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High-order harmonic generation from twisted bilayer graphene driven by a midinfrared laser field
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Theoretical calculations of high-harmonic generation (HHG) from commensurate twisted bilayer graphene
(tBLG) under intense laser fields are performed. The nonlinear electron dynamics in tBLG is considered by
solving the Liouville–von Neumann equation for a single-particle density matrix, which combines the full energy
bands and momentum matrix elements within the framework of tight-binding approximation. We show that
the pump intensity determines the relative magnitude of two components of the harmonic spectrum parallel
and perpendicular to driving polarization. The important dependence of HHG on twisted angles and crystal
orientations is also presented. Especially in the absence of the relaxation process, the harmonic emission for
twisted angles around 10 ° exhibits an evident decrease in efficiency per layer compared to monolayer graphene
(MLG), which can be interpreted according to Fermi velocity modification. Our calculation also shows that
the relative emission efficiency of different harmonic orders between tBLG and MLG contains redundant
information on both the dephasing time and an empirical parameter characterizing the decay of the interlayer
electron hopping, thus suggesting an all-optical method for the reconstruction of the two parameters. The
reconstruction feasibility is successfully demonstrated by a simple optimization algorithm even if considering the
possible experimental uncertainty of both driving pulse parameters and high-harmonic signals. Our results show
that HHG spectroscopic characteristics in tBLG might serve as a fingerprint to identify the geometric stacking
angle and the electronic interaction between adjacent layers, as well as the strong-field laser induced ultrafast
dephasing process.
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I. INTRODUCTION

Since the first observation of high-harmonic generation
(HHG) in ZnO crystals [1], there has been a lot of interest
in the investigation of the highly nonlinear optical response of
solid materials to intense laser fields [2–9]. The subsequent
experiments demonstrate HHG can be achieved in various
condensed matters driven by intense laser pulses with wave-
length ranging from the near infrared to the terahertz. The
solid HHG originates from the subcycle electron motion and
is strongly dependent on dispersion of energy bands, thus
providing potential applications in probing both ultrafast elec-
tron dynamics [10] and intrinsic information on electronic
structures [11,12]. As a nonlinear frequency up-conversion
process, HHG in solids might also serve as a promising co-
herent radiation source [3,13].

The spatiotemporal symmetries of a laser-solid system
determine some general features of HHG, such as selection
rules imposed on odd or even harmonics [14], carrier-
envelope phase slip of high-harmonic waveforms [15], and the
crystal-orientation dependent modulation for the polarization-
resolved harmonic spectrum [4]. In addition, HHG in different
materials also shows the unique dependence on the waveform
and polarization state of the driving pulse, originating from
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the diversity of the material lattice and band structure [16,17].
Thus, exploration of HHG from a novel material is helpful in
getting deep insight into the microscopic mechanism of this
strong-field process.

Twisted bilayer graphene (tBLG) is such an important
atomically thin material where the two graphene layers are
stacked in an arbitrary orientation. The lattice mismatch be-
tween two atomic layers can give rise to additional freedom to
manipulate electronic features, resulting in the distinct band
structure from pure monolayer graphene (MLG). A large vari-
ety of physical phenomena such as the circular photogalvanic
effect [18], two-dimensional (2D) higher-order topological in-
sulator [19], and very recently magic-angle superconductivity
[20] have been found in the tBLG. The previous investigation
about the tBLG is mainly focused on the physical properties
around the Fermi level in the low-energy region [21,22]. The
nonlinear electronic dynamics in tBLG induced by the intense
laser field has not yet been well discussed. The superlattice
structure acting as an external periodic potential and the in-
terlayer coupling can modify the ultrafast dynamics in tBLG,
particularly for the strong-field driving pulse that can pave
carriers across a large part of the Brillouin zone (BZ). It
is therefore expected that HHG in tBLG will exhibit novel
contents and merit the study on this topic.

The length-gauge semiconductor Bloch equation (SBE)
[23–27] is a widely used model to calculate HHG in
solids, with the advantage of incorporating real material
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parameters and considering relaxation process phenomeno-
logically. The application of the SBE method in tBLG should
consider enough energy bands covering a wide energy range
to support the high excitation in the strong-field process,
which usually involves a large number of bands due to lots of
carbon atoms in the superlattice unit cell. This situation poses
a theoretical challenge, especially for the small-twisted-angle
tBLG, since the number of atoms in the unit cell increases
rapidly with decreasing twisted angle. It has been demon-
strated that the correct treatment of the phase of transition
dipole moments [28,29] is important for calculating high har-
monics with the length-gauge SBE. This is usually difficult
to implement for a tBLG system where numerous electronic
bands are formed in the folded BZ compared with the MLG.
Another theoretical difficulty is that energy bands far away
from the Fermi level will be closer, which easily leads to the
singularity of transition dipole moments owing to its value
inversely proportional to the band gap.

In this work, we calculate HHG in tBLG using our previous
theoretical model that has been successfully applied to MoS2

[30]. The tight-binding approximation is employed to con-
struct the field-free Hamiltonian. We consider the complete
tBLG electronic structures instead of the widely used low-
energy continuum model [22] where only a few bands are
touched. The carrier dynamics in a midinfrared intense field
is treated with the Liouville–von Neumann equation in the
velocity gauge. Our model has a good numerical stability even
if all valence and conduction bands are included. The phase
continuous issue is automatically solved, since in the model
transition dipole moments are replaced with momentum ma-
trix elements, whose phase can be chosen in an arbitrary way.

Another alternative theoretical model is the time-
dependent Schrödinger equation (TDSE) in the Fourier
representation. Ikeda has successfully applied it [31] in the
simulation of high-order nonlinear optical response of the
minimal commensurate tBLG and found rich characteris-
tics in the high-harmonic spectrum. Another velocity-gauge
TDSE has also been developed in Ref. [32]. In the absence
of electron-electron interactions, dephasing, and energy re-
laxation processes, the Liouville–von Neumann equation is
fully equivalent to a set of the single-particle TDSE, where
an electron is initially occupying one of the valence band
states. The unphysical transitions forbidden by the Pauli prin-
ciple are canceled out after the summation of contributions
from all the single-particle equations. Thus, both methods
can not only avoid the phase and numerical instability is-
sue, but also properly take into account the Pauli blocking
of interband transitions [33]. However, our method enables
us to introduce the dephasing effect phenomenologically,
and provides the opportunity to investigate the relaxation
influence on HHG in tBLG. Moreover, we discuss the crystal-
orientation-dependent and twisted-angle-dependent HHG in
tBLG. According to the calculated spectrum, we propose an
all-optical method for the reconstruction of the dephasing time
and the interlayer electron hopping.

II. THEORETICAL METHODS

We consider the lattice structure of tBLG, starting from a
perfect AB stacked form where one of the two sublattices of

one layer sites in the center of the honeycomb structure of
the other layer. The tBLG is then obtained by rotating the top
layer with respect to the bottom layer around the axis passing
through a pair of coincident carbon atom sites. If the rotation
operation produces a superlattice of tBLG, which is a periodi-
cal lattice of supercells, the formed tBLG is commensurate.
This commensurate structure that maintains the translation
symmetry is more suitable for a theoretical description of
electronic properties. Thus, we mainly focus on HHG from
the commensurate tBLG in this work. It has been derived that
the commensurate rotation angle should satisfy [34]

cos θ = 3m2 + 3mr + r2/2

3m2 + 3mr + r2
, (1)

where m and r are coprime positive integers.
The basis vectors (α1,α2) of the commensurate superstruc-

ture can be constructed by the linear combination of two
single-layer graphene lattice vectors (a1, a2) in the form of
α = T(m, n)a, using the column vector symbol α = (α1,α2)T

and a = (a1, a2)T . T(m, n) is a 2×2 transform matrix, whose
explicit expression is written as

T(m, n) =
(

m m + r
−m − r 2m + r

)
, (2)

if r �= 3n, n ∈ N, or

T(m, n) =
(

m + n n
−n m + 2n

)
, (3)

if r = 3n, n ∈ N. Here, a1 = a
2 (1,

√
3) and a2 = a

2 (−1,
√

3)
are the two primitive lattice vectors of the bottom-layer
graphene, with the lattice constant a = 2.46 Å. The above
basis vectors can be illustrated in terms of the minimal com-
mensurate tBLG with a twisted angle θ ≈ 21.8◦, generated by
m = 1 and r = 1, as shown in Fig. 1(a), where the blue (red)
solid circles represent the bottom (top) layer carbon atoms.
We also plot the corresponding reciprocal space in Fig. 1(b),
which shows that the first Brillouin zone (BZ) of the top
layer (blue-dashed hexagon) rotates θ ≈ 21.8◦ anticlockwise
relative to that of the bottom layer (red-dashed hexagon). For
the special case of r = 1, the vector connecting the top layer
Dirac point K and the bottom layer Dirac point Kθ is equal
to one side of the superlattice BZ, with the first BZ given by
the central solid hexagon in Fig. 1(b). The reciprocal lattice
primitive vectors can be chosen as(

G1

G2

)
= 4π

3|α1|2
(

2 −1
−1 2

)(
α1

α2

)
. (4)

We use the tight-binding (TB) model to describe electronic
states of the tBLG by taking account of the carbon 2pz orbital
of electrons in the two graphene layers. The basis function
used to expand electronic eigenstates can be constructed by
the Bloch sum of atomic orbits as

Bi(k, r) = 1√
N

∑
R

eik·(R+τ i )ϕpz (r − R − τ i ), (5)

where the sum runs over the supercell lattice vectors R =
m1α1 + m2α2, and there are N superlattice sites in the crystal.
Here, i labels one atom in the primary supercell, and τ i is the
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FIG. 1. (a) Top view of the commensurate tBLG lattice structure with a twisted angle of θ ≈ 21.8◦ (m = 1, r = 1). a1 and a2 are the
primitive vectors of the bottom layer graphene. α1 and α2 are the basis vectors of the superlattice. (b) Schematic of the BZ corresponding to
panel (a). The red-dashed larger hexagon represents the first BZ of the bottom layer with two inequivalent Dirac points K, K ′. The blue-dashed
hexagon, which rotates θ ≈ 21.8◦ counterclockwise relative to the red-dashed one, is the first BZ of the top layer with two inequivalent Dirac
points Kθ , K ′

θ . The seven smaller hexagons in black are the BZ of superlattice tBLG. M and M′ are the middle points of the BZ side K − Kθ

and K ′ − K ′
θ , respectively.

location of atom i with respect to the origin of the supercell.
We can express the TB eigenstate of the tBLG as

|n, k〉 =
∑

i

cn,i(k)|Bi(k)〉, (6)

where n represents the band index, and k is the crystal mo-
mentum in the superlattice BZ. The corresponding matrix
elements of the field-free unperturbed Hamiltonian H0 are
given by

Hi j (k) = 〈Bi|H0|Bj〉 =
∑

R

eik·Ri j 〈φpz (r)|H |φpz (r − Ri j )〉,
(7)

where Ri j = R + τ i j , and τ i j = τ j − τ i represents the vector
from atom i pointing to atom j in a unit cell.

The matrix elements Hi j (k) can be classified into two cat-
egories in our calculation, according to whether atom i and
atom j are in the same layer or not:

(1) When two atoms are in the same layer, we neglect
the on-site energies and only consider the in-plane nearest-
neighbor hopping. In this case, only those terms satisfying
|Ri j | = acc are retained for the summation over R in Eq. (7),
where acc = 1.42 Å is the nearest carbon-carbon distance in
the MLG. We denote the nearest-neighbor hopping energy
of pz electrons as V 0

ppπ = 〈ϕpz (r)|H0|ϕpz (r − Ri j )〉 with
|Ri j | = acc.

(2) When two atoms are in different layers, the hopping
integral between atom i and atom j is calculated by the fol-
lowing formula based on the Slater-Koster mechanism [35]:

〈ϕpz (r)|H0|ϕpz (r − Ri j )〉

= V 0
ppπ exp

(
−|Ri j | − acc

λ

)[
1 −

(
Ri j · ez

|Ri j |
)2]

+ V 0
ppσ exp

(
−|Ri j | − d0

λ

)(
Ri j · ez

|Ri j |
)2

, (8)

where V 0
ppσ is the hopping integral for two vertically located

atoms in the adjacent layers, d0 is the distance between the two
graphene layers, λ modulates the decay of hopping integral at
the large distance, and ez is the unit vector perpendicular to the
tBLG plane. These parameter values are taken from Ref. [36],
i.e., V 0

ppπ = −3.03 eV, V 0
ppσ = 0.39 eV, d0 = 3.35 Å, and

λ = 0.27 Å.
If the overlap matrix formed by the basis function Bi(k, r)

is approximated by the unit matrix, the direct diagonalization
of Hi j (k) can simultaneously yield the energy band En(k)
and the corresponding eigenstate characterized by expan-
sion coefficients cn,i(k) in Eq. (6). In our work, we perform
the full diagonalization algorithm to obtain complete set of
eigenstates of Hamiltonian matrix. This is important for the
investigation of electronic dynamics in the strong-field regime
since the electron can be subjected to the higher excitation and
their Bloch motion can extend to the larger range. We have
examined the electronic structure model by calculating energy
bands of several tBLGs with different twisted angles. The
calculated band structures are shown in the Appendix. Note
that our model can support the first magic angle θ ≈ 1.08◦ at
which band flattening occurs.

We model the dynamical interaction of tBLG with a laser
pulse under the mean-field approximation by density-matrix
equations, which can take into account Pauli blocking of
interband transitions [33]. The temporal evolution of density-
matrix elements in the velocity gauge and within the dipole
approximation reads [30]

dρmn(k, t )

dt
= − i[Em(k) − En(k)]ρmn(k, t )

− iA(t ) · [p̂(k), ρ̂]mn + dρ(k, t )

dt

∣∣∣∣
decoh

, (9)

where ρ̂ is the density matrix comprising elements
ρmn(k, t ) = 〈m, k|ρ|n, k〉, and A(t ) is the vector potential of
the driving laser field. Unless otherwise indicated, atomic
units (a.u.) are used throughout: e = h̄ = me = 1, where e
and me are the electron charge and mass, respectively. The
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FIG. 2. The parallel (blue solid) and perpendicular (red dashed) polarization components of the high-harmonic spectrum in tBLG with a
twisted angle θ ≈ 21.8◦ under the pulse intensity of (a) I = 8.5×108 W/cm2 and (b) I = 3×1012 W/cm2. The Gaussian pump pulse has a
central wavelength of 4700 nm, a duration of 90 fs, and is linearly polarized along the x axis in Fig. 1(a).

scattering parts beyond the mean-field approximation are
phenomenologically included via the last term of Eq. (9), with
the specific form discussed later. The momentum matrix p̂(k)
consists of the element pmn(k) = 〈m, k|p|n, k〉, whose analyt-
ical expression can be obtained within the TB approximation
as [37]

pmn(k) =
∑

i j

c∗
m,i(k)cn, j (k)∇kHi j (k). (10)

We note that the term of intra-atomic dipole contribution is
exactly zero here and therefore is removed, due to the fact that
only the pz orbital is considered for each carbon atom site.

Making use of k as a parameter to propagate Eq. (9), we
can obtain the k-resolved time-dependent current density,

jk(t ) ∝ Tr{ρ̂[p̂ + A(t )]} =
∑
mn

pmn(k)ρnm(k, t ) + NvbA(t ),

(11)
where Tr denotes trace, and Nvb is the number of valence
bands. The integral of jk(t ) over the first BZ can give the total
current density,

J(t ) ∝
∫

BZ
jk(t )d2k. (12)

The resulting HHG spectrum I (ω) is obtained by perform-
ing the Fourier integral of J(t ) as

I (ω) ∝
∣∣∣∣ω

∫
exp(iωt )J(t )dt

∣∣∣∣
2

. (13)

Equation (9) is numerically solved for each independent k
by the classical fourth-order Runge-Kutta method combined
with an adaptive step-size routine. We choose the first BZ
spanned by the primitive reciprocal vectors, and sample k
points with uniform grid spacing along two nonorthogonal
directions G1 and G2. The grid interval of crystal momentum
is fixed to δk = 0.008 a. u. The evolution time step is initially
set as δt = 0.07 fs, which could be shortened by the adap-
tive algorithm in order to meet the required accuracy within
ε = 10−6. The simulation convergence has been checked by
the comparison of results obtained with decreasing δk and ε.

III. RESULTS AND DISCUSSION

A. Crystal-orientation-dependent HHG from tBLG

The driving laser intensity is an important parameter that
affects the excitation of electrons from valence band to con-
duction band, which could lead to the competition between
the interband- and intraband-mechanism HHG. Thus, we have
observed the general feature of the harmonic spectrum from
the minimal commensurate tBLG driven by both weak and
strong pump intensity. A linearly polarized midinfrared (MIR)
driving pulse is employed, with a central wavelength of 4700
nm and a pulse duration of 90 fs in the Gaussian envelope.
We neglect the relaxation progress in this section, and their
influence will be discussed in Sec. III C.

Figure 2(a) shows the polarization-resolved high-harmonic
spectrum generated for a driving pulse having a relatively
weak peak intensity of 8.5×108 W/cm2. Here, The blue solid
and red dashed lines represent the harmonic component per-
pendicular and parallel to the polarization of the driving pulse,
respectively. In the calculation, the driving pulse is polar-
ized along the x-axis direction [see Fig. 1(a)], i.e., ξ = 0◦,
which belongs to a non-high-symmetry crystal orientation.
One can see from Fig. 2(a) that discrete and clean odd har-
monics are present, with the comparable intensity for the
parallel and perpendicular component. The absence of even
harmonics originates from the structures that are even under
sublattice exchange (SE) [22], making an inversion symmetry
with respect to such as the S point shown in Fig. 1(a). Note
that our result is different from Ref. [31], where perpendicular
even harmonics are observed. This is due to the fact that the
lattice structure used in Ref. [31] is SE odd, corresponding to
twist angle θ ≈ 38.2◦ produced from m = 1 and r = 3 in our
notation, and thus lacks inversion centers.

We then increase the driving pulse intensity to 3.0×
1012 W/cm2, and keep other laser parameters unchanged.
Figure 2(b) shows the harmonic spectrum in a direction par-
allel (red dashed line) and perpendicular (solid blue line) to
the polarization of the driving pulse. The obvious difference
from Fig. 2(a) is that the parallel component dominates the
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FIG. 3. The total yield of the high-harmonic spectrum from the
third to the ninth order as a function of polarization direction ξ ,
calculated for two components parallel (blue solid) and perpendic-
ular (red dashed) to the driving polarization. The inset shows the
ξ -dependent parallel component plotted on a linear scale. The laser
parameters are the same as in Fig. 2(b).

harmonic emission, while the perpendicular component can
be negligible for the strong pump intensity. For the same
laser intensity, we further calculate the total harmonic yield
upon varying the crystal orientation, which is described by the
polar angle ξ of driving polarization [see Fig. 1(a)]. Figure 3
shows the total yield of parallel (solid blue) and perpendic-
ular (dashed red) harmonic component as a function of the
polarization angle ξ ranging from 0◦ to 180◦. Here, the yield
is defined as integrating the spectrum from the third to the
ninth harmonic order. It is found that the parallel emission is
always dominate for arbitrary crystal orientation, with its yield
nearly three orders of magnitude larger than the perpendicular
component. In addition, as more clearly seen with a linear
scale by the inset of Fig. 3, the parallel harmonics exhibit
60◦ modulation with changing crystal orientation, reflecting
the sixfold rotation symmetry of the tBLG lattice. In contrast,
the perpendicular harmonics shown in Fig. 3 are deeply mod-
ulated with a period of 30◦, and similar modulation behavior
has also been observed experimentally in other materials, such
as bulk GaSe [9] and topological insulator surface [38]. They
might have the same physical origin, which is attributed to
anisotropic momentum dependence of the band curvature [9].

We now turn to the investigation of the crystal-orientation-
dependent characteristics for different structures of tBLG,
taking the fifth-harmonic order (HH5) as a representative and
study its modulation behavior in detail. It has been demon-
strated that the other odd harmonics represent the same result.
In the typical experiment of HHG from 2D materials [4,6],
the driving pulse intensity is usually at the order of a few
TW/cm2. For providing a guide for possible experimental
observation, we only choose the strong pump intensity from
here on. Thus, it is not necessary to consider two orthogonal
polarization components separately as above, since the per-
pendicular emission is too weak to be observed, as reported
in Fig. 3. For simplicity, we directly work with the total HH5
yield.

Figure 4 shows the HH5 yield as a function of polarization
direction ξ of the driving pulse, calculated for tBLGs with dif-
ferent twist angles: θ ≈ 21.8◦ (olive dash-dotted), θ ≈ 13.2◦
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FIG. 4. The fifth-order average harmonic yield per layer as a
function of the polarization angle ξ , calculated for the conventional
AA (red dashed) and AB stacking (blue dotted) bilayer graphene,
as well as the SE-even tBLGs with twist angle θ ≈ 21.8◦ (olive
dashed-dotted), θ ≈ 13.2◦ (magenta short-dashed), and θ ≈ 9.4◦

(wine short-dotted), respectively. For comparison, the result for the
MLG with the same lattice arrangement as the bottom layer of tBLG
is also plotted by a black solid line. Laser parameters are the same as
in Fig. 2(b).

(magenta short-dashed), and θ ≈ 9.4◦ (wine short-dotted).
Here, we mainly focus on typical tBLGs with r = 1, since
structures with r > 1 are almost-periodic repetitions of the
r = 1 family [39]. Calculations toward the smaller twist angle
(larger m) are cut down due to the time-consuming simulation.
For comparison, we also calculate the HH5 modulation for the
MLG (black solid), together with the conventional bilayer AA
stacking (red dashed) and AB stacking (blue dotted) graphene,
as shown in Fig. 4. Note that the lattice arrangement of MLG
is the same as the bottom layer of tBLG. For all bilayer cases,
the calculated yield has already been divided by 2, reflecting
the average yield per layer.

A common sixfold rotational periodicity is observed for
these six curves in Fig. 4, although their modulation depths
differ from each other. Specifically, the maximal yield for
the MLG occurs at the polarization direction ξ = 60◦×n,
corresponding to the -K direction in the momentum space.
This is because Dirac cones at the K point play a dominant
role in this intense nonlinear process [40]. The modulation in
conventional AA and AB stacking bilayers is in phase with the
MLG since their BZs hold the same orientation and symmetry.
However, there is a phase shift between MLG and tBLGs
with different twisted angle θ . The phase shift can be directly
extracted from Fig. 4 and is found to be θ/2, resulting in such
situation that the maximum harmonic yield is obtained for
the driving polarization along the -M direction as shown in
Fig. 1(b). The feature can be simply interpreted in terms of the
interference of harmonic emission from each layer of tBLG,
as follows:

First, using Eqs. (10)–(12), we can rewrite the total current
density in the form of

J(t ) ∝
∑

i j

∫
BZ

∑
mn

c∗
m,i(k)cn, j (k)∇kHi j (k)ρnm(k, t )d2k,

(14)
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FIG. 5. The fifth-order harmonic yield in tBLG (m = 1, r = 1)
as a function of polarization angle ξ , obtained from the contribution
of bottom-layer current (red solid), top-layer current (blue dashed),
and interference between two layers (olive short-dashed). Laser pa-
rameters are the same as in Fig. 2(b).

where we drop the NvbA(t ) term since it does not contribute to
high harmonics. The outermost summation in Eq. (14) can be
divided into three parts according to whether atom i and atom
j are in the same layer (bottom or top) or not:∑

i j

=
∑

i, j∈top

+
∑

i, j∈bottom

+
∑

i∈bottom, j∈top
i∈top, j∈bottom

. (15)

Therefore, the total current density can be naturally decom-
posed into three parts:

J(t ) = J1(t ) + J2(t ) + J3(t ), (16)

where J1(t ) represents the top-layer current, J2(t ) represents
the bottom-layer current, and J3(t ) represents the interlayer
current.

Then we choose the minimal commensurate tBLG de-
scribed by m = 1 and r = 1 as representative, and numerically
estimate the contribution of each current component in
Eq. (16) to HHG. We find that the intensity of harmonics
induced by J3(t ) is almost four orders of magnitude lower than
the one induced by J1(t ) or J2(t ), so that the J3(t ) component
can be safely neglected. We denote the Fourier transformation
of J1(t ) and J2(t ) as h1(ω) and h2(ω), respectively. Conse-
quently, the total high-harmonic spectrum can be expressed as

I (ω) = |h1(ω)|2 + |h2(ω)|2 + 2Re[h1(ω) · h2(ω)∗], (17)

where the first two terms represent the incoherent sum of
HHG from the top and bottom layers, and the last term repre-
sents the interference between two layers.

We can calculate each term in Eq. (17) upon scanning
the polarization direction of the driving pulse. Figure 5
shows the HH5 yield as a function of polarization direc-
tion, obtained from the top layer |h1(ω)|2 (blue dashed),
the bottom layer |h2(ω)|2 (red solid), and their interference
2Re[h1(ω) · h2(ω)∗] (olive short-dashed). One can see from
Fig. 5 that the interference of two single-layer harmonic emis-
sion is important, and its phase shift relative to the bottom
emission is exactly equal to θ/2, where θ is the twisted angle.
For the single-layer yield alone, the maximal position occurs
at ξ = 60◦×n for the bottom emission and ξ = 60◦×n + θ

TABLE I. Commensurate tBLG structures. N is the number of
atom sites in a primitive cell.

N SE even [θ (m, r)] SE odd [θ (m, r)]

28 [21.8 ° (1, 1)] [38.2 ° (1, 3)]
76 [13.2 ° (2, 1)] [46.7 ° (1, 6)]
148 [9.4 ° (3, 1)] [50.6 ° (1, 9)]
244 [7.3 ° (4, 1)] [52.7 ° (1, 12)]

for the top emission, corresponding to the -K direction of
each respective momentum space. These results can guide us
to further qualitatively consider the incoherent process.

For the bottom layer in tBLG, similar to the monolayer
case, the harmonic yield y1 as a function of the polarization
angle ξ can be expressed as

y1 = C1 + C2 cos 6ξ . (18)

For the top layer, its BZ suffers from a counterclockwise
rotation angle θ , so that a phase shift θ should be added to the
ξ , and therefore its harmonic yield y2 is given by

y2 = C1 + C2 cos[6(ξ − θ )]. (19)

The average yield per layer in tBLG can be derived with
the superposition of these two layers:

y = (y1 + y2)/2 = C1 + C2 cos(3θ ) cos

[
6

(
ξ − θ

2

)]
. (20)

It is evident that there is a phase shift of θ/2 in the inco-
herent yield sum, as described by the latter oscillating term
of Eq. (20), which is the same as the one involved in the
interference term 2Re[h1(ω) · h2(ω)∗]. Thus we can conclude
that the total harmonic yield should have the same phase shift
of θ/2, in accordance with our simulated results.

B. HHG efficiency analysis with different twist angles

To analyze the HHG efficiency, we introduce a harmonic
yield ratio between the tBLG and MLG, which is defined as

RN (θ ) = Y2,N (ξ2, θ )

Y1,N (ξ1)
, (21)

where N denotes the harmonic order, ξ1 (ξ2) is the polariza-
tion angle of the pump pulses, Y1,N (ξ1) is the Nth harmonic
yield in the MLG, and Y2,N (ξ2, θ ) is the Nth harmonic av-
erage yield per layer in bilayers with twist angle θ . The ξ1

and ξ2 are always chosen to make Y1,N (ξ1) and Y2,N (ξ2, θ )
reach maximum, respectively. We mainly focus on the range
of the twist angle θ from 0◦ to 60◦. Note that θ = 0◦ and
θ = 60◦ correspond to conventional AB and AA stacking,
respectively. To reduce the computation cost for tBLG, we
select four SE-even structures (r = 1, m = 1, 2, 3, 4) gen-
erating angles 0◦ < θ < 30◦, and the accompanying four
SE-odd structures (m = 1, r = 3, 6, 9, 12) generating angles
30◦ < θ < 60◦. The twist angle and the number of atom sites
in a primitive cell for these used tBLGs are listed in Table I.
The third (HH3), fifth (HH5), seventh (HH7), and ninth (HH9)
odd harmonics are taken into account for their sufficient yield
in the case of using strong pump intensity.

033113-6



HIGH-ORDER HARMONIC GENERATION FROM TWISTED … PHYSICAL REVIEW A 104, 033113 (2021)

FIG. 6. The HHG efficiency ratio RN (θ ) as a function of the twist
angle θ under three different pump wavelengths: (a) 3500, (b) 4700,
and (c) 5900 nm, calculated for the third (blue circles, HH3), fifth
(red squares, HH5), seventh (orange stars, HH7), and ninth (purple
pluses, HH9) orders. For each case, the pump intensity is fixed at
I = 3×1012 W/cm2 and the pulse duration is set as 90 fs. The de-
phasing process is not considered.

Figure 6(b) shows the HHG efficiency ratio as a function
of the twist angle, calculated for HH3 (blue circles), HH5
(red squares), HH7 (orange stars), and HH9 (purple pluses).
The wavelength of the fundamental pulse is 4700 nm. It is
clear that each curve is symmetric about θ = 30◦, suggesting
that variation tendencies of the SE-even and SE-odd family
are the same. Consequently, we restrict our statement for the
HHG efficiency ratio in a range from 0◦ to 30◦. All curves in
Fig. 6(b) are below 1, indicating a loss of harmonic emission
efficiency at the existence of a twist angle. However, the
conventional AB and AA stacking bilayer graphene exhibit
the comparable HHG efficiency to the monolayer graphene.
Another feature in Fig. 6(b) is that all harmonic orders share
almost the same nonmonotonic behavior with changing twist
angle. The curves drop rapidly at the small angle from 0◦ to
about 10◦, followed by a slow rise at the large angle until
30◦. These two types of variation can be qualitatively un-
derstood by two different mechanisms: (i) multiband effect
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FIG. 7. The Fermi velocity ratio v̄F (θ ) in tBLGs as a function of
the twist angle θ , which is generated for the r = 1 family by varying
m from m = 1 (θ ≈ 21.8◦) to m = 30 (θ ≈ 1.08◦).

at small angles and (ii) Fermi velocity modification at large
angles.

At small angles, the band structure of tBLGs shows more
dense distribution due to the BZ folded in comparison with
the monolayer case (see the Appendix). More conduction and
valence bands are gathered in the vicinity of the Fermi level
as the twist angle decreases from θ = 10◦ to θ = 0◦, so that
electron excitation to the higher band is possible during the
strong-field interaction process. Thus the harmonic emission
is strongly enhanced due to the multiband effect, well consis-
tent with the notably rising part from θ = 10◦ to θ = 0◦ in
Fig. 6(b).

At large angles, however, the multiband effect is markedly
reduced because energy bands are well separated. Conse-
quently, the dynamics of tBLG exposed in a MIR laser
field can be approximately governed by one valence and one
conduction band at both sides of the Fermi level. For the
two-band model, the Fermi velocity that is related to off-
diagonal elements of the effective Hamiltonian matrix can
determine the induced harmonic current, i.e., the HHG effi-
ciency [22,41]. Here we introduce the Fermi velocity ratio,
defined as v̄F (θ ) = vF (θ )/vF0, where vF (θ ) and vF0 are the
Fermi velocity in tBLG and MLG, respectively.

The theoretical evaluation of the vF (θ ) is based on the
approximate equation of linear dispersion around the Dirac
point KD:

E±(q) = ±vF (θ )|q| + μ, (22)

where q = k − KD is the crystal momentum measured rel-
ative to KD. The fitting of the exact calculated data for the
uppermost valence and the lowest conduction band to Eq. (22)
can yield vF (θ ). In the calculation, we use tBLG of the r = 1
family and vary m from m = 1 to m = 30. The obtained Fermi
velocity ratio v̄F (θ ) as a function of the twist angle is plotted
in Fig. 7. For the angle decreasing from θ = 21.8◦ to the
vicinity of θ = 10◦, it can be seen that the Fermi velocity ratio
gradually falls off, well consistent with the slow decline of the
HHG efficiency during that angle range as shown in Fig. 6(b).
The suppressed coherent interlayer hopping at low energy,
arising from the momentum mismatch between the Dirac
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cones in different layers [21], results in the twisted-angle-
dependent Fermi velocity in tBLG and therefore is responsible
for the reduction of the HHG efficiency.

We also alter the wavelength of the driving pulse to
calculate the twisted-angle-dependent HHG efficiency ratio.
Figures 6(a) and 6(c) illustrate the results with a pulse at 3500
and 5900 nm, respectively. The HH9 in the 3500 nm case is
removed because of reaching the cutoff. The variation of the
HHG efficiency ratio in Figs. 6(a) and 6(c) exhibits a similar
nonmonotonical tendency as results reported in Fig. 6(b). In
Figs. 6(a)–6(c), the twist angle where the efficiency ratio
reaches the minimum lies commonly in a range between 10◦
and 15◦, with a slight shift dependent on the wavelength. We
can therefore conclude that the driving wavelength has little
effect on the HHG efficiency.

C. Effect of dephasing time and interlayer coupling

In the preceding sections, we mainly study the purely
coherent dynamics in tBLG. It has been demonstrated both
theoretically and experimentally [1,2,4,42] that the dephasing
process is significant for HHG. It is therefore worth exploring
the impact of dephasing on HHG from tBLG.

We start by estimating the validity of Markov approxima-
tion in our case [43]. It has been identified that the exciton
binding energy in tBLG scales from 0.5 to 0.7 eV [44] and
the maximum phonon energy extracted from Ref. [45] is
about 34 meV. The maximum kinetic energy of an elec-
tron driven by the laser field can be estimated by analyzing
the intraband current [3], which is defined as Jra(t ) ∝∫

BZ

∑
n

fn(k, t )∇kEn[k + A(t )]d2k. For tBLG (m = 1, r = 1)

driven by the 4700 nm/3.0×1012 W/cm2 laser pulse, we can
clearly observe the strong Fourier frequency component of
Jra(t ) up to the 15th order of the fundamental field. Conse-
quently, the maximum energy that an electron wave packet can
acquire from the field is estimated at around 4.0 eV. This value
is much larger than the maximum phonon energy and exciton
binding energy, demonstrating the Markov approximation is
applicable [43]. Thus, we can introduce a characteristic con-
stant dephasing rate to describe the scattering terms.

The commonly used phenomenological decoherence term
which describes the exponential decay of off-diagonal ele-
ments of the density matrix has the form[

dρ(k, t )

dt

∣∣∣∣
decoh

]
i j

= −ρi j (k, t )

T2
(1 − δi j ), (23)

where T2 represents the transverse dephasing time. We notice
that Eq. (23) is not gauge invariant. In the velocity gauge
(VG), another gauge-covariant form can be explicitly ex-
pressed as [46,47]

dρ(k, t )

dt

∣∣∣∣
decoh

= − 1

T2E2
g

{H0(k) + A(t ) · p(k),

[H0(k) + A(t ) · p(k), ρ(k, t )]}, (24)

where T2 is the phenomenological dephasing time and Eg has
an energy dimension, which can be defined depending on the
needs of specific situations. Here, we treat T2E2

g as an overall
phenomenological dephasing factor.
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FIG. 8. Comparison of the harmonic spectrum in MLG calcu-
lated by choosing four different size unit cells, including a two-atom
cell associated with the original first BZ in MLG (black solid),
together with 28-atom, 76-atom, and 148-atom cells associated with
the folded BZ whose shapes are the same as (m = 1, r = 1, red
dashed), (m = 2, r = 1, blue dotted), and (m = 3, r = 1, olive
dashed-dotted) tBLG, respectively. The pump pulse is linearly polar-
ized along the -K direction, with a central wavelength of 5900 nm,
a duration of 90 fs, and a peak intensity of 3×1012 W/cm2. The
dephasing time is T2 = 10 fs.

Our theoretical model supports the choice of arbitrary unit
cells containing different carbon atom numbers, as long as
they capture the system’s periodicity. The larger unit cell can
lead to more energy bands in the smaller folded BZ. Since
the transverse relaxation process is related with two different
bands via the off-diagonal elements of the density matrix,
it is first necessary to examine the self-consistency of the
model when the decoherence term is introduced. We have
calculated the HHG spectrum from MLG with several unit
cells, corresponding to the folded BZ of different sizes in the
reciprocal space. Besides the original two-atom unit cell for
the MLG, for comparison we also choose several unit cells
the same as tBLG described by different m and r parameters,
including a 28-atom unit cell for m = 1 and r = 1, a 76-atom
unit cell for m = 2 and r = 1, and a 148-atom unit cell for
m = 3 and r = 1. The calculation is performed by only keep-
ing the bottom-layer Hamiltonian and removing the interlayer
and top-layer Hamiltonian from our models. Two different
relaxation expressions, Eqs. (23) and (24), are, respectively,
incorporated into Eq. (9). Referring to the case of graphene
where the typical dephasing time is found in a 10−100 fs
range [48], T2 = 10 fs is applied for Eq. (23) and T2E2

g =
10 fs eV2 is applied for Eq. (24) to illustrate the situation.
A 90-fs duration driving pulse with a central wavelength of
5900 nm and a peak intensity of 3×1012 W/cm2 is employed.
It turns out that the calculated HHG spectrum with different
BZs are almost identical in both cases. Here, we only show
the result of using Eq. (23) in Fig. 8, indicating that our model
will not produce different results for the variation of energy
band numbers in the folded BZ.

In order to reveal the essentials of the relaxation effect,
we choose the minimal structure of tBLG with θ ≈ 21.8◦ to
calculate the harmonic spectrum. Figures 9(a) and 9(b) exhibit
the HHG efficiency ratio RN (θ ) between tBLG and MLG
as a function of the dephasing time T2 (or T2E2

g ) for HH3
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FIG. 9. The HHG efficiency ratio RN (θ ) in tBLG (θ ≈ 21.8◦) as
a function of dephasing time for the HH3 (blue solid), HH5 (red
dashed), HH7 (olive dot), and HH9 (black dashed-dotted), obtained
from two different relaxation operators: (a) the gauge-variant deco-
herence term Eq. (23) and (b) the gauge-covariant form Eq. (24).
Laser parameters are the same as in Fig. 8.

(blue solid), HH5 (red dashed), HH7 (green dotted), and HH9
(black dashed-dotted), obtained from two different relaxation
operators: (a) the gauge-variant decoherence term Eq. (23)
and (b) the gauge-covariant form Eq. (24). Both tBLG and
MLG include the dephasing process. As shown in Fig. 9, the
four characteristic curves of different orders appear to have a
similar trend. The HHG efficiency ratio first reaches a sharp
peak and then drops to a stable value, as the dephasing time
increases. The dramatic dependence of RN (θ ) on T2 (or T2E2

g )
indicates that the dephasing time has a great influence on the
HHG efficiency ratio. In other words, the impact of ultrafast
decoherence on HHG is quite different for the tBLG and
MLG.

In addition, the four characteristic curves of different or-
ders are separated from each other fairly well along the
horizontal axis. The peak position of characteristic curves
shifts toward a larger T2 (or T2E2

g ) value with increasing
the harmonic order. Another feature in Fig. 9 is that the
curve changes more smoothly on both sides of the peak for
the higher order. We can interpret this point according to the
recollision model of HHG. When electron-hole recombina-
tion leads to photon emission, it takes more time to generate
the higher-harmonic photon. The characteristic time for the
higher harmonics is longer than the lower one, suggesting an
insensitive dependence of the higher harmonics on dephasing
time T2. As a result, the T2-dependent characteristic curve of
higher-order harmonics possesses a slower rising and falling
edge around the peak positon, as shown in Fig. 9. Finally,
we point out that although the exact value of the HHG effi-

FIG. 10. HHG efficiency ratio RN (θ ) as a function of the inter-
layer decay length λ, calculated for the HH3 (blue big dots), HH5
(red squares), HH7 (yellow small dots), and HH9 (purple pluses).
Laser parameters are the same as in Fig. 7 and the dephasing time T2

is set to 10 fs.

ciency ratio is a little different for using different decoherence
expression Eqs. (23) and (24), the typical features of the
characteristic curves are the same.

Equation (8) indicates that the interlayer interaction in our
model is controlled by the decay length λ. We can investigate
the effect of interlayer coupling by varying this parameter.
Figure 10 shows the HHG efficiency ratio RN (θ ) as a function
of λ, calculated for HH3 (blue big dots), HH5 (red squares),
HH7 (yellow small dots), and HH9 (purple pluses). It is found
from Fig. 10 that RN (θ ) at each harmonic order has its own
dependence form on λ. Especially for HH3, the RN (θ ) is
sensitive to λ. For all harmonic orders, as expected, the HHG
efficiency ratio is equal to 1 when the two layers are decoupled
(λ = 0). The interlayer interaction for λ > 0 can modulate the
harmonic process, causing variations in emission efficiency.

D. Retrieval of the dephasing time T2 and interlayer
decay parameter λ

It is well known that the dephasing time T2 is an important
parameter and can usually be obtained by typical photon echo
or electron diffraction experiments. Also, the decay length of
the electron hopping λ needs careful consideration among all
band structure parameters of graphitic systems and, in partic-
ular, there is a demand for the prediction of a fine λ value in
tBLG. Figures 9 and 10 suggest that the HHG efficiency ratio
can be regarded as the information carrier of the dephasing
time T2 and decay parameter λ. Consequently, it is possible to
find an all-optical method for reconstructing T2 and λ from the
observed high-harmonic spectrum.

It is worth pointing out that the reconstruction of dephasing
time is applicable as long as decoherence information can be
well mapped onto the difference among the HHG efficiency
ratios of different orders. Indeed, this difference exists for
using both relaxation operators, as shown in Fig. 9. Thus the
reconstruction validity is equivalent in these two cases. Here
we choose Eq. (23) to illustrate the reconstruction process
and demonstrate the algorithm convergence due to its low
computational cost.
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In order to facilitate a description of the algorithm, we
assume the original T 0

2 = 10 fs and λ0 = 0.27 Å as target pa-
rameters to be reconstructed. The corresponding data of the
HHG efficiency ratio for four orders, considered as a “simu-
lated experiment,” can be directly extracted from data points
at T2 = 10 fs in Fig. 9(a). We denote simulated experimental
data as R0

N , which is known in advance. Our goal is to retrieve
T2 and λ by making use of R0

N and some other parameters such
as laser intensity and pulse duration that can be measured in
the experiment.

For the trial parameters T t
2 and λt , the reconstructed HHG

efficiency ratio which is obtained by our theoretical model is
denoted as Rt

N (T2
t , λt ). For a fixed harmonic order N, we can

define the difference between the original and reconstructed
efficiency ratio as

δN = ∣∣Rt
N (T2

t , λt ) − R0
N

∣∣. (25)

By making full use of the information on four harmonic
orders, we further introduce the mean square error of recon-
struction:

�4=
√

δ2
3 + δ2

5 + δ2
7 + δ2

9/4. (26)

The reconstruction procedure is based on searching two-
dimensional parameter space (T t

2 , λt ) that minimizes �4,
which is implemented by the SIMPLEX algorithm of Nelder
and Mead [49]. However, the optimized solution determined
by our algorithm is sensitive to the initial “guess” value and
easily falls into the local optimum. We thus select a set of
initial values to run the optimal algorithm, which will gener-
ate a sequence of local optimal solutions (T t

2 , λt ) and their
corresponding �4. If these solutions, which are sorted by
the corresponding �4 in descending order, can converge to
a fixed value, we take this global optimal one as the retrieved
result.

Specifically, we use 24 sets of initial values composed of

T i
2 = [0, 5, 15, 20] fs ⊗ λi = [0, 0.2, 0.4, 0.6, 0.8, 1] a.u.

(27)
in our calculation. For each initial value, the optimization
iteration process stops when the SIMPLEX size drops to 10−2.
The local optimal solutions (T2, λ, �4) corresponding to the
24 initial sets are plotted in Fig. 11(a). For better visualiza-
tion, projection of local solutions on the T2-�4 plane and the
λ-�4 plane is shown in Figs. 11(b) and 11(c), respectively.
One can see that good convergence is achieved to generate
the global optimal solution T2 = 9.9 fs and λ = 0.49 a.u. =
0.26 Å, which matches the original value very well. This ex-
cellent agreement of reconstructed results manifests that our
method for measuring dephasing time and interlayer decay
parameter based on the HHG is feasible.

The reconstruction method is dependent on the pulse in-
tensity and duration, which are assumed to be accurate in the
above calculation. To make the simulation more realistic, it
is necessary to extend our study in the case of considering
experimental uncertainty of laser parameters. As guidance,
the influence of the laser peak intensity and pulse duration on
the HHG efficiency ratio are explored and the results for HH3
(blue solid), HH5 (red dashed), HH7 (green dotted), and HH9
(black dashed-dotted) are reported in Figs. 12(a) and 12(b). It
is found that the HH3 and HH9 efficiency ratios are deeply

FIG. 11. The optimization process for retrieving the dephasing
time T2 and interlayer decay parameter λ. (a) The 24 sets of local
optimal solutions (T2, λ, �4) from different initial values, sorted by
the �4 in descending order. (b) Projection of panel (a) on the T2-�4

plane. (c) Projection of panel (a) on the λ-�4 plane.

modulated by the peak intensity and pulse duration, while
HH5 and HH7 change slightly. This feature suggests that HH3
and HH9 information should be removed in the reconstruction
process for improving antinoise ability. We define a new mean
square error of reconstruction only using HH5 and HH7 as

�2=
√

δ2
5 + δ2

7/2. (28)

We also introduce to the original peak intensity and pulse
duration 20% uncertainty error, which is sufficiently larger
for the experimental measurement. The same optimization

FIG. 12. The HHG efficiency ratio RN (θ ) as a function of (a) the
peak intensity and (b) the pulse duration, calculated for HH3 (blue
solid), HH5 (red dashed), HH7 (olive dot), and HH9 (black dashed-
dotted). The original T 0

2 = 10 fs and λ0 = 0.27 Å are used.
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FIG. 13. The optimization process for retrieving the dephasing
time T2 and interlayer decay parameter λ, in the case of introducing to
the original peak intensity and pulse duration 20% uncertainty error.
(a) The 24 sets of local optimal solutions (T2, λ, �2) from different
initial values, sorted by the �2 in descending order. (b) Projection of
panel (a) on the T2-�2 plane. (c) Projection of panel (a) on the λ-�2

plane.

algorithm is performed to minimize �2, except for using the
modified intensity and duration instead of the original ones.
Figure 13(a) shows the local optimal solutions (T2, λ, �2),
whose projection on the T2-�2 plane and the λ-�2 plane are
shown in Figs. 13(b) and 13(c), respectively. It is found from
Fig. 13 that we also get the convergence value T2 = 9.6 fs
and λ = 0.46 a.u. = 0.24 Å. The relative reconstruction error
is 4% for T2 and 11% for λ.

Finally, the reconstruction algorithm is further discussed
by introducing uniformly distributed random noise onto the
HHG signal. By making use of a random number generator,
we introduce to the original MLG and tBLG HHG spectro-
gram a uniform noise with the amplitude equal to ±10% of the
harmonic intensity for HH5 and HH7. A ±10% uncertainty
error in the original peak intensity and pulse duration is also
included. The reconstruction process is the same as the one
used in obtaining Fig. 13. The same optimization algorithm is
performed to minimize �2. We can get the convergence values
T2 = 13.8 fs and λ = 0.80 a.u. = 0.424 Å. The reconstructed
T2 deviation from the original value 10 fs is 3.8 fs, which
is much less than half of the optical cycle T0/2 = 9.83 fs.
Hence this relative error is tolerable. To evaluate the efficacy
of the reconstructed decay parameter, we apply it to calculate
the energy bands of tBLG. It is found that the recalculated
energy bands with the reconstructed parameter λ = 0.424 Å
are almost identical to the original ones given in Fig. 14,

demonstrating the reconstructed decay parameter is reason-
able. It is obvious that for both the ideal and noise-containing
case a satisfactory reconstruction result can be achieved.
Therefore we can conclude that our method can produce solid
results.

IV. CONCLUSIONS

In summary, we have theoretically investigated HHG in
tBLG, arising from the nonlinear optical response to an
intense MIR field. In order to facilitate theoretical calcu-
lations, we mainly consider the commensurate structure of
tBLG which preserves the translation symmetry. The elec-
tronic states of tBLG are constructed by the tight-binding
model, which is combined to time-dependent density-matrix
equations in the velocity gauge for describing strong-field
electron dynamics. Our model can avoid the phase con-
tinuous requirement of transition dipole moments in the
momentum space, and include the Pauli blocking of interband
transitions.

We find that for a wide range of laser intensities the model
can lead to a clear and discrete high-harmonic spectrum. In
particular, under the strong pump intensity that is commonly
used in the experiment for 2D materials, the parallel harmonic
emission is dominate for arbitrary crystal orientation, so that
we can safely ignore the perpendicular component of high har-
monics. We analyze the dependence of harmonic yield on the
crystal orientation for different bilayer graphene systems. The
conventional AA and AB stacking bilayer graphene exhibits
the same crystal-orientation-dependent modulation as MLG.
When the pump laser is polarized along the -K direction,
the maximal harmonic yield can be achieved. In contrast, the
maximal harmonic yield in tBLG occurs for the driving polar-
ization along the -M direction, which can be explained by the
interference of harmonic emission from each layer of tBLG.
In addition, it is found that in the absence of the dephasing
process the harmonic emission efficiency per layer in tBLG
is significantly suppressed for the twisted angle around 10◦
owing to the competition between multiband effects at small
angles and Fermi velocity decrease at large angles. Moreover,
we demonstrate that the HHG efficiency ratio between tBLG
and MLG for a specific harmonic order can be controlled by
the dephasing time T2 and interlayer hopping decay length
λ. This property provides the opportunity to encode these
parameters into the high-harmonic spectrum, thus suggesting
an all-optical method to measure the two parameters. Making
use of an optimization algorithm, we show the feasibility for
simultaneous reconstruction of T2 and λ even under some
experimental uncertainty. Hence, our work is a step toward
describing the dynamics of ultrafast electrons in tBLG by
high-order harmonic spectroscopy.
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FIG. 14. Energy bands of different bilayer graphene systems. The black dashed line in each panel represents the MLG energy band for
comparison.

APPENDIX: BAND STRUCTURES OBTAINED
BY TIGHT-BINDING MODEL

In order to examine the TB model and our numerical code,
we calculate energy bands of several tBLG structures with the
r = 1 family, as shown in Fig. 14. Although complete bands
are obtained, we only plot a few of them around the Fermi
level for better observation. One can find that the distribution
of energy bands near the Fermi level becomes richer with

decreasing the twisted angle (note different scales on each
vertical axis). This originates from the energy band folded in
the smaller BZ for the larger superlattice. For each panel in
Fig. 14, we also plot the upper valence and the lowest conduc-
tion band of MLG by a black dashed line in the corresponding
folded BZ. The first magic angle, θ ≈ 1.08◦, at which band
flattening occurs has been successfully captured, as given by
the last panel in Fig. 14.
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