined in y = 0 or x =
±y, which is not necessarily bounded in those directions.
The existence of this bounded state puts constraint condi-
tions on g and d . Along y = 0, the wave function vanishes
at |x| → ∞, which gives us κ1 > 0 and κ2 > 0, and thus
d >

√
2g. Along x ± y = 0, the wave function vanishes at

|x ∓ y| → ∞, which gives us κ2 − κ1 > 0 and κ1 + κ2 > 0,
and thus g/

√
2 > d . Taken together, the odd-parity bound

state exists within g/
√

2 > d >
√

2g. The even-parity bound
states cannot be solved via the Bethe ansatz. We show the
energies of the bound states with M/m = 0.01 in Fig. 3(a).
The even-parity bounded state (marked by the red line with
point markers) emerges from the continuous spectrum from
|d| = 0.929 to |d| = 1.058. The numerical computation of
the odd-parity bound state (marked by the yellow line with
triangle markers) emerges from |d| = 0.707 ≈ 1/

√
2 to |d| =

1.414 ≈ √
2, which is in agreement with the analytical result

obtained before. Figure 3(b) confirms that near |d| = 0.707
one light particle is combined tightly with the heavy one,
forming a molecule, which is loosely combined with the other
light particle. Figure 3(c) shows that the two light particles
form a dimer, which is loosely combined with the heavy one
at |d| = 1.414. Figures 3(b) and 3(c) also reveal something
about the threshold of atom-dimer continuous spectra. When
|d| < 1 and |d| < |g|, the trimer state exhibits, near thresh-

old, one heavy particle and one light particle bound tightly,
as shown in Fig. 3(b), which suggests that the dimer at the
bottom of the threshold is formed by a heavy particle and a
light particle. When |d| > 1 and |d| > |g|, the dimer at the
bottom of the threshold consists of two light particles, which
can be inferred from Fig. 3(c) with similar reasoning.

V. EFFECTS OF THREE-BODY INTERACTION

It was discussed in Sec. III that the scaling property of
the Schrödinger equation (3) results in the structure of the
spectra relying only on M/m and d/g. However, the three-
body attraction breaks this scaling property and may cause
significant consequences [22,23,40,61]. The three-body zero-
range interaction can be introduced by adding the term Ĥ (3) =
t0δ(x3 − x1/2 − x2/2)δ(x1 − x2) in (1), which corresponds to
adding the term

Ĥ (3)
red = tBδ(x)δ(y) (10)

to the Schrödinger equation (3), where tB = 2t0√
2M/m+1

. Similar
to (5), the Schrödinger equation in momentum space is given
by

−(
p2

x + p2
y + κ2

)u(px, py)

c3
−

3∑
i=1

gi

2π

fi(di )

c3
= 1, (11)

where gi, di, and fi are the same as defined in Sec. III and

c3 = tB
4π2

∫ ∞

−∞
dkxdkyu(kx, ky ) (12)
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represents the three-body interaction in momentum space.
However, the wave function u(kx, ky) in momentum space
is proportional to −c3/(p2

x + p2
y + κ2). Equation (12) expe-

riences logarithmic divergence when integrating in the whole
momentum space, which suggests the requirement of a renor-

malization procedure for the three-body interaction strength
tB.

Based on the Schrödinger equation (11) and the same
method developed in Sec. III, the STM equation with
three-body interaction is obtained by adding an extra term
−c3π/

√
k2 + κ2 into (7), which gives

(
1 + gi

2
√

k2 + κ2

)
Fi(k) = − π√

k2 + κ2
+

∑
j �=i

∫
dk′

2π

−g j |sin(θi − θ j )|Fj (k′)
k′2 + k2 − 2kk′ cos(θi − θ j ) + κ2 sin2(θi − θ j )

, (13)

where Fi(k) = fi(k)/c3. For fixed gi and M/m, with any real c3, Eq. (13) gives a unique Fi(k). In solving Fi(k), we encounter the
matrix M(E ) − I, which is invertible in the bound-state sector except for the isolate points [62], which correspond to the discrete
bound energies in (7).

The solutions of Eqs. (7) and (13) are different in ultraviolet behaviors. It can be proved that fi(k) ∝ 1/k2 in (7) and Fi(k) ≈
−π/

√
k2 + κ2 in (13), whose derivations are given in the Appendix. Since a function which decays faster with large momentum

is preferable in numerical methods, it is convenient to introduce the substitution of Fi(k) = −π/
√

k2 + κ2 + hi(k) for Fi(k),
where hi(k) ∝ 1/k2 at k → ∞. Putting this relation into (13), the integral equation for hi(k) is obtained as(

1 + gi

2
√

k2 + κ2

)
hi(k) = − π

∑
j

g jη(k, κ2, |θi − θ j |) +
∑
j �=i

∫
dk′

2π

−g j |sin(θi − θ j )|h j (k′)
k′2 + k2 − 2kk′ cos(θi − θ j ) + κ2 sin2(θi − θ j )

, (14)

with the analytic function η(k, κ2, θ ) defined by

η(k, κ2, θ ) = − 1
2π

|sin θ |√
k2 + κ2(k2 + κ2 cos2 θ )

×
(

2|k|arcoth

√
k2+κ2

|k| + (π−2θ )
√

k2+κ2

tan θ

)

and η(k, E , 0) � limθ→0 η(k, E , θ ) = −(2k2 + 2κ2)−1.
Substituting Eq. (11) into (12), we can get

1

tB
= − 1

4π
ln

�2 + κ2

κ2

− 1

4π2

∑
i

∫
�

dS

2π

giFi(di(px, py))
p2

x + p2
y + κ2

, (15)

where
∫
�

dS �
∫

p2
x+p2

y<�2 d pxd py is the two-dimensional in-

tegral with cutoff � > 0. We apply the momentum-cutoff
regularization scheme [63,64] with momentum cutoff �.

The relation between the bare coupling constant tB and the
renormalized coupling constant tR can be written as

1

tB
= 1

tR
− 1

4π
ln

�2

μ2
, (16)

where μ2 is the emerged energy scale. The renormalized cou-
pling constant tR is obtained by cutting off the logarithmically
divergent part in tB with scaling μ [65,66].

Substituting Eq. (16) into (15) and replacing Fi(k) with
−π/

√
k2 + κ2 + hi(k) in Eq. (15), we arrive at the relation

between the solution hi(k), the renormalized coupling con-
stant tR, and the energy scale μ2:

1

tR
= 1

4π
ln

κ2

μ2
+

∑
i

gi

8

(
1

κ
− 1

π2

∫
dk

hi(k)√
k2 + κ2

)
. (17)

Equations (14) and (17) completely determine the relation be-
tween gi, θi, μ, tR, and κ2. We begin with one parameter tB; the

renormalization scheme introduces two quantities tR and μ for
the three-body interaction. The physical three-body coupling
strength the particles experience is tR. However, since we can
choose tR arbitrarily, the renormalized three-body interaction
can be described by one scaled parameter only [64,67]. To
this end we introduce the three-body scattering length a3,
which describes the asymptotic behavior of the wave function
� = ψ/c3 ∝ ln ρ

a3
when ρ =

√
x2 + y2 → 0 [22]. To obtain

a3 we need to expand the wave function at ρ → 0,

�(ρ) = −K0(|κρ|) + 2π

(
1

tR
− 1

4π
ln

κ2

μ2

)
, (18)

which can be obtained by solving u(px, py)/c3 from (11) and
transforming it to coordinate space, where K0(x) is the modi-
fied Bessel function of the second kind and has the asymptotic
behavior K0(|x|) ≈ − ln | x

2 | − γ at |x| → 0 with Euler con-
stant γ ≈ 0.577 22. Substituting it into (18), we arrive at the
close form of a3,

− ln
a3

2
= γ + 2π

tR
+ ln μ, (19)

where a3 > 0 for the right-hand side of (18) is real. Equations
(14), (17), and (19) give the relation between two-body scat-
tering lengths and three-body scattering lengths. In solving
Eqs. (14), (17), and (18), the same difficulty arises as in
Eq. (7): It is not easy to solve κ2 for a given a3. The opposite is
undemanding, and we handle this difficulty in the same man-
ner as in Sec. III, i.e., we search for the three-body scattering
length a3 for given κ2 and two-body coupling constants d
and g.

We have discussed in Sec. IV that the system with only
two-body interactions can exhibit multiple three-body bound
states. It has been proved that the three-body interaction
alone can exhibit one three-body bound state with en-
ergy E = −h̄2κ2/2μ12,3 = −4h̄2e−2γ /2a2

3μ12,3 [40,64]. Ref-
erences [22,23] showed that when M = m and d0 = g0 < 0,
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FIG. 4. Binding energies for the system with M/m = 16 and
g0/d0 = 4 in the presence of three-body interaction. (a) Relation
between − ln κa3

2 and λ, where a3 is the three-body scattering length
and λ = −g/κ (κ is regarded as the unit for two-body and three-
body scattering lengths). The two-body coupling constant d is then

expressed as d = −λκ
d0
g0

√
m+M

2m [refer to the relation (4)]. The thresh-

old Eth = −h̄2(g/2)2/2μ12,3 also corresponds to λ = 2 (κ = −g/2).
(b) Binding energy related parameter aBIκ (the binding energy E =
−h̄2κ2/2μ12,3) as a function of the three-body to two-body BI scat-
tering length ratio a3/aBI. The gray area represents the atom-dimer
scattering continuum.

one more three-body bound state would emerge once the
three-body interaction is introduced. Now an interesting ques-
tion arises: For the mass-imbalanced system with attractive
two-body interaction, does the system exhibit additional
three-body bound states with arbitrarily tuned three-body
interaction? The answer is negative. In certain parameter re-
gions, there is no additional three-body bound state, as one can
see from Fig. 4. In Fig. 4 we demonstrate three-body bound
states with M/m = 16 and g0/d0 = 4. For given λ = −g/κ ,
the three-body scattering length is determined uniquely. As λ

increases, − ln κa3
2 repeatedly runs from +∞ to −∞ mono-

tonically and continuously, which is shown in Fig. 4(a).
Figure 4(b) can be obtained from a coordinate transformation
of Fig. 4(a). When a3/aBI → ∞ (tR = 0), there remain three
three-body bound states, which are induced only by two-body
interaction. For arbitrary three-body interaction, those three
states always exist. For a3/aBI < 0.076, an additional three-
body bound state emerges out of the atom-dimer continuum,
which is induced by three-body interaction. This puts an upper
bound on a3/aBI as amax,BI = 0.076, below which there exists
the additional three-body bound state.

(a)

(b)

FIG. 5. (a) Maximum three-body scattering length in units of the
two-body BB (BI) scattering length aBB (aBI) vs the square root of
the mass ratio

√
M/m at the two-body threshold for the system with

the two-body coupling g0/d0 = 4. The dotted line is
√

M/m = 5.57,
which corresponds to g = d . (b) Close-up of the area near

√
M/m =

5.57.

From the analysis above, we conclude that the three-body
interaction cannot always introduce one more three-body
bound state, which depends on the mass ratio and the three-
body and two-body scattering lengths. In Fig. 5 we plot the
maximum three-body scattering length in units of two-body
BB (BI) scattering length aBB (aBI) as a function of the square
root of the mass ratio

√
M/m with fixed g0/d0 = 4. Altering

the mass ratio
√

M/m can change g/d . The relation between√
M/m and g/d is shown in Fig. 2 by a red (dark gray)

solid line. The numerical result shows that there are some
singularities, which occur at green dashed lines, as shown in
Fig. 5.

As we can see from Fig. 5, by increasing
√

M/m from√
M/m = 4 (the case in Fig. 4), amax,BI,BB increases until

it meets infinity at
√

M/m = 5.06, which results in the in-
tersection value of the parameter aBIκ of three-body bound
state and the atom-dimer continuum going from a certain
value to infinity. In this sense, at

√
M/m = 5.06, there are

four three-body bound states for arbitrary a3, among which
the one with the smallest κ is induced by three-body in-
teraction. This statement can be verified by comparing with
Fig. 2. The system without three-body interaction meets the
transition point from three to four three-body bound states
at

√
M/m = 5.06 and |d0|/|g0| = 4. Continuously increasing√

M/m until 5.57, there are five three-body bound states when
amax,BB,BI increases from 0 (at the exact point amax,BB,BI = 0
there are actually four three-body bounded states induced by
two-body interaction, which can also be verified by comparing
with Fig. 2) to a certain value. Among the five three-body
bound states the one with the smallest κ is induced by
three-body interaction. At

√
M/m = 5.57, we have d/g = 1.

Increasing
√

M/m again, amax,BB,BI begins to decrease. This
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turning point is nonsmooth, which is a result of the nons-
mooth change of threshold from

√
M/m < 5.57 (d/g < 1) to√

M/m > 5.57 (d/g > 1). With
√

M/m < 5.57 and
√

M/m >

5.57, the thresholds are Eth = −h̄2(g/2)2/(2μ12,3) and Eth =
−h̄2(d/2)2/(2μ12,3), of which the first-order derivatives are
discontinued at

√
M/m = 5.57. The reason amax,BB,BI is a

monotonically increasing (decreasing) function of the mass
ratio for

√
M/m < 5.57 (

√
M/m > 5.57) is that the number of

three-body bound states induced only by two-body interaction
is increasing (decreasing) at

√
M/m < 5.57 (

√
M/m > 5.57)

(see Fig. 2 for reference). If we keep increasing
√

M/m to
5.61, amax,BB,BI decreases to 0, which suggests the disap-
pearance of one three-body bound state. At

√
M/m = 5.61,

only four three-body bound states remain, which all result
from two-body interaction. Again increasing

√
M/m until 6.1,

amax,BB,BI decreases from infinity to zero. In this interval,
we have three three-body bound states induced by two-body
interaction.

An interesting fact is that the locations of the green dashed
lines in Fig. 5 match exactly with the intersection of the red
line and the phase boundaries in Fig. 2. This can be under-
stood as when amax,BB,BI = 0, the energy of the three-body
bound state induced by two-body interaction with the lowest κ

approaches the atom-dimer continuum spectrum at a3 → ∞,
where the particles experience no three-body interaction. This
is exactly the condition for the transition of the number of
two-body interactions inducing three-body bound states to
occur without three-body interaction. The explanation above
also works for why there is always an additional three-body
bound state in the mass-balanced case. The intersection of
the dashed line (M/m = 1) and dotted line (|d|/|g| = 1) in
Fig. 2 is a transition point when varying the mass ratio along
an interval containing M/m = 1 with fixed |d|/|g|.

VI. SUMMARY

We have studied the bound states of a 1D three-body
mass-imbalanced system with two-body attractive interaction.
In the absence of three-body interaction, we presented the

phase diagram of the number of three-body bound states by
solving the STM equations with arbitrary d/g and M/m. We
developed some computational techniques and applied them
to obtain the complete phase diagram. We demonstrated that
the LLH system has at most three three-body bound states.
In particular, in the limit of M/m → 0 the LLH system has
the Bethe-ansatz solution, which further verifies the validity
of our results. Moreover, we found that the presence of the
three-body interaction may lead to one more bound state.
However, this additional three-body bound state would not
always exist, but depends on the mass ratio and the ratio of
coupling strength d0/g0. The existence of the additional three-
body bound state is independent of the three-body interaction
at some special parameter points which correspond to the
transition points of the number of three-body bound states
induced solely by two-body attractive interaction.

The techniques to solve the STM equations may be ap-
plied to study mass-imbalanced four-body or N-body systems.
Our results may help in understanding how mass-imbalanced
particles are bound with two-body attractive interactions and
three-body interaction.
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APPENDIX: LARGE MOMENTUM BEHAVIOR OF
SOLUTIONS OF EQS. (7) AND (13)

Equation (7) can be rewritten as

fi(k) =
∑
j �=i

∫
dk′ f j (k

′)Gi, j (k, k′), (A1)

where

Gi, j (k, k′) = 1(
1 + gi

2
√

k2+κ2

) ×
∑
j �=i

∫
dk′

2π

−g j |sin(θi − θ j )|
k′2 + k2 − 2kk′ cos(θi − θ j ) + κ2 sin2(θi − θ j )

. (A2)

Expanding Gi, j (k, k′) at 1/k → 0, we obtain

Gi, j (k, k′) = −g j |sin(θi − θ j )|
k2

+ o

(
1

k3

)
. (A3)

In addition, fi(k) at large momentum is

fi(k) = Ai

k2
+ o

(
1

k3

)
, (A4)

where Ai = −∑
j �=i g j |sin(θi − θ j )|

∫
dk′ f j (k′). So fi(k) ∝

1
k2 in the ultraviolet region.

Similarly, Eq. (13) can be rewritten as

Fi(k) = − 1(
1 + gi

2
√

k2+κ2

) π√
k2 + κ2

+
∑
j �=i

∫
dk′Fj (k

′)Gi, j (k, k′). (A5)

By large momentum expansion,

Fi(k) + π√
k2 + κ2

= Ai + πgi

2

k2
+ o

(
1

k3

)
. (A6)

Thus, Fi(k) ≈ − π√
k2+κ2 and Fi(k) + π√

k2+κ2 ∝ 1
k2 in the ultra-

violet region.
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