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Strong-field approximation for high-order harmonic generation in infrared
laser pulses in the accelerated Kramers-Henneberger frame
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The strong-field approximation for high-harmonic generation in near-infrared and infrared laser pulses is
formulated in the accelerated Kramers-Henneberger frame. The accompanying physical picture is discussed and
the nature of the leading-order term is contrasted with that of the three-step model following the strong-field-
approximation formulation in the length or velocity gauges. The theory is illustrated by high-harmonic generation
spectra for atomic hydrogen.
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I. INTRODUCTION

When an intense near-infrared or infrared laser pulse in-
teracts with an atomic or molecular gas or with a solid-state
sample, the nonlinear laser-matter interaction may lead to the
emission of coherent radiation with a frequency that equals
an integer N � 1 times the fundamental frequency of the
driving field. For linearly polarized laser pulses and atomic
or molecular targets, some aspects of this high-harmonic
generation (HHG) process can be rationalized in terms of
the three-step model [1–3]. In the first step of this model,
the target is strong-field ionized in a process that can often
be envisioned as a tunneling-like process. In the second step,
the freed electron propagates in the presence of the laser pulse.
The electron may be steered back to the parent ion due to the
alternating field direction of the laser pulse. In the third step,
the electron recombines and emits its accumulated energy as
HHG radiation. The quantum mechanical framework identi-
fying these steps is known as the Lewenstein model or the
strong-field approximation (SFA) of HHG [4]. In the context
of HHG in solids, certain characteristics of the harmonic spec-
tra can be captured by an independent-electron bandstructure
model involving (i) interband transitions from the valence to
the conduction band, (ii) intraband propagation of electrons
in the conduction band and holes in the valence band, and (iii)
interband recombination into the valence band. Harmonics are
emitted as a consequence of inter- and intraband dynamics and
the interplay between these dynamics [5]. Both for the atoms
and solids, the theory development in Refs. [4,5] is based on
the length gauge (LG) expression for the interaction between
the electron and the electric field, E(t ), of the external laser
pulse, i.e., V LG

L (t ) = −qE(t ) · r with r the electron coordi-
nate and q = −|e| its charge. Of course the physical pictures
that emerge from an analysis of these theories depend on
the choice of representation of the interaction. For example,
the notion of tunneling ionization is natural when V LG

L (t ) is
added to the atomic or molecular potential to form an effec-
tive potential with a barrier through which the electron can
tunnel. If, on the other hand, the velocity gauge (VG) form of
the laser-electron interaction, V VG

L (t ) = − q
m A(t ) · p + q2A(t )2

2m ,

with A(t ) the vector potential of the laser pulse, had been
considered, the initial ionization step in the three-step model
would have been less clearly identified as a tunneling step
since no effective spatial tunneling barrier would emerge
when adding V VG

L (t ) to the atomic or molecular potential.
Indeed the elucidation of the characteristics of LG and VG
SFA models has received much attention over the years. For
example, advantages of using the LG SFA for ionization in
the near-infrared regime were pointed out for atoms [6] and
molecules [7]. On the other hand, fundamental problems exist
with the LG tunneling picture in the long-wavelength limit
due to the increase in quiver velocity and associated magnetic
nondipole terms [8]. For diatomic molecules, the limit of large
internuclear distances has posed a challenge. Some studies
pointed to the preference for using the VG to model HHG
[9] and preferably with an adapted saddle-point method [10].
The LG versus VG issue was also investigated in combination
with dressing of the initial state [11–13] and including the first
excited state [14].

The insights extracted from HHG spectra regarding prop-
erties of the target often rely on an interpretation in terms
of the three-step model. For example in orbital tomography,
HHG spectra are used to reconstruct the Dyson orbital of
the ionizing system by analyzing the spectra in terms of the
recombination matrix element [15]. In HHG spectroscopy,
analysis of the spectra based on a many-electron SFA for
HHG, which embodies the quantum mechanical three-step
picture, may be used to extract information about charge
migration in molecules [16]. In the case of solids, ideas anal-
ogous to those of the three-step model were instrumental in
suggesting an all-optical reconstruction of crystal band struc-
ture by HHG [17]. These successes of the three-step SFA
model rely on its ability to capture qualitative aspects of the
HHG spectra. Quantitatively, its predictions deviate from the
results following simulations based on the time-dependent
Schrödinger equation (TDSE). In particular, the accuracy of
the SFA is challenged at harmonic orders lower than those
close to the cutoff region [18]; the former spectral region will
be in focus in this work.
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It is in the context of considering the interplay between
the form of the interaction, e.g., V LG

L (t ) or V VG
L (t ), and the

resulting physical model, that it may be worthwhile to con-
sider if alternative physical pictures and associated insights
arise for the interpretation of the HHG process if the funda-
mental electron-laser interaction is expressed in yet a different
manner. One such possibility, which is explored in this work,
is the form of the interaction in the accelerated Kramers-
Henneberger (KH) frame [19], where a unitary operator is
used to displace the electron coordinate by the instantaneous
position of a free electron in the oscillating external field. The
KH frame was used some time ago to interpret HHG spec-
tra in the high-intensity, high-frequency stabilization regime
[20] and to generate HHG spectra with an infrared driving
laser in a time-dependent Schrödinger equation solution of
a one-dimensional model [21]. At near-infrared wavelengths,
it was shown that photoelectron spectra carry signatures of
the dressed KH atom when the field strength exceeds the
barrier suppression field and the quiver radius is larger than
the typical size of the system [22]. Interestingly, there appears
to be no discussion in the literature of the SFA theory of HHG
formulated in the KH frame in low frequency infrared and
near-infrared fields. It is the purpose of the present work to
provide such a discussion and highlight the accompanying
physical picture, i.e., to formulate the SFA for HHG in in-
frared or near-infrared fields in the KH frame. It is a main
aim of this work to discuss the alternative interpretation of
the HHG process provided by the KH frame. Of particu-
lar relevance for these purposes is a very recent work [23]
which used an analysis related to the leading-order KH frame
HHG contribution identified here, to reconstruct valence elec-
tron densities and effective potentials from HHG spectra in
crystalline magnesium fluoride and calcium fluoride obtained
with near-infrared fields. Here a theoretical foundation for
such analysis is discussed including a formal identification of
higher-order contributions to the spectra.

The paper is organized as follows. In Sec. II, the SFA
theory for HHG in the KH frame is formulated, discussed,
and illustrated by a simple example. Section III concludes and
provides an outlook.

II. THEORY

A. Expressions for HHG spectra and dipole acceleration

For a sufficiently thin target, propagation effects can be
neglected [24] and the HHG spectrum, i.e., the signal strength
S(ω) as a function of harmonic frequency ω, can be modelled
by [25]

S(ω) ∝ 1

ω2
|ε · ¨̃D(ω)|2, (1)

where ε describes the polarization component of interest of
the generated light and where ¨̃D(ω) is given by the Fourier
transform of the dipole acceleration

¨̃D(ω) = 1

2π

∫ ∞

−∞
dte−iωt d2

dt2
〈D(t )〉. (2)

Here 〈〉 denotes the expectation value of the operator and
involves the integral over the degrees of freedom of the quan-
tum state describing the system. In this paper, the tradition of

strong-field physics in terms of a description by a single-active
electron model with an effective single-electron potential
V (r) will be followed. Note that this approach includes the
independent-electron band structure theory of solids. In the
case under consideration, the dipole operator reads

D = qr, (3)

with q = −|e| for an electron. The investigation of 〈D(t )〉
in an SFA setting was the starting point for the quantum
mechanical treatment of the three-step model of HHG [4].
Here, Ehrenfest’s theorem is used to connect the acceleration
to the force

d2

dt2
〈D(t )〉 = q〈−∇rV (r)〉. (4)

At this point, the reader is reminded about some basic rela-
tions between different forms of the fundamental laser-matter
interaction (see, e.g., Ref. [26] for a recent discussion). A nat-
ural starting point is to introduce the laser-matter interaction
through the minimal coupling by substituting the canonical
momentum p as p → p − qA(t ), with A(t ) the vector po-
tential of the laser pulse. The electric dipole approximation
is often sufficiently accurate to capture dominant effects and
hence A(t ) does not depend on the spatial coordinate but
only on time t as indicated in the notation. The VG Hamil-
tonian then reads HVG(t ) = (p−qA(t ))2

2m + V (r) and the TDSE
reads ih̄ d

dt |ψVG(t )〉 = HVG(t )|ψVG(t )〉. The transformation
|ψ (t )〉 = T (t )|ψVG(t )〉 into the accelerated KH frame [19] is
performed by the unitary operator

T (t ) = e
i
h̄

q
m α(t )·pe

i
h̄

∫ t dτ
q2A(τ )2

2m , (5)

where α(t ) is the spatial quiver amplitude

α(t ) = −
∫ t

dτA(τ ). (6)

The KH Hamiltonian reads

H (t ) = p2

2m
+ V

(
r + q

m
α(t )

)
. (7)

Symbols without superscript denote quantities in the KH
frame. Hence, the symbol |ψ (t )〉 denotes the solution to the
TDSE with the Hamiltonian from Eq. (7).

The operator T (t )†T (t ) = 1 is inserted on the right-
hand side of Eq. (4) and effectuates the transformation
from the VG to the KH frame as follows: 〈−∇rV (r, t )〉 =
〈T (t )†{T (t )[−∇rV (r)]T (t )†}T (t )〉 to obtain

d2

dt2
〈D〉 = q〈ψ (t )| − ∇rV

(
r + q

m
α(t )

)
|ψ (t )〉, (8)

where the bra and ket in the KH frame are explicitly included
on the right-hand side. Of course the result in Eq. (8) could
be stated directly from the Hamiltonian in Eq. (7) by ap-
plying Ehrenfest’s theorem. The above unitary-transformation
perspective might be useful to some readers and is therefore
included.

To proceed it is useful to consider the formulation in
wave-vector space. Here the Fourier transforms between
real- and wave-vector space, i.e., r and k space are defined
with the normalizations V (r) = (2π )−3/2

∫
dkeik·rṼ (k) and
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Ṽ (k) = (2π )−3/2
∫

dre−ik·rV (r). These relations are used to
obtain

−∇rV

(
r + q

m
α(t )

)
= −i

(2π )3/2

∫
dk kṼ (k)eik·(r+ q

m α(t )).

(9)
In k space, the expression in Eq. (8) therefore reads

d2

dt2
〈D〉 = −iq

∫
dkkṼ (k)ei q

m k·α(t )F (k, t ), (10)

where a time-dependent generalization of the (inelastic) form
factor is identified by

F (k, t ) = 〈ψ (t )| eik·r

(2π )3/2
|ψ (t )〉. (11)

The expressions in Eqs. (8), (10), and (11) form the starting
point for a discussion of the physical picture of the HHG pro-
cess by infrared laser pulses in the KH frame. These equations
are exact within the dipole approximation and can be used
together with Eqs. (1), (2), and (4) to determine the HHG
spectrum for a given system and laser pulse.

In this paper, the focus is on an analysis in terms of a
typical SFA time-evolution-operator-based perturbative series
and the associated alternative interpretation provided by the
KH frame. The development of the SFA series is presented in
the next section.

B. SFA series for the state |ψ(t )〉
To develop the SFA series for the time-dependent state,

|ψ (t )〉, the time-evolution operator formalism [27] will be
used. In the context of SFA, this formalism was used, e.g.,
in Ref. [28] and also in the context of stabilization and the
KH frame [29]. The SFA and applications have recently been
thoroughly reviewed in Ref. [30].

Two alternative partitions of the Hamiltonian in Eq. (7)
are considered. In Eq. (7), one may think of V (r + q

m α(t ))
as a perturbation added to the kinetic energy operator of a
free electron. The latter kinetic energy part is denoted by
HV (t ) = p2/(2m), such that one partition is

H (t ) = HV (t ) + V

(
r + q

m
α(t )

)
. (12)

The subscript V on the first kinetic energy part in Eq. (12)
should remind the reader that in the KH frame, the Volkov
states are simply plane wave states solving the TDSE for
HV (t ).

The other partition of the Hamiltonian in Eq. (7) reads

H (t ) = H0 + VL(t ), (13)

where the potential V (r) has been added and subtracted to
form the field-free Hamiltonian

H0 = p2

2m
+ V (r). (14)

The laser-induced interaction in the KH frame reads

VL(t ) = V

(
r + q

m
α(t )

)
− V (r). (15)

In Eq. (13), VL(t ) takes the role as an additional interaction
which is added to the field-free Hamiltonian and drives the

system away from the field-free initial state, which at the
initial time t0 is denoted by |ψ0(t0)〉.

The different partitions in Eqs. (12) and (13) are used to
develop a perturbative series in the potential V (r) for the
time-evolution operator U (t, t0). Such a perturbative develop-
ment is the foundation of the SFA; the external field is strong
compared with the potential once the electron is freed. The
full time-evolution operator for H (t ) satisfies

ih̄
d

dt
U (t, t0) = H (t )U (t, t0). (16)

The time-evolution operator for H0 of Eq. (14), U0(t, t0), and
the time-evolution operator for the free-particle Hamiltonian
HV (t ) of Eq. (12), UV (t, t0), are defined by equations similar
to Eq. (16). The time-evolution operator of Eq. (16) generates
the state |ψ (t )〉 at a time t from the initial state |ψ0(t0)〉 at t0
by the equation

|ψ (t )〉 = U (t, t0)|ψ0(t0)〉. (17)

It is readily shown by application of the Leibniz integral rule
that both the operator

U (t, t0) = U0(t, t0) − i
∫ t

t0

dt ′U (t, t ′)VL(t ′)U0(t ′, t0), (18)

and the operator

U (t, t0) = UV (t, t0) − i
∫ t

t0

dt ′U (t, t ′)VUV (t ′, t0), (19)

are solutions to Eq. (16). A Dyson series in the potential V
is obtained by iteratively inserting Eq. (19) into Eq. (18). The
present discussion focusses on the leading-order contribution,
and to the lowest order in the potential the approximate result
for the time-evolution operator reads

U (t, t0) 	 U0(t, t0) − i
∫ t

t0

dt ′UV (t, t ′)VL(t ′)U0(t ′, t0), (20)

with the associated approximate solution for the state

|ψ (t )〉 	 |ψ0(t )〉 − i
∫ t

t0

dt ′UV (t, t ′)VL(t ′)|ψ0(t ′)〉. (21)

As expected this equation formally has the same structure as
the equation used for the state in the SFA when formulated
in the VG or LG—it is just the explicit forms of the opera-
tors UV (t, t0) and VL(t ) that have changed due to their gauge
dependence.

The initial state at time t is given by

|ψ0(t )〉 = |ψ0〉e− i
h̄ E0(t−t0 ), (22)

and the UV (t, t0) time-evolution operator is explicitly given by

UV (t, t0) = e− i
h̄

p2

2m (t−t0 ) =
∫

dk|k〉〈k|e− i
h̄

h̄2k2

2m (t−t0 ), (23)

with

〈r|k〉 = 1

(2π )3/2
eik·r. (24)

In subsequent formulas, it will be convenient to introduce the
following short-hand notation for the state in Eq. (21):

|ψ (t )〉 	 |ψ0(t )〉 + |ψ1(t )〉 (25)
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with |ψ1(t )〉 = −i
∫ t

t0
dt ′UV (t, t ′)VL(t ′)|ψ0(t ′)〉. The state

|ψ1(t )〉 describes the laser-induced transition from the ground
state and into the continuum.

C. SFA for the dipole acceleration in the KH frame

In this section, SFA expressions for the dipole acceleration
in the KH frame are considered.

If Eq. (8) is taken as the starting point, and Eq. (25) is
inserted, the result for the dipole acceleration reads

d2

dt2
〈D〉 	 q〈ψ0(t )| − ∇rV

(
r + q

m
α(t )

)
|ψ0(t )〉,

+
(

q〈ψ0(t )| − ∇rV

(
r + q

m
α(t )

)
|ψ1(t )〉 + c.c.

)
.

(26)

where c.c. denotes complex conjugation of the first term in
the parenthesis and where q〈ψ1(t )| − ∇rV (r + q

m α(t ))|ψ1(t )〉
and higher-order terms have been neglected. The time-
dependence associated with the evolution in the initial state
cancels in the first, leading-order term in Eq. (26). This
leading-order contribution can be rewritten as

d2

dt2
〈D〉0 = q

∫
drρ0(r)

(
− ∇rV

(
r + q

m
α(t )

))

= q
∫

drρ0

(
r − q

m
α(t )

)
( − ∇rV (r)), (27)

where ρ0(r) = |ψ0(r)|2 is the initial-state probability density,
and where the second line follows from the first by a simple
change of coordinate. In terms of interpretation, the first line
in Eq. (27) emphasizes the probing of the static charge density
by the force of the potential that changes its origin due to the
laser-induced quiver motion. The second line of Eq. (27), on
the other hand, emphasizes the probing of the force of the
static potential by the quivering charge density set in motion
by the external laser field.

Figure 1 illustrates the potential and the spatially-shifted
densities in the case of atomic hydrogen in its ground state.
The densities are shown for two different instants of time
with α pointing in opposite directions. Therefore the densities
shown by full black and dashed black curves are shifted to
opposite directions. The two arrows indicate that the direction
of the force on the density changes depending on whether the
density moves to the right or to the left in the figure.

For typical atomic potentials, the last factor in Eq. (27)
is relatively strongly peaked at the position of the nucleus
(origin) while the density is relatively slowly varying. These
observations lead to the expectation that the integral can be
accurately evaluated in the peaking approximation (PA). In the
PA, the integral over a product of a strongly peaked function,
g(x), and a slowly varying function, f (x), is approximated
by the product of the slowly varying function evaluated at
the argument x0 for the peak at g(x0) and the integral over
the peaked function, i.e.,

∫
dx f (x)g(x) 	 f (x0)

∫
dxg(x). The

PA has found numerous applications in evaluation of difficult
integrals in scattering theory and atomic collisions, see, e.g.,
Ref. [31]. Due to the simplifications implied by the PA, it is
interesting to consider this approach in the present case, where

-10 -5 0 5 10
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0

1

FIG. 1. Illustration of elements entering the integrant of Eq. (27)
at two different instants of time with opposite directions of α. The
figure shows the Coulomb potential (blue, lower curve), shifted
hydrogenic ground state densities (multiplied by a factor of 4 for clar-
ity) for α = ±5 a.u., and the direction of the force from the Coulomb
potential (arrows). The linear laser polarization and therefore also α

is along the z axis. A finite value of x = x0 = 0.2 was used to avoid
the singularity of the potential at the origin. Atomic units (a.u.) are
used as units on both axes.

the integrant has some properties in favor for its application.
Setting aside mathematic rigor and scaling away issues related
to the presence of a factor (

∫
dr∇rV (r)), the time-dependent

part responsible for the HHG in the PA is modelled by the
following expression in the direction of the linear polariza-
tion ε

d2

dt2
〈ε · D〉PA

0 ∼ −q sgn(α(t )) ρ0

(
− q

m
α(t )

)
. (28)

The factor sgn(α(t )) accounts for the sign of the quiver am-
plitude as a function of time. Physically, the alternating sign
describes that the force on the electron changes direction
depending on whether α(t ) is positive or negative as is seen
from Eq. (27): the initial-state density quivers back and forth
in the force field from the stationary potential (see also Fig. 1).
Equation (28) shows that at the level of the PA, harmonics
are generated from the time-dependent density ρ0(− q

m α(t )).
Hence, in the PA, the leading-order term in the SFA for HHG
in the KH frame generates harmonics as a consequence of
the laser-induced quiver motion traversing the density in the
initial state. Although physically appealing, this PA approach
is too simple since the combination of the density and the
potential term in Eq. (27) is needed for the correct behavior
of the spectra. These aspects are discussed further below in
Sec. II F. If one goes back to Eq. (27), this leading-order term
leads to a physical picture where the harmonics are generated
when the laser-induced space-dependent probing of the den-
sity is weighted by the local force. Or, alternatively, when
the force from the oscillating potential probes the density
in the initial state. Clearly, the laser-induced time-dependent
probing of the spatial density of the initial state is offering
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a different perspective on the mechanism of HHG than the
three-step model of SFA in the LG or VG.

1. The time-dependent inelastic form factor F(k, t )

If Eq. (10) is taken as the starting point for a discussion of
the dipole acceleration in the KH frame, the implications of
performing the SFA of Eq. (21) [or Eq. (25) when using the
short-hand notation] for the state |ψ (t )〉 enter at the level of
the evaluation of the time-dependent form factor of Eq. (11).
The approximation in Eq. (21) gives

F (k, t ) 	 F0(k) + F01(k, t ) + F01(−k, t )∗ (29)

with the time-independent form factor

F0(k) = 〈ψ0| eik·r

(2π )3/2
|ψ0〉, (30)

and the time-dependent form factor

F01(k, t ) = 〈ψ0(t )| eik·r

(2π )3/2
|ψ1(t )〉. (31)

It is seen that the SFA for HHG in the KH frame gives a
contribution which is proportional to the density in the initial
state through

F0(k) = 1

(2π )3/2

∫
drρ0(r)eik·r, (32)

with ρ0(r) the initial-state density in r space. The presence of
a leading-order term proportional to the density is a difference
compared to the SFA model for HHG formulated in the LG or
VG, where the evaluation of the dipole acceleration amplitude
involves a consideration of products of ionization and recom-
bination matrix elements to and from the Volkov continuum
[4]; see also Sec. II E.

If Eq. (32) is inserted in Eq. (10) the leading-order con-
tribution to the dipole acceleration in the KH frame SFA for
HHG is given by

d2

dt2
〈D〉0 = −iq

∫
dkkṼ (k)F0(k)ei q

m k·α(t ). (33)

Of course the physical interpretation of Eq. (33) is the same as
the interpretation of the first term in Eq. (26), i.e., in terms of
the expectation value of the force from the oscillating poten-
tial on the initial state. For example, in k space, the first factor
linear in the vector k inside the integral in Eq. (33) comes from
the force term.

Equation (33) shows clearly how the selection rules for the
harmonics come from a combination of the symmetry prop-
erties of the potential Ṽ (k) and the elastic form factor F0(k).
If the target is isotropic, the product kṼ (k)F0(k) is an odd
function of k, and the last time-dependent factor in Eq. (33)
will lead to the usual odd-even selection rules; see the next
section. Equation (33) is attractive for numerical evaluation
and will be used in the example of Sec. II F.

D. Long-pulse limit

The limit of an infinitely long pulse allows further analysis
of Eq. (10). The following form is considered for the time-

dependent quiver motion:

α(t ) = α0 sin(ωLt ), (34)

with α0 the time-independent amplitude and ωL the frequency
of the driving field. With this choice, the last factor in Eq. (33)
is re-expressed in terms of Bessel functions of integer order,
Jn(x), using the Jacobi-Anger relation

ei q
m α0·k sin(ωLt ) =

∑
n

Jn

(
q

m
α0 · k

)
einωLt . (35)

Inserting Eq. (35) into Eq. (33) gives

d2

dt2
〈D〉 = −iq

∑
n

einωLt
∫

dkJn

(
q

m
α0 · k

)
kṼ (k)F (k, t ).

(36)

To relate to the spectrum, the time integral in Eq. (2) is
considered. If the time dependence in F (k, t ) can be neglected
either because F (k, t ) 	 1 due to the behavior of the integrant
in Eq. (11) or because, the leading-order expression F0(k) of
Eq. (32) is used, this time integral using the expression in
Eq. (36) gives a delta function,

∫ ∞
−∞ dteixt = 2πδ(x). In the

case of the leading-order approximation, the explicit expres-
sion for the HHG amplitude then reads

¨̃D0(NωL ) = −iq
∫

dkJN

(
q

m
α0 · k

)
kṼ (k)F0(k). (37)

If the target is isotropic, the integrant is odd when N is even
(Jn(−x) = (−1)nJn(x)) and there are no harmonics generated.
Accordingly, for isotropic targets only odd harmonics can be
generated. It is re-assuring that this well-known result follows
from the KH frame formulation.

Note in passing, that if the same isotropic system is driven
by a two-color field with frequencies ω and 2ω, α(t ) =
α01 sin(ωLt ) + α02 sin(2ωLt + φ), the exponential in Eq. (35)
reads

ei q
m α(t )·k =

∑
n,l

Jn

(
q

m
α01 · k

)
Jl

(
q

m
α02 · k

)
eilφei(n+2l )ωLt .

(38)

The HHG amplitude in this case therefore reads

¨̃D0(NωL ) = −iq
∑

l

∫
dkJN+2l

(
q

m
α01 · k

)
Jl

(
q

m
α02 · k

)

× eilφkṼ (k)F0(k). (39)

Equation (39) shows that both even and odd harmonics can be
generated. When N is odd, l even can give a nonvanishing
integrant. When N is even, l odd can give a nonvanishing
integrant.

Finally, in this section, some relations to the analysis
performed in Ref. [23] are discussed. In that work HHG spec-
tra of crystalline magnesium fluoride and calcium fluoride
obtained with near-infrared fields were used to reconstruct
valence electron densities and effective potentials. The expres-
sion for the HHG amplitude used in Ref. [23] for the analysis
of the spectra is proportional to the right-hand side of Eq. (37),
except for the absence of the form factor F0(k) in the formula
used in Ref. [23], and with the modification that k takes the
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role of the crystal momentum; see Eq. (3) in Ref. [23]. The
success of the analysis in Ref. [23] seems to indicate that the
one-dimensional cuts considered in that work for the recon-
struction lead to a decrease in the sensitivity to any variation in
the form factor with crystal momentum. In any case, the phys-
ical perspective implied by Eq. (37) allows an interpretation of
spectra that is different than that naturally linked to any three-
step model-like picture, be it in atoms, molecules or solids.

E. Remarks on the relation between the leading-order KH
frame SFA for HHG and the three-step Lewenstein model

To shed some light on the relation between the leading-
order KH frame dipole acceleration [Eq. (27) or first term on
the right-hand side of Eq. (26)] and the matrix elements of the
three-step model, it is useful to re-express the former as

q〈ψ0(t )| − ∇rV

(
r + q

m
α(t )

)
|ψ0(t )〉

= q(〈ψ0(t )|T (t ))|( − ∇rV (r))|(T (t )†|ψ0(t )〉), (40)

with T (t ) given by Eq. (5). In Eq. (40), the operator (−∇V (r))
is on the form that is used in the LG or in the VG, i.e.,
without any instantaneous displacement of the coordinate of
the charge particle. Hence, to compare with the expectation
value considered in the three-step model emerging from the
LG and VG formulations, the state T (t )†|ψ0(t )〉 is analyzed
in terms of state-content that enters the SFA for the time-
dependent state in the LG or VG. To make this connection,
the SFA for the three-step model is briefly summarized. Here,
the VG is considered. The LG results are obtained by a simple
substitution of the VG expressions by the ones following from
a treatment in the LG. In the case of the VG, the theory of
Sec. II B. gives the SFA approximation for the state as

|ψVG(t )〉 	 |ψ0(t )〉 + ∣∣ψVG
1 (t )

〉
(41)

with |ψ0(t )〉 the initial state as before and with

∣∣ψVG
1 (t )

〉 = −i
∫ t

t0

dt ′
∫

dk
∣∣ψV,k

VG (t )
〉

× 〈
ψV,k

VG (t ′)
∣∣V VG

L (t ′)
∣∣ψ0(t ′)

〉
. (42)

Here V VG
L (t ) = (p − qA(t ))2/(2m) − p2/(2m) is the laser-

matter operator in the VG. The time-evolution operator
describing the evolution in the laser-dressed continuum is
expressed in terms of the VG Volkov states 〈r|ψV,k

VG (t )〉 =
(2π )−(3/2)eik·re− i

h̄

∫ t
t0

dt ′(h̄k−qA(t ))2/(2m), which solve the TDSE
for a free electron in the presence of V VG

L (t ). The dominating
contributions to the dipole acceleration in the VG are therefore

q〈ψVG(t )| − ∇rV (r)|ψVG(t )〉 (43)

	 q
[〈ψ0(t )| − ∇rV (r)

∣∣ψVG
1 (t )

〉 + c.c.
]
,

where c.c. denotes the complex conjugate of the first term
in the square braket. The characteristic three-step physics in
terms of strong-field ionization, propagation and recombina-
tion steps, is readily identified from Eq. (43) when Eq. (42) is
used.

With these equations at hand the relation between the
leading-order KH frame SFA and the SFA of the three-step
model can be explored. The state T (t )†|ψ0(t )〉can be formally

expressed in terms of its |ψ0(t )〉, |ψVG
1 (t )〉 content and a rest,

|ψ ′(t )〉 as

T (t )†|ψ0(t )〉 = c0(t )|ψ0(t )〉 + c1(t )
∣∣ψVG

1 (t )
〉 + |ψ ′(t )〉 (44)

with

c0(t ) = 〈ψ0(t )|T (t )†|ψ0(t )〉 =
∫

drψ0(r)∗ψ0

(
r − q

m
α(t )

)

(45)

and

c1(t ) = 〈
ψVG

1 (t )
∣∣T (t )†|ψ0(t )〉. (46)

The explicit expression for c1(t ) is not needed here. It can be
obtained by using Eq. (42). The important point is that c1(t ) �=
0. The expression for c0(t ) clearly shows that this amplitude
decreases with increasing |α(t )|.

Inserting Eq. (44) into Eq. (40) gives for nonpolar systems,
where 〈ψ0(t )| − ∇V (r)|ψ0(t )〉 = 0 due to parity selection
rules,

q(〈ψ0(t )|T (t ))|(−∇rV (r))|(T (t )†|ψ0(t )〉)

	 q
[
c0(t )∗c1(t )〈ψ0(t )| − ∇V (r)

∣∣ψVG
1 (t )

〉
+c0(t )c∗

1(t )
〈
ψVG

1 (t )
∣∣ − ∇V (r)|ψ0(t )〉

+c0(t )∗〈ψ0(t )| − ∇V (r)|ψ ′(t )〉
+c0(t )〈ψ ′(t )| − ∇V (r)|ψ0(t ))〉
+c1(t )∗

〈
ψVG

1 (t )
∣∣ − ∇V (r)|ψ ′(t )〉

+c1(t )〈ψ ′(t )| − ∇V (r)
∣∣ψVG

1 (t )
〉

+〈ψ ′(t )| − ∇V (r)|ψ ′(t )〉
+|c1(t )|2〈ψVG

1 (t )
∣∣ − ∇V (r)

∣∣ψVG
1 (t )

〉]
. (47)

Equation (47) shows through the presence of the two first
terms on the right-hand side that the leading-order SFA for
HHG in the KH frame includes contributions from the ma-
trix elements that enter the three-step model of HHG, see
Eq. (43). While Eq. (47) is solely used for analysis of the
nature of the leading-order SFA HHG amplitude in the KH
frame and not for actual computation, it is still interesting to
note that the amplitude c1(t ) will be of the order of the three-
step SFA HHG amplitude. The amplitude c0(t ) can be much
larger depending on the value of α(t ). It is therefore expected
that the largest amplitudes in Eq. (47) are c0(t )∗〈ψ0(t )| −
∇V (r)|ψ ′(t )〉 and its complex conjugate, where |ψ ′(t )〉 rep-
resent the content of 〈r|T (t )†|ψ0(t )〉 = ψ0(r − q

m α(t ), t ) that
is neither in |ψ0(t )〉 nor |ψVG

1 (t )〉, i.e., content which in terms
of field-free basis states includes excited and continuum states
for the potential V .

In the context of the LG SFA, the lack of translational
invariance was discussed in Ref. [11]. To mimic the situation
of a dissociating molecule, an atom was displaced from the
origin, while the interaction with the time-dependent external
field still referred to the origin. In this case, unphysical phase
factors and overlap matrix element terms emerge. This situa-
tion was refereed to as the “curse of the displaced atom” [11].
In the context of the leading-order KH SFA a displacement of
the atom is necessarily associated with a displacement of the
binding potential. This is different than in the LG SFA, where
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the atom was displaced without changing the interaction. It is
easy to verify from Eq. (27) or Eq. (33) that the leading-order
SFA for HHG in the KH frame is invariant to shift in atomic
position.

Finally, in this section, which addresses certain character-
istics of the SFA formulation in the KH frame, the question
of the usefulness of a formulation using adiabatic KH frame
states is considered. The adiabatic states in the KH frame are
discussed in detail in Ref. [26]. For example, the adiabatic
state of the initial state is given by ψ0(r + q

m α(t )), i.e., by the
initial state that adiabatically follows and adjusts to the instan-
taneous value of the position of the charged particle. If this
state is used in Eq. (40) it is seen that the result reduces to the
time-independent quantity q

∫
dr|ψ0(r)|2( − ∇V (r)). Hence

no harmonics would be generated by that term in the adiabatic
approach. Then, not surprisingly, in an approach based on
expansion in adiabatic states, the harmonics are generated
by nonadiabatic transitions. As demonstrated in Ref. [26] the
nonadiabatic transitions in the KH frame are given by VG ma-
trix elements. Therefore no benefits, compared to an approach
based on a formulation directly in the VG, would emerge in
the analysis of HHG from working in the basis of adiabatic
KH states.

F. Example

In this section, the theory is illustrated by a simple exam-
ple. The driving laser pulse is taken to be linearly polarized
and to be described by the form

α(t ) = α0 sin2(πt/T ) sin(ωLt ), (48)

with T the pulse duration and ωL the angular frequency.
The peak amplitude α0 = α0ẑ corresponds to an intensity of
3.16 × 1013 W/cm2 and the wavelength is 800 nm. For the
simplest target of atomic hydrogen, the Fourier transform
of the Coulomb potential, V (r) = −Zq2/(4πε0r), is readily
obtained as

Ṽ (k) = − Zq2

4πε0

4π

k2

1

(2π )3/2
. (49)

Using the analytical hydrogenic ground state wave function as
the initial state, the form factor is readily evaluated

F0(k) = 16

(4 + (ka0/Z )2)2

1

(2π )3/2
, (50)

with a0 the Bohr radius. For hydrogen, Z = 1. The depen-
dence on Z is kept to expose the sensitivity to the nuclear
charge. Inserting Eqs. (49) and (50) into Eq. (33) allows the
evaluation of the dipole acceleration in the leading-order SFA
in the KH frame. The spectrum in the polarization direc-
tion ε = ẑ is obtained from Eqs. (2) and (1). Alternatively,
Eqs. (49) and (50) can be used in Eq. (37) to obtain the HHG
amplitude in the long-pulse limit.

It is noteworthy that the dipole acceleration of Eq. (27)
can be evaluated in analytically closed form for the consid-
ered hydrogenic example. The result in the linear polarization
direction, ẑ, of the driving pulse reads

d2

dt2
〈Dz〉0 =q sgn(α(t ))

m2

α(t )2q2
{1 + e−2α̃[−2α̃(α̃ + 1)−1]},

(51)
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FIG. 2. HHG spectrum for atomic hydrogen subject to a linearly
polarized laser pulse containing ten cycles at 800 nm and having
a peak intensity of 3.16 × 1013 W/cm2. The thicker, blue curve is
the result for the leading-order SFA in the KH frame formulation
[Eq. (27) or (33)] for a pulse described by Eq. (48). The other thinner,
red, higher-lying curve presents the estimate for the HHG yield in the
infinitely long pulse limit based on Eq. (37). The spectra have been
nomalized by their maximum values.

where a shorthand notation with α̃ = | q
m α(t )| Z

a0
was used. The

result using the PA of Eq. (28) reads

d2

dt2
〈Dz〉PA

0 ∼ −q 2 sgn(α(t )) e−2α̃ . (52)

As in Sec. II C, this result shows that the source of the dipole
acceleration of HHG can be interpreted as stemming from
laser-induced oscillations of the initial state density ρ0(α̃) =
1
π

e−2α̃ in the force field from the atomic potential.
Figure 2 shows results for the HHG spectra in atomic

hydrogen for a pulse with ten cycles (lower-lying, blue curve)
as well as results for the infinitely long pulse (higher-lying,
red curve). It is seen from the figure that the leading-order
term in the KH frame SFA for HHG gives the characteristic
odd harmonics. The plateau and cutoff features that are often
seen in modeling with the three-step model, but often less
clearly observed in experimental data, are not captured by the
leading-order KH term, and consideration, consequently, of
high-order terms is required to capture these characteristics.
Since, however, the KH leading-order contribution is related
to the dominating |ψ0(t )〉 part of the state in Eq. (21) or
(25), one could expect that the lower-order harmonics (in-
cluding the sub-threshold harmonics) are relatively accurately
described by the KH frame SFA. In the conventional SFA
for HHG, the three-step model is involved in the generation
of both above- and sub-threshold harmonics. There is, there-
fore, no contribution solely depending on the |ψ0(t )〉 part of
the propagated state. The leading-order contribution is from
terms involving |ψ0(t )〉 and the rescattered part, see Eq. (43).
One could therefore expect the LG and VG formulations of
the SFA of HHG, i.e., the quantum version of the three-step
model, to be more challenged than the present KH frame for-
mulation in accurately describing the lower-order harmonics;
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FIG. 3. HHG spectrum for atomic hydrogen subject to a linearly
polarized laser pulse containing ten cycles at 800 nm and having a
peak intensity of 3.16 × 1013 W/cm2. The thicker, blue curve is the
result for the leading-order SFA in the KH frame formulation as in
Fig. 2. The other thinner, red curve is the result of the PA of Eq. (52)
[see also Eq. (28)].

see, e.g., Ref. [18]. Since the present focus is on the KH frame
SFA formulation and the simplest illustration of the theory, the
full assessment of these expectations is work for the future.

The ad hoc PA of Eq. (28) is very easily evaluated. Only
knowledge of the laser pulse and the density of the initial state
orbital is needed for an estimation of the HHG spectrum in this
very naive modeling. The density can be obtained for many
systems using standard quantum chemistry or solid-state soft-
ware packages. Due to its attractiveness for applications, it is
therefore, despite its crudeness, relevant to assess the accuracy
of the PA of Eq. (28). In the case of hydrogen initially in
its ground state, the result for the PA is given in Eq. (52).
In Fig. 3, the spectrum of the leading-order SFA in the KH
frame, also shown in Fig. 2, is compared with the result for the
HHG following the use of the PA for the dipole acceleration.
The figure shows that the PA captures the presence of only
odd harmonics. The figure shows quantitative disagreement
between the spectrum generated by the leading-order term of
the dipole acceleration in the KH frame and its PA result at
harmonics of both low and higher order.

Finally, it is useful to consider a time-frequency analysis
of the HHG signal produced by the leading-order term in the
KH frame SFA formulation, i.e., from the term in Eq. (27) or
in Eq. (33). To this end, a Gabor transform of the considered
term is performed

Gτ (ω, t ) =
∫

dt ′e−iωt ′−(t−t ′ )2/(2τ 2 )

×q〈ψ0(t )′| − ∇rV

(
r + q

m
α(t ′)

)
|ψ0(t ′)〉, (53)

where the width of the time window is chosen to 5π a.u. The
absolute value of the quiver amplitude for the pulse used in
Fig. 2 is shown in the upper panel of Fig. 4. The lower panel
of Fig. 4, shows |Gτ (ω, t )|2 from Eq. (53). A comparison of

FIG. 4. Time-frequency analysis of the HHG spectrum from
Fig. 2. The upper panel shows the absolute value of the nor-
malized quiver amplitude, Eq. (48). The lower panel shows the
time-frequency profile in arbitrary units.

the upper and lower panels shows that most harmonic signal
is emitted when the quiver amplitude goes through zero. The
dominance of these emission times reflects that the dipole ac-
celeration changes sign at these instants and quickly assumes
its maximal values; see the right-hand side of Eq. (27). In the
frame, where the potential is time-dependent and its minimum
moves back and forth according to r + q

m α(t ) the maximum of
the initial state density is probed for α(t ) = 0 and the direction
of the force changes sign, therefore most harmonic signal is
emitted at these instants.

In closing this section on illustrative examples, it is men-
tioned that laser pulses of general ellipticity have also been
considered. Results that are not illustrated in figures here show
that when the ellipticity increases from linear to circular polar-
ization, the signal in the higher orders in the HHG spectrum
decreases. This behavior is well-known from the three-step
model. The description of the physical reason behind this
decrease is linked to the model. In the three-step model,
the signal decreases because the amplitude for recombination
drops since the trajectory of the tunnel-ionized electron misses
the parent ion when the ellipticity increases. In the leading-
order KH-frame formulation, the signal decreases because
the force from the potential [first line in Eq. (27)] or, from
another point of view, the density of the initial state [last line
in Eq. (27)] varies more slowly when α(t ) approaches a circle.

III. CONCLUSION AND OUTLOOK

In this work, the SFA for HHG in infrared and near-infrared
laser pulses was investigated based on a formulation in the
accelerating KH frame. While the development of the SFA
series for the quantum state in the LG or VG leads to a picture
where the harmonics are generated by a dominating term de-
scribing three-step ionization, propagation and recombination
processes, and consequently explicitly involves the consid-
eration of the electronic continuum, the situation in the KH
frame is different. Here the leading-order contribution to the
HHG process describes the harmonics generated as the force
of the time-dependent oscillating potential, −∇V (r + q

m α(t )),
traverses the initial state field-free density, or equivalently as
the time-dependent oscillating density ρ(r − q

m α(t )) probes
the force field of the time-independent static potential. This
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alternative and supplementary perspective has recently proved
its usefulness when expressed in k space, as also considered
here, in analysis of HHG from solid-state systems where it
facilitated the extraction of information about valence poten-
tials and real-space densities based on harmonics up to order
	13 [23]. The successful retrieval of potentials and densities
suggest that the leading-order KH dipole acceleration accu-
rately describe the HHG process in the regime considered
in Ref. [23]. In addition to the leading-order term, in the
present work, the next term of the state vector was also ex-
plicitly given and the procedure for iteration in the potential
of the system was discussed. Some remarks were given on
the elements of the three-step model that contribute to the
leading-order KH frame dipole acceleration. The theory was
illustrated by a simple example in atomic hydrogen.

For molecules, avoiding the limit of large internuclear dis-
tances where the SFA typically has to be suitably amended
[10–14], it could be relevant to revisit predictions for HHG
with the KH frame approach and, e.g., consider spectra as a
function of internuclear distance and alignment and orienta-

tion with respect to polarization of the laser pulse. Moreover,
regarding molecules, it seems that the physical picture asso-
ciated with the present formulation in terms of probing of
the time-dependent laser-shifted density by the force of the
static molecular potential (or equivalently the probing of the
laser-displaced force of the molecular potential by the static
density) could be useful in investigation of chiral properties
due to the very direct link to the chiral potential and the
orbitals in the KH frame. By changing α0 for light with
nonlinear polarization different parts of the potential and the
density will be traced out [see Eq. (27)]. Likewise it seems
natural to pursue a formulation and evaluation of the KH
frame SFA for strong-field ionization with infrared fields.
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