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We present an energy scaling function to predict, in a specific range, the energy of bosonic trimers with
large scattering lengths and finite range interactions, which is validated by quantum Monte Carlo calculations
using microscopic Hamiltonians with two- and three-body potentials. The proposed scaling function depends on
the scattering length, effective range, and a reference energy, which we chose as the trimer energy at unitarity.
We obtained the scaling function as a limit cycle from the solution of the renormalized zero-range model with
effective range corrections. We proposed a simple parametrization of the energy scaling function. Besides the
intrinsic interest in theoretical and experimental investigations, this scaling function allows one to probe Efimov
physics with only the trimer ground states, which may open opportunities to identify Efimov trimers whenever

access to excited states is limited.
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I. INTRODUCTION

Loosely bound few-body quantum systems close to unitar-
ity, when the two-body scattering length diverges, have the
corresponding densities distributed over a much larger region
beyond the range of their mutual interactions. In this situa-
tion, the details of the interparticle potential become almost
irrelevant once the interaction can reproduce the ground-state
spectrum. These basic quantum properties are fundamental in
understanding few-body effects such as the Thomas collapse
[1] or the related well-known Efimov effect [2,3]. The former
corresponds to the collapse of the three-body ground state
when the range of the two-body interaction goes to zero. The
latter tells us that an infinite number of three-body bound
states can be found in the exact unitary limit. Later it was
shown that both phenomena are closely related by a scale
transformation [4].

Bound and resonant states emerge as we approach the
unitary limit. The independence on the details of the two-body
potential was also observed by Phillips [5] when studying
the correlation between the triton binding energy and the
doublet nucleon-deuteron scattering length by using several
nucleon-nucleon potential models. Efimov and Tkachenko
later explained this effect within the framework of the zero-
range theory [6].

The Efimov effect is also present in N > 3 systems, where
N is the number of particles. For example, Tjon studied
the fixed-slope correlation between tetramer and trimer bind-
ing energies of “He [7], the so-called Tjon line [8], which
is closely related to the three-body Efimov physics [9-12].
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Coester et al. [13] studied nuclear-matter binding energy vari-
ations with phase-shift-equivalent two-body potentials.

The study of few-nucleon correlations, which contributed
to the characterization of the Thomas collapse and Efimov
effect, followed pioneering mathematical approaches to three-
body problems, done by Skorniakov and Ter-Martirosian [14],
Danilov [15], and Faddeev [16]. The search for three-body
systems where Efimov states could be characterized began
with few-nucleon and few-atom systems [17-20].

The experimental searches for Efimov states in nuclear
physics encountered apparent limitations due to the proper-
ties of nucleon-nucleon interaction. The discovery of exotic
nuclear systems, which could be described as a core with a
two-neutron halo [21,22] is the appropriate place in nuclear
physics for investigations of possible bound or resonant states
with Efimov character [23,24].

The first prediction of Efimov states in few-atomic systems
was made by Lim et al. [25], pointing out its possible rel-
evance in helium gases at low temperatures. This prediction
was later made more convincingly when considering the pos-
sibility of one excited Efimov state in the three-helium atomic
system [26]. For a review on the initial studies considering the
Efimov nature of *He trimer, the reader is referred to Ref. [27].
The excited Efimov state in “He trimer was confirmed ex-
perimentally in 2015 by Kunitski et al. [28]. The ultracold
collision properties of “He trimer have been discussed since
1997 [29], with access to new experimental data motivating
investigations, in the context of Efimov physics, on the ultra-
cold collision properties of a “He dimer with a third atomic
particle (*He, L4, and **Na) [30,31].

The experimental realization of Bose-Einstein condensa-
tion with extremely diluted atom clouds in 1995 [32-34] was
a milestone for atomic physics. The possibility to control
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atom-atom interactions via Feshbach resonances [35-38] en-
abled the experimental search for Efimov states in atomic
systems. Three-body Efimov states have been identified in
different experimental setups, with the first evidence observed
in an ultracold gas of cesium atoms [39]. The success in ob-
serving the existence of Efimov states in cold-atom systems is
being explored by theoretical and experimental investigations
[40,41].

The spectrum of Efimov states in the limit of infinite
scattering length is characterized by an asymptotic discrete
scaling symmetry, which is the signature of renormalization
group flow to a limit cycle. The connection between the Efi-
mov effect and renormalization group limit cycles was noted
in Ref. [42]. The Efimov effect was realized as a universal
scaling limit of the three-body system [24,43] and within the
framework of effective field theory (EFT) [44,45]. A summary
of the identified scales and universal aspects in few-body
systems can be found in several reviews, considering nuclear
and atomic systems [46—52]. The main relevant interest in the
theoretical approaches is to establish possible extensions of
the observed universality by considering range corrections,
scaling limits, and extensions of such correlations to more
than three particles, which can be observed in experimental
investigations.

In the present work, our goal is to establish range correc-
tions when considering a trimer, composed of identical bosons
of mass m close to unitarity, within the representation of a uni-
versal scaling function, which correlates the trimer energies
for different scattering lengths with the effective range. This
provides a practical framework yet untouched by previous
related studies, such that extensions to larger systems can
be followed systematically whenever possible. Linear range
corrections to the zero-range approach were first considered
to explain the Phillips line [6]. Since then, range corrections
have been considered in several systematic studies [53—68]. In
support to ongoing experimental investigations in cold-atom
physics [69-73], one can observe the interest in defining more
precisely the expansion parameters near the unitary regime
[74,75].

Recently, a quantum Monte Carlo (QMC) study up to N =
60 bosons [76] obtained the ground-state binding energies at
unitarity for clusters with sizes much larger than the interac-
tion range. Particularly, it is desirable to follow systematically,
at least for the simplest nontrivial case of the three-boson
system, the route of the energies when the unitarity limit is
approached in terms of the scattering length, effective range,
and a three-body scale. In this paper we propose an energy
scaling function containing information about the two-body
system, i.e., the scattering length and effective range, and
the trimer energies at unitarity and finite scattering lengths.
We investigated the scaling function, obtained as a limit cy-
cle from the range-corrected Skorniakov and Ter-Martirosian
equations, using QMC calculations with two- and three-body
potentials for a specific range of the physical parameters men-
tioned above.

This work is structured as follows. In Sec. II we introduce
the basic concepts necessary to construct the energy scal-
ing function and also the subtracted form of the Skorniakov
and Ter-Martirosian equation with finite range corrections,
which allows us to obtain numerically the limit cycle which

characterizes the scaling function. The method employed in
this work to study the trimer ground-state energy with finite
range potentials, namely the quantum Monte Carlo approach,
is presented in Sec. III. We provide calculations with the
Skorniakov and Ter-Martirosian zero-range model with finite
range corrections to show the limit cycle of the proposed
scaling function in Sec. IV. In Sec. V, we performed QMC
simulations with microscopic two- and three-body potentials
to compute the relevant quantities. By comparing the results
obtained with both methods, we select among the hundreds
of systematical calculations the ones that are within the uni-
versal window, which allows us to characterize in detail the
route toward unitary with finite effective ranges. Finally, our
conclusions are presented in Sec. VI. In the Appendix, we
show that a zero-range parametrization of the Efimov states
with an effective range function that runs with the energy scale
motivates our ansatz for the scaling function.

II. UNIVERSAL SCALINGS

A. Effective range expansion

We start by reviewing some basic concepts applied to low-
energy scattering and weakly bound states of two identical
bosons. Let us consider the two-body scattering in the s wave,
described by the Schrodinger equation, with a finite range
spherically symmetric potential V (r), which depends only
on the distance r between the particles. The solutions are
separated into radial U (r) and angular Y (6, ¢) parts, the latter
being a constant for s-wave scattering. By defining u(r) =
rU (r), the two-body equation for particles with mass m is
given by

" 2m, dr? .

B d? R2k2
[ — + V(r)}u(r) = u(r), (1)
2m

where m, = m/2 is the reduced mass, and #*k?/(2m,) is the
scattering energy. The scattering length a, which describes
low-energy scattering, can be determined from the k — 0
solution of Eq. (1), ug(7),

1 d
up(R) dr

where R is outside the potential range. Another relevant low-
energy observable is the effective range ry,

1
R—a

, 2)

uo(r)|, =

ro = 2/0 dr[wg(r) — ug (1)), (3)

where Yo(r) is the asymptotic form of uy(r), that is, the
solution of Eq. (1) with k — 0 and V(r) = 0. The s-wave
scattering length and corresponding effective range are related
to the low-energy phase shift §y(k) through [77]

1 r0k2 4
kcot§p(k) = —; + > + O(k™). 4)
This equation is often called a shape-independent approxima-
tion because two different microscopic potentials that differ
in shape produce the same low-energy phase shifts, as long
as both have the same scattering length and effective range.
In systems where no three-body scale exists, such as two-
component Fermi gases, Eq. (4) has allowed comparisons
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of results obtained with potentials of quite different shapes:
square-well [78], modified Poschl-Teller [79], and even the
s-wave component of nuclear potentials [80-82].

The two-body s-wave scattering amplitude is given by

1
kcotdy — ik’
From the pole of the s-wave scattering amplitude in the first
(second) complex energy sheet, one can obtain the well-

known scaling law for the bound (virtual) dimer energy E, =
—1?/(ma%), where

(k) = )

1 1
ap a

1 4]

——. 6

2 alzi, ©
In this expression, we kept only the first two terms of the
k cot 6o (k) effective range expansion.

B. Trimer energy scaling

The three-boson system requires a three-body scale in the
limit of a s-wave zero-range force to avoid the Thomas col-
lapse, as the two-boson scattering length is not enough to
determine the trimer low-energy properties. Corrections due
to the effective range can be taken into account considering the
effective range expansion of Eq. (4) in the s-wave scattering
amplitude. If we choose a reference three-body energy at uni-
tarity, E5(1/a = 0, ry, v), where v is a three-body scale, then it
can be combined with the scattering length and effective range
to produce two dimensionless quantities, which we denote by

h

= a~/—mE3(0, ry, v)’ @

r()«/—mE;(O, ro, l))’ (8)

with these quantities defined such that x = 0 corresponds to
the unitary limit and y = 0 to the zero-range limit.

Our goal is to establish an energy scaling function to obtain
the trimer energy E3(1/a, ry, v) as a function of the scattering
length, effective range, and a three-body scale v. As men-
tioned above, a reference energy is required, which we take
to be the trimer energy at unitarity for a particular value of the
effective range and three-body reference energy, E3(0, o, v).
Given x and y by Egs. (7) and (8), we define a scaling function
F(x,y)as

y:

Es(1/a, ro, v)
Flx,y) = =210V
3= "5 0,70 v)

which has to be determined, as well as the region where it
displays a universal behavior, namely, where it does not de-
pend explicitly on details of the microscopic interaction being
considered for the examples we are going to explore.

The zero-range limit of Eq. (9) has been studied exten-
sively in the literature, cast in a different form that contains
the same information [40],

2

h
E3(1/a,0,v) + Il = E3(0,0,v)exp[A(§)/s0],  (10)
ma

where s is the Efimov parameter and

12
tan& = {W) a. (11)

€))

The A function, often called Efimov’s universal function, can
be determined by computing the binding energies in Eq. (10),
which can be done with remarkable precision [40,50,83,84].
Our goal is to go beyond the zero-range limit and to compute
trimer energies with finite effective ranges.

Although deriving an analytic expression for the scaling
function of Eq. (9) is challenging, some of its features are
known. Since the reference energies are calculated at unitarity,
F(0,y) = 1 for all values of y. If we consider an expansion in
powers of x and y, a consequence is that every power of y
must be multiplied by a power of x. Also, the trimer energy
for a finite scattering length and a zero-range interaction was
computed up to first order in 1/a in the context of absorptive
short-range potentials [85], and later in Refs. [59,60], where it
was shown that

0Es(1/a,ro.v)  KG
a(1/a) B '
It is understood that the derivative must be taken at a fixed

three-body scale, and C, is the two-body contact. Reference
[85] provides the value of the derivative in Eq. (12), with

the value C; = 53.097/—mE5(0, ry, v)/h being provided in
Refs. [59,60]. By casting Eq. (12) in the form of our scaling
function, the zero-range behavior (for |x| < 1) emerges as
53.097
8w

8tm (12)

F(x,O):l—i—( )x%1+2.113x. (13)
We should note that the zero-range assumption in deriving
Eq. (12) implies that we should only observe the linear be-
havior in x with a slope of 2.113 if the reference energy
E5(0, rp, v) is computed at rp = 0. For finite values of the
effective range, we expect the slope to be close to this value
since both the numerator and denominator of Eq. (9) contain
the finite ry dependence. To obtain the scaling function we
will use the solutions of the Skorniakov and Ter-Martirosian
(STM) [14] equation with leading order effective range cor-
rections.

1. Skorniakov and Ter-Martirosian formalism

The STM approach [14] is the appropriate formalism for
an analytical study of three-body systems close to the unitary
limit, where universal aspects are dominant, not being affected
by the details of two-body interactions. In Ref. [85], within
a study considering a three-boson system with an absorptive
short-range two-body potential, the STM formalism was ap-
plied in the limit of zero-range interaction, using a momentum
cutoff renormalization. From the linearity of an expansion
of the STM equation, it was established in that work the
universal constant 2.1 [which appears in Eq. (13) with two
more digits] for the first-order correction to the unitarity in
the zero-range limit. By taking advantage of previous studies
on the subtractive renormalization approach [86], together
with renormalization group invariance of quantum mechanics
[87], used in the context of three-body scaling limit [88], a
subtracted form of the STM equation for bosonic trimer bound
states with zero-range potential was found to be appropriate
for a unified description of the Efimov and Thomas effects
with cutoff regularization [4]. With units such that i = m = 1,
the s-wave subtracted STM equation for the trimer energy E3
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can be written as [47]

2 o +
F@) = =22k / dp P f(p) / dz
s 0 -1

x [Go(p, q, z; E3) — Go(p, q, 2, —V)], (14)

where k = i\/E3 — 3¢%/4 and the three-body Green’s func-
tion is Go(p, ¢, ; E) = [E — p* — ¢* — pqz]™", with v being
a three-body short-range regularization parameter, presented
as an energy subtraction point in the formalism. The two-body
s-wave scattering amplitude is given by Eq. (5), which in the
lowest order of the effective range ry leads to [89]

-1
(k) = (—é—ik) [1+r2—0(£—ik)], (15)

with ap related to the scattering length by Eq. (6).

III. QUANTUM MONTE CARLO METHODS

A. Microscopic Hamiltonian

The Hamiltonian we considered for the three identical
bosons is given by

P,
H= —%;Vi +ZV2(VU)+V3(R123), (16)

i<j

where r;; = |r; —rj| are the pair distances, with V,(r;;)
the corresponding pairwise attractive interactions. The term
V3(R123) is a repulsive three-body force, where Ry3 = (rlz2 +
rh 4+ )2,
13 7723

Once we consider that the function F(x,y) defined in
Eq. (9) is universal, then it must be independent of the micro-
scopic details of the interactions. To verify such universality
of F(x,y) first we compare our results with the ones obtained
using the subtracted STM equation. Then, for some selected
values of x and y, we employed two different two-body inter-
actions tuned to reproduce the desired values of the scattering
length and effective range.

The majority of our results is obtained with a Gaussian
potential, defined by

2,2 2.2
Vo(r) = —ag LG exp [—“3’ ] (17)
with the tunable parameters Ag and pg. This potential is
frequently employed in the cold atom gases literature [76].
Another choice was the modified Poschl-Teller potential,
which has been successfully used to describe interactions in
cold atom systems [79,82,90,91]. It is given by

R ud, 1

m, cosh? (uprr) '

Vimpr(r) = —Apr (18)
This potential is commonly employed for convenience since
there is an analytical expression that relates the parameters
)\pT, MUPT, and a [82]

Although both potentials share some similarities, such as
having two tunable parameters and representing smeared out
delta functions, they produce different results for the same
values of a and ry. For example, in the absence of a three-
body force, the trimer energy at unitarity is E3mr§/h2 =

—0.54(1) if computed with the modified Poschl-Teller poten-
tial and —0.49(1) by using the Gaussian potential. Hereafter,
we report our results with the uncertainty of one standard
deviation. These differences persist even for other different
scattering lengths, effective ranges, and nonzero three-body
forces. Hence, they represent sensible choices in our aim for
testing the universal scaling of Eq. (9).

For the three-body force in Eq. (16), the following Gaus-
sian form [76] was chosen:

3R

" ul
V3(Ri23) = A3 exp | ————=|. (19)
m 2

The dimensionless strength parameter A3 is increased to pro-
duce loosely bound trimers, while the parameter 3 controls
the range of the interaction.

In physical systems, the expected geometric tower of Efi-
mov states at unitarity is truncated from below due to the
finite interaction range. The binding energy of the next deeper
trimer would be ~22.7> larger than the ground-state one.
Hence, it has been argued that if the potential parameters are
such that fipt, 3//—mE3 > 22.7, then the shape of the poten-
tial should produce small effects [44,45,76]. However, in our
investigation we also focus on cases where iy 3/+/—mE; <
22.7 and finite range corrections are appreciable.

B. Diffusion Monte Carlo method

The solution of the Schrédinger equation using two- and
three-body finite-range potentials is obtained with variational
and diffusion Monte Carlo methods, called VMC and DMC,
respectively. The VMC method relies on a trial wave function
which should capture the properties of the ground state. The
trial wave function contains variational parameters, which are
optimized to minimize the energy.

Universality tests of bosonic trimers using pairwise in-
teractions often employ trial wave functions consisting of
a zero-range part multiplied by two-body correlations. In
Ref. [92], for example, the authors constructed a trial wave
function for the van der Waals potential by multiplying the
uncorrelated hyperangular expression of the Efimov trimer in
the zero-range limit [93] by the zero-energy two-body wave
function [94,95]. This variational approach was successful in
verifying their interpretation of the microscopic origin of the
universal three-body parameter.

Since the Hamiltonian, Eq. (16), contains a three-body
force, the inclusion of three-body correlations in our trial wave
functions greatly reduces both the variational energy and the
variance of the results. The considered trial wave functions are
of the form [76]

3
Yr(R) = (1"[ ﬁ(n)) (]"[ f2<r,-,->>f3<R123), (20)
i=1

i<j

where R is a shorthand notation for all the coordinates. The
one-body factor f;(r) = exp( —ar?) describes the cluster for-
mation, where we introduced the variational parameter «, and
the distance r; is taken from the center of mass of the clus-
ter. The short-range correlations are included via a two-body
Jastrow function f,>(r). Its boundary conditions are f(r >
d)=1 and f;(d) =0 (where d is a variational parameter
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often called healing length). The zero-energy solution of the
Schrodinger equation with the modified Poschl-Teller poten-
tial, Eq. (18), is proportional to tanh(uprr)/r, thus we adopted
the form f,(r) = K tanh(u;r)cosh(yr)/r (for r < d), where
K and y are adjusted to match the boundary conditions, with
Wy being a variational parameter.

The three-body factor describes the effect of the three-body
repulsive force, f3(R) = exp{ugexp[—R*/(2R})]}, where ug
and R, are determined at the VMC level. For a given two-body
potential (either the modified Poschl-Teller or Gaussian) and a
three-body force, all the variational parameters are optimized
by using VMC simulations. Then, the optimized trial wave
function is used as input in the DMC calculations. Since we
are dealing with a bosonic system, there is no sign problem,
and thus the energies obtained with the DMC method are exact
within statistical uncertainties. The quality of the variational
wave function only reduces the variance and improves the
convergence of the results.

The diffusion Monte Carlo method projects out the lowest-
energy state of H, which is described by an initial state 7,
Eq. (20), by propagation in the imaginary time t,

Y(r) =exp[—(H — E7)T]yr, (21)

where Er is an energy offset. In the limit T — oo only the
lowest-energy state @ survives, since higher-energy com-
ponents will be exponentially damped. The imaginary time
evolution is governed by

Y(R, 1) = /dR' GR, R, t)Yr(R), (22)

where G(R, R/, 7) is the Green’s function associated with
the Hamiltonian. The Green’s function contains two terms:
a diffusion term related to the kinetic energy operator, and a
branching term related to the potential. We solve an impor-
tance sampled version [96] of Eq. (22) iteratively by using
the Trotter-Suzuki approximation [97-99], which requires the
time steps At to be small. For a detailed description of the
DMC algorithm, the reader is directed to Ref. [96] and refer-
ences therein.

Expectation values of operators that do not commute with
the Hamiltonian, in our case the mean square radius, can be
computed by using extrapolated estimators

(Do|Olyrr)?
(Yr|0lYr)
where the results of DMC and VMC runs are combined.

(@o|O[ D) ~ + Ol(®o — ¥7)*], (23)

IV. ENERGY SCALING FUNCTION

A. Limit cycle and effective range

We started our calculations by using the subtracted form of
the STM equation, as given in Sec. II B, to compute the trimer
energies at unitarity for values of y in the range 0 < y < 0.30.
From Eq. (7), we have that these energies correspond to x = 0
in the scaling function. Then, we computed the trimer energies
at other scattering lengths departing from unitarity. To make
comparisons easier, we chose to compute all trimer energies
for a fixed set of x values, —0.15 < x < 0.15 equally spaced
by 0.05 increments. Since the value of the reference energy

145 T T T T T
—1 EERR
140 L :=2 . ST L x=+0.15 |
n=3 e s anl
1.35 " .
= 130 | E
5 . - N
T 125 | I x=+0.10 |
el
1.20 - N
1.15 - e
4 T T T et
0.00 005 010 0.15 020 0.25 0.30
y
090 T T T T T
085 X=-0.OA5,
0.80 \.‘M i
g BT °* ®ue el
X 075 - ey
T x=-0.10
0.70 \ i
n=1 e, s 0
0.65 |- . T el L.
n=3 e x=-0.15
060 il il il il il
000 005 010 0.15 020 0.25 0.30
y
FIG. 1. Limit cycle of the energy scaling function

F(x,y)=Es(1/a, ry, v)/E5(0, 1o, v) as a function of
y = roa/—m E3(0, 7, v)/h. In the upper panel we present the
results for x = fi/(a/—mE3(0, ry, v) > 0, and the lower panel
corresponds to x < 0. The (green) squares, (blue) triangles, and
(red) circles stand for the first, second, and third excited states,
respectively.

varies, a given value of x corresponds to different values of a
depending on E3(0, g, v), as shown by Eq. (7).

We repeated the procedure described above for the first
three excited states (n = 1, 2, and 3) of the trimer. In Fig. 1,
we show our results for the scaling function F(x,y) given
by Eq. (9), in terms of the variable y, which is related to
the effective range ry by Eq. (8). We present the results for
negative and positive scattering lengths (x < 0 and x > 0,
respectively). Although the results are essentially the same for
small values of y, for larger values of this parameter, there is
a slight difference in the slope of the curves between n = 1
and the two following excited states. The size of the trimers
increases by a factor of 22.7 if we compare the ground state
to the first excited state or between two consecutive excited
states. Hence, as we move toward higher values of n, the
results are less sensitive to the regularization parameter. Since
the function should have already reached a converged limit
cycle for n = 3, we employed the results obtained with the
third excited state for the remainder of this work.
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12 , , , TABLE 1. Coefficients of Eq. (24) which corresponds to the
10| x=+0.15 + x=-0.15 = || functional form of F(x, y). The first line represents the values ob-

) x=+0.10 x=-0.10 tained by fitting the equation with the STM results. The second line
0.8 ¢ x=+0.05 = x=-0.05 © | corresponds to Eq. (25), in which o = 2sy/7, obtained with the
0.6 4 ansatz described in Appendix A. The uncertainties correspond to one
> i standard deviation

o 04
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© | pmerong oo oo - — — — Fit 2.106(1) 1.26(1) 0.804(4) 1.0(2) 1.2(1) 0.680(3)

0.2 ¢ - | Ansatz 2107 135 0804 103 105 0641
-04 | R
-0.6 f R
-0.8 : : : ‘ having the desired features to describe both the energy func-
005 010 015 020 025 0.30 tion and its derivative, this functional form is further motivated
y in the Appendix.
15 ‘ ‘ ‘ ‘ ‘ To fit the limit cycle results for the energy scaling function,
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FIG. 2. Upper panel: numerical derivative of F (x, y) with respect
to y, for the n = 3 state shown in Fig. 1. Open (filled) symbols are
for x < 0 (x > 0). The solid curves correspond to the derivative of
Eq. (24). Lower panel: energy scaling function F'(x, y) fitted to the
functional form of Eq. (24). The (red) circles refer to results with the
subtracted form of the STM equation with finite-range corrections,
while the curves correspond to the fit.

B. Scaling function parametrization

The energy scaling function shows a curvature when ap-
proaching the zero-range limit, a behavior that one can verify
by looking closely at the y — 0 results plotted in Fig. 1. This
effect can be made more visible by performing the numerical
derivative of the scaling function with respect to y; see the
upper panel of Fig. 2. To capture this feature of 0F (x, y)/dy
close to the origin, we included terms proportional to y°, with
0 < o < 1, in the expansion of the scaling function.

Considering all the desirable features of F(x,y) we pre-
sented so far, we proposed the following functional form for
the scaling function:

F(x,y) =1+ cix+ oxy” + e3x” + aax’y + esx™y?, (24)

which corresponds to an expansion in powers of x and y.
The parameters ¢; and o were determined by fitting the STM
results to Eq. (24), and we provide their values in Table I. For
reference, we show the function and its numerical derivative
with respect to y alongside the STM results in Fig. 2. Besides

we rely on an ansatz, detailed in the Appendix, which gives

F(x,y)=1+2.107x+ 1.35y7"
+(0.804 + 1.03y + 1.0550y7%)x> + -+ . (25)

With this ansatz, the o exponent of y suggested in Eq. (24),
0 <o < 1, is related to the Efimov parameter sy by o =
2s0/m. All the coefficients of this expression are defined in
correspondence with the ones given in Eq. (24). By compar-
ing the coefficients obtained with the fitting procedure and
the ones given by Eq. (25), we observe a remarkably close
agreement between the expressions, as evidenced by the coef-
ficients for both expansions shown in Table 1.

V. QUANTUM MONTE CARLO RESULTS

Once we have determined the energy scaling function from
the limit cycle, obtained by solving the subtracted form of the
STM equation with effective range corrections, our next task
is to compute it with microscopic two- and three-body inter-
actions. By comparing results obtained with both methods, we
will consolidate the validity of the universal scaling approach
to potential models.

To solve the Schrodinger equation with microscopic inter-
actions, we chose to apply quantum Monte Carlo methods,
as described in Sec. III. Using these computational meth-
ods to obtain the trimer ground-state energies, we hope to
provide a reliable view of the applicability of the universal
scaling analysis emerging in three-body systems. Within this
framework, one may extend the approach to realistic weakly
bound few-body systems, such as those studied in cold atom
laboratories.

We performed a large number of calculations with a fixed
effective range (urr9 = 2) and varying the scattering lengths
for Gaussian two- [Eq. (17)] and three-body [Eq. (19)] inter-
actions. For some selected values of x and y we employed the
modified Poschl-Teller [Eq. (18)] two-body potential instead.
Among such several QMC calculations, we will show that
within a certain potential parameters window, it is possible to
select results supporting the applicability of the universal en-
ergy scaling function. The analysis of this parameter window
is also complemented by the calculation of the trimer mean
square radius.
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A. Systematic calculations

First, we computed the trimer energies at unitarity, the
denominator of Eq. (9). Varying the strength (A3) of the
repulsive three-body force changes the trimer energy and,
consequently, the value of y, Eq. (8). From Eq. (7), we have
that all energies computed at unitarity correspond to x = 0
in the scaling function. The ratio of the trimer energy at
unitarity without a three-body force (A3 = 0) to the one with
the most repulsive three-body force considered in this work
is of the order of 1000. We kept the value of the effective
range fixed throughout all simulations, so for each three-body
force at unitarity we have a different value of y, as seen in
Eq. (8). So far, the described procedure yields all the reference
energies that we need to compute the denominator of the
energy scaling function. The numerator comes from the trimer
energies calculated out of the unitary limit for finite values of
the two-body scattering length.

In Fig. 3 we present our QMC results using Gaussian
two- and three-body potentials alongside the scaling function
obtained with the subtracted form of the STM equation. We
employed three different values of w3 in Eq. (19), usrg =
0.50, 0.75, 1.00, which is equivalent to varying the range of
the three-body force (proportional to 1/u3).

For small values of y, the results using microscopic Hamil-
tonians coincide with the scaling function within statistical
errors. As we move toward larger values of y, the results
deviate from the scaling function. As expected, smaller values
of s correspond to larger ranges of the three-body force,
which produce greater differences with the scaling function.

Our calculations are performed with y > 0.02 because of
the statistical errors for smaller values of y, as explained
in the following. The scaling function depends on the ratio
of two energies, the trimer energy at some finite scattering
length and at unitarity. As we move toward small values of y,
with a fixed effective range, the trimers become very loosely
bound and quite large. The statistical errors of our simulations
also decrease when going to this limit, but not as fast as the
binding energies. Hence, although simulations with y < 0.02
are possible, they would produce substantial errors for the
computation of the scaling function.

The behavior of the scaling function with y is the same as
seen in Fig. 3, namely, it increases with y for x > 0, and it
decreases for x < 0. The energy ratio for larger values of y is
obtained by decreasing the strength of the three-body force.
In the absence of a three-body potential (A3 = 0) the trimer
energy at unitarity depends only on the choice of the two-body
potential. For the Gaussian potential, E3mr§ /I = —0.49(1),
which corresponds to a value of y = 0.7.

The significant variations of the scaling function F(x,y)
from the Gaussian two and three-body potentials with respect
to the limit cycle seen in Fig. 3, can be understood as fol-
lows. For x > 0, the attractive two-body force is stronger than
the one at the unitary limit, as reflected by the finite value
of the two-body binding. This extra attraction compensates
the repulsion of the three-body potential. By decreasing the
magnitude of the repulsive three-body force, corresponding
to increasing y, such an effect is stronger than the change of
the on-shell scattering amplitude given by Eq. (15), when the
effective range increases and leads to the observed limit cycle.
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FIG. 3. Energy scaling function calculated with QMC results
(data points) compared with the one obtained from the solution of the
STM subtracted equation with effective range corrections (dashed
curves). The QMC results concern the trimer ground-state energies
computed with microscopic Hamiltonian containing Gaussian two-
and three-body potentials. The simulations were performed for three
different ranges of the three-body force, u3ry = 0.50, 0.75, and 1.00,
(green) squares, (blue) circles, and (red) triangles, respectively. The
range of the repulsive three-body potential is proportional to 1/u3,
Eq. (19). Results for the same value of x are connected by lines to
guide the eye.

For x < 0, the attractive two-body force is weaker than the one
in the unitary limit, which weakens the trimer binding with
respect to its value at unitarity. In the presence of the repulsive
three-body force such effect is mitigated, and we observe the
sharp increase of F(x,y) as y — O for the potential model
results in comparison to the limit cycle ones.

B. Universal window

The results shown in Fig. 3 indicate model dependence
for large values of y, but they agree with the scaling function
for small values of y. Hence, we would like to determine the
conditions that yield the universal behavior described by the
scaling function.

Trimer properties are expected to be universal if the
ground-state energy fulfills two independent conditions: (i)
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FIG. 4. Plot of 1/(u3R3) as a function of the square root of the
mean square radius divided by the effective range. We only included
points of Fig. 3 with y < 0.10. The results shown are obtained with
the Gaussian two-body potential and the repulsive Gaussian three-
body force with different ranges, namely ps3ro = 0.50, 0.75, and
1.00, (green) squares, (blue) circles, and (red) triangles, respectively.

x = h/(an/—mE) — 0 and (ii) y = ro/—mE /h — 0, char-
acterizing a weakly bound trimer when the ratio ro/a — 0.
We considered finite range interaction models where the effec-
tive range is such that ro/|a| < 0.05. Condition (i) can always
be achieved going to the unitary limit, even for strongly bound
trimers well within the potential range. These trimers do not
bear universal properties. The associated probability of find-
ing the bosons outside the potential range is small, contrary
to what is expected from a universal Efimov trimer. Condition
(ii) is achieved by tuning the repulsive short-range three-body
potential, which makes the trimer ground-state weakly bound.
Universality is expected if the trimer is large with respect to
the ranges of the two- and three-body interactions.

The quantity R3; = ii//—mE defines a characteristic
length scale of the trimer. In Fig. 4 we plot 1/(u3R3) as a
function of the square root of the mean square radius over the
effective range, +/(r?)/ro. Since 1/u3 is proportional to the
range of the three-body force, the quantity in the ordinate axis
measures the range of the three-body force compared to the
size of the trimer. Universality is expected for 1/(u3R3) < 1
and +/(r?)/ro > 1, where the last condition also leads to
ro—mE /b < 1.

We found consistently that trimers with 1/(u3R3) < 0.08,
the shaded region of the plot, agree with the scaling function,
as we will show in the following subsection. Notice that a
matching criterion considering the ratio of 1/ (r2), which also
defines a typical length for the trimer, to the effective range
would exclude points that are in agreement with the scaling
function. For the universal trimers, the values of /(r2)/rg
range from approximately 6 to 20. Again, this shows that
universality for these potential models is much more sensitive
to the range of the three-body force than to the trimer size.

A prediction of the Efimov nature of the “*He trimer was
made in 1977 [25], but it was not experimentally observed
until 2015 [28]. This long period allowed for extensive investi-
gations concerning the Efimov universality in helium systems

[27]. Ab initio variational calculations concerning few-body
“He systems have been performed with a plethora of realistic
pairwise potentials: LM2M2 [100,101], a potential that takes
into account relativistic and quantum electrodynamics effects
[102,103], and many others [104]. These calculations consis-
tently find that helium trimers and tetramers present universal
aspects due to the underlying Efimov physics.

The “He trimer is usually modeled by pairwise interactions
with short-range repulsion and long-range attraction, while
in this current work, we assume purely attractive two-body
potentials and repulsive three-body forces. Although the in-
teractions in helium systems differ from those employed in
this study, some comparisons can be made concerning the
universal window due to the scales involved. At the two-body
level, the bond length of the ‘He dimer, 52(4) A [105], is
one order of magnitude larger than the effective range of 7.3
A [106] and the van der Waals length of 5 A [107), thus
universality is expected. Although the bond length of the “He
trimer, 11(5) A [108], exceeds the effective range and van der
Waals length, it is of the same order as both. We observed
similar behavior in our results for the universal window since
the values of /(r2)/ro range from ~6 to 20. Using the val-
ues of the scattering length and binding energies reported in
Ref. [28], we arrive at x = 0.11 and y = 0.76 for the ground
state, and x = 0.75 and y = 0.11 for the first excited state.
Although these values are not contemplated simultaneously in
this study, this suggests that other potentials could have wider
universality windows than those employed in this work.

C. Universal trimers

Finally, we take all the results of our simulations for
—0.15 < x <0.15, shown in Fig. 3, apply the criterion
1/(u3R3) < 0.08, depicted in Fig. 4, to select the trimers that
are in accordance with the scaling function. We display them
in the upper plot of Fig. 5 where, besides the results for the
Gaussian two-body potential, Eq. (17), we present the ones
obtained with the modified Poschl-Teller potential, Eq. (18),
for the smallest y value. Statistical fluctuations are present
and, as seen in the plot of Fig. 3, the error tends to increase
toward smaller values of y. Still, it is possible to see the agree-
ment between the results using microscopic Hamiltonians and
the scaling function obtained with the subtracted form of the
STM equation.

In particular, by increasing y, namely, by enhancing the
trimer binding, and within the universal window, the depen-
dence of F (x, y) with y is explored. Although showing small
effects for y — 0.1 as shown in Fig. 3, the smaller error in
the trimer energies clearly corroborates the limit cycle found
for this scaling function. That is illustrated by the Gaussian
potential calculations with three-body forces with the smallest
range u3rg = 1.

The physical information of the effective range for these
universal trimers comes from a region in configuration space
where the bosons are well separated, namely two of the bosons
interact virtually and the spectator boson perceives only the
asymptotic wave function of the pair interaction, which is
contained in the on-shell scattering amplitude. Furthermore,
the effective range enhances the attraction between the bosons
for a > 0 with respect to the unitary limit, while for a < 0 by
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FIG. 5. Upper panel: comparison between the scaling function
obtained with the subtracted form of the STM equation (dashed
curves) and the microscopic Hamiltonian with Gaussian two- and
three-body potentials (full symbols) after the criterion 1/(usR3) <
0.08 has been applied. The open symbols at the smallest value of
y considered correspond to calculations using the modified Poschl-
Teller potential, Eq. (18), for the two-body interactions. Lower panel:
quantum Monte Carlo calculations for F (x, y) against the limit cycle
results for the same values of x and y.

increasing y the effect is repulsive, thus decreasing the trimer
binding with respect to the unitary limit. Such physical effects
are also supported by the Monte Carlo results.

The plot shown in the lower panel of Fig. 5 gauges the
quality of the comparison between the Monte Carlo results
for F'(x, y) and the corresponding values obtained in the STM
calculations. The results are clustered and associated with
each x value. For smaller y the statistical error systematically
increases, as a consequence of the necessity of a stronger
three-body repulsion to fit the trimer in the universal window.

VI. CONCLUSIONS AND OUTLOOK

Our goal was to determine an energy scaling function for
bosonic trimers close to the unitarity limit (infinite scattering
length), which considers finite range effects. The scaling func-
tion was determined by considering the subtracted form of the
STM equation with a leading order effective range correction.

In addition, we validated the scaling function by comparing
it to QMC calculations with microscopic two- and three-body
potentials. We employed Gaussian and modified Poschl-Teller
two-body potentials with a Gaussian three-body interaction.

Concerning the calculations using the subtracted form of
the STM equation, it is interesting to see that the limit cycles
survive the addition of the finite range, see Fig. 1, which was
not apparent beforehand. The physics behind the two-body
contact parameter is also captured in the scaling function
through the linear term in x. It would be very interesting to see
if the other terms could be similarly related to observables.

We should remark that all the results obtained with QMC
methods concern the trimer ground state. This represents
an alternative to the standard approach of probing Efimov
physics through excited states.

For convenience, we chose the reference energy to be the
energy of the trimer at unitary. Inspection of Eq. (9) reveals
that we could choose the energy at some other scattering
length, and the scaling would also be possible. This is rele-
vant for experiments where different scattering lengths can be
observed, but the unitary regime may be out of reach.

A few words to put our results in the context of previous re-
lated works are in order. The zero-range hyper-radial equation
for the trimer, written down by Efimov, contains a term pro-
portional to 1/R?. Efimov noted that range corrections would
introduce a term proportional to ry/R> [53]. This hyper-radial
equation is discussed in detail in Ref. [56], in the context of
EFT. The authors derived a term proportional to ry/R> as a
perturbation and obtained corrections linear in the two-body
effective range on the three-boson bound-state spectrum when
|a] > ry. The nonlinear behavior in the effective range that
we found in this work, namely the r§ terms in Eq. (24),
cannot be obtained with linear corrections in ry. Its validity
is confirmed by the agreement of the STM and QMC results
for relatively large values of y; see the points with y = 0.07 in
Fig. 5.

‘We should also mention the studies of Refs. [63—65], where
two-body potentials have been used to derive range correc-
tions to bosonic clusters. The main difference in our approach
is that by including a repulsive three-body force, we can probe
much smaller values of y, while these other works are in the
region y ~ 0.7. In this way, both approaches are complemen-
tary. It would be interesting to derive a formal route from one
limit to the other, but this is beyond the scope of the current
work.

In this work, we considered particles with equal masses and
the same interactions between them. It would be interesting
to apply the same framework to mass-imbalanced systems
[109-112]. Moreover, if we consider interactions with dif-
ferent scattering lengths between the pairs, we would have
three instead of a single a value and also different effective
ranges. Investigating if a universal scaling exists in this more
complicated setting could be helpful to describe systems in
atomic and nuclear physics.

We centered our discussion around three particles, but the
QMC methods employed in this work have been applied to
bulk matter and clusters of up to 60 bosons [76]. Even in
the case of interactions chosen to reproduce relatively shal-
low trimers, finite-range effects appear for 15 particles or
more [64,76,113,114]. This happens because the interparticle
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spacing decreases, and the range of the two- or three-body
interactions become significant.

We intend to investigate if it is possible to construct anal-
ogous scaling functions to the one in this work for N-boson
systems. We hope that the finite range effects of the interac-
tions in these cases can restore what has been dismissed as
nonuniversal behavior for large bosonic clusters.
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APPENDIX: ANSATZ FOR THE SCALING FUNCTION

In our analysis, we are concerned with a very small region
near unitarity, where we want to add range corrections. We
found it convenient to express the three-body energy ratio
in terms of the first terms of an expansion, instead of the
exponential form presented in Ref. [40], E5(1/a, 0,v) = E; +
E3,0(0, 0, v)e2™/% in which the corrections are within the

factor A(n), where tann = /E>/E3(0, 0, v). For that, with
E;3 = E3(1/a,0,v), E30 = E3(0,0,v), we define x and yxo

such that
Er ond E (A1)
= — an = _
X Es X0 Eso

The value of xy, at the zero-range limit, can be identified with
x of Eq. (7). Our corresponding fitted expression, obtained
from systematic STM zero-range calculations, by keeping
terms only up to the order of the two-body energy, is given

F(x,0) = E 1+ 2.107x + 0.804 ;. (A2)
Eso
This ratio of trimer energies, out and at unitarity, is the con-
venient starting expression to introduce the effective range
contribution. For that, by considering Eq. (6) we move to a
range-dependent expression with a — ap as suggested, such

that xo — /Eg/E3(0, r9, v) = x(1 +xy/2) = x(1 + ro/2a):
~ Xy Xy
Folx,y) ~ 1 +x(1 +3 )[2.107+0.804x(1 +3 )]

We can drop the last term inside the square brackets as it
is of the order 1/a’. However, by using the procedure de-
scribed above, we are still carrying the three-body energy
at unitarity. As the effective range is also directly associated
with the energy scale [66], we can translate it to a shift in
the energy scale, which can be introduced by an extra factor

multiplying xo, which we assume is given by (1 + %}ﬂyz%o) =
[1+ zﬂﬁ exp(zr‘rﬂ Iny)]. Note that the range correction is such
that Iny < 0, with this exponential factor varying between 0
and 1, such that the following scaling function is obtained:

E3(1/a, rg, v)
F = —
3= 750, 10, v)

~ 14 2.107x + 1.350xy>/™ 4 0.804x>
+1.030x%y*/" 4 1.053x%y +--- . (A3)

If we consider large scattering lengths and set y = 0, this
expression is equivalent to Eq. (10). We should observe that
this parametrization is suitable for positive y and shown to be
adequate for analyzing the trimer energies obtained with the
models used here.

Our motivation to prescribe the above ansatz is based on
previous works (see Refs. [65,74]), which have shown that
the effective range correction can be translated to a shift in the
energy scale with the effective range [66]. This was the start-
ing point to build the approximate formula given by Eq. (24).
Besides that, a physical constraint to be added is that this shift
must reflect the situation in which the three-body scale is no
more relevant for the physics of the system, as in the case of a
system formed by two light bosons and a very heavy one. This
could occur for sy < 1, i.e., when the separation between the
energies of consecutive Efimov states tends to infinity, such
that the three-body scale is no more relevant for the system.
By following this reasoning, the sensitivity to the change in
the short-range scale is reduced. At the same time, the y
dependence disappears with the exponent being proportional
to ~so. The natural coefficients are of O ~ 1, both for the pro-
portionality constant as well as for the exponent. Furthermore,
for the Efimov discrete scaling, the relevant factor is so /7.
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