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A comprehensive theoretical treatment of laser-assisted electron-atom radiative recombination in the presence
of short laser pulses is presented. Our formulation lacks various unphysical effects observed in previous works,
such as oscillations and high-energy tails in the spectrum of emitted radiation; however, it accounts for a
contribution from the field-free process. As a result, the energy distribution of emitted radiation consists of a point
spectrum embedded in a continuum. We demonstrate that the features of the latter are determined by the laser
field. For instance, in the case of a train of pulses, comb structures appear in the radiation spectrum. We attribute
them to constructive interference between probability amplitudes of recombination assisted by each pulse from
the train. Finally, we show that the vector potential describing the laser field is encoded in the spectrogram of
emitted radiation. This suggests the use of the spectrogram for a complete temporal reconstruction of the laser
field, irrespective of whether it is an isolated pulse or a pulse train.
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I. INTRODUCTION

Electron recombination by an atomic target, which occurs
in the presence of a strong laser field, is of fundamental
importance for the development of strong-field physics and
related areas such as attoscience. The point is that laser-
assisted radiative recombination (LARR) is the underlying
mechanism of high-order harmonic generation (HHG), which
has played a pivotal role in the development of nonlinear
optics. It has been proposed [1,2] that ionized electrons can
be returned to the ionized core by an oscillating laser field
and recombine, thus releasing the harmonics that are multiples
of the laser photon energy. Due to their phase coherence,
a proposal to synthesize the HHG spectrum into attosecond
pulses of light has been put forward [3,4]. Currently, attosec-
ond pulses are routinely generated in laboratories worldwide
and find interesting applications in atomic and molecular
physics as well as in nanotechnology (for recent reviews,
see Refs. [5–7]). At this point, we would like to mention
that there is a fundamental difference between laser-assisted
recombination and high-order harmonic generation. In LARR
the incident electron momentum can be arbitrary, while in
HHG this momentum is determined by the first two steps of
the above-described three-step mechanism. In addition, while
LARR is a laser-assisted process, HHG is induced by a laser
field, which makes a significant difference in treating them
quantum mechanically, as described in Sec. II.
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The ability to generate intense and coherent light with con-
trollable properties is one of the most inspiring achievements
of the previous century. Arguably, LARR lies at the heart of
the development of nonlinear optics and laser technology. For
this reason, it has been a topic of numerous investigations.
Except for experimental works such as [8–12], a majority of
them concerned theoretical aspects of LARR and the effect
of an external laser field on the properties of emitted radi-
ation. Essentially, radiative recombination can occur in the
absence of an external field. Thus, the influence of monochro-
matic [13–23] and multicolor [24–28] plane-wave laser fields
was investigated and suggested as a means to control the
LARR spectrum. Most recent investigations have focused on
radiative recombination in the presence of short laser pulses
[29–34], which provide an additional manner of laser con-
trol. Aspects such as carrier-envelope phase effects and the
influence of pulse duration on the spectra of laser-assisted
recombination radiation have been analyzed, hence shining
additional light on the properties of HHG.

In this paper we further analyze the laser-field aspects
of the LARR process. For clarity, we focus on electron-
atom recombination, which involves a short-range atomic
interaction. Note that historically such a process is called
laser-assisted radiative attachment. Since recombination is a
more general term as it covers various scenarios in which the
recombining electron transfers its energy and momentum to
a third body, we use it throughout the paper. In our case,
it is justified to work in the framework of the strong-field
approximation (SFA), as introduced by Keldysh [35], Faisal
[36], and Reiss [37]. In this approximation, the influence of
the atomic potential on the initial electron scattering state
is neglected while the laser field is neglected for the final
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bound electron. Most importantly, we develop a comprehen-
sive theoretical approach to describe LARR, which explicitly
accounts for contributions from the field-free and the field-
modified processes. This is in contrast to previous works
where the bandwidth-limited probability amplitude of LARR
was calculated. Also, we consider an initial electron wave
packet with momentum distribution that allows smearing of
the field-free divergence. While our theory accounts for an
arbitrary laser field, we illustrate it for isolated pulses and
pulse trains. We observe a coherent enhancement of the LARR
spectra for the latter. More specifically, the comb structures in
the spectra appear with an intensity that scales quadratically
with the number of pulses in a train. This ensures synthesis
of the laser-assisted recombination radiation into short pulses,
similar to the proposal of Refs. [3,4] (see also Refs. [30,31]
in the context of LARR). Another aspect of our investigation
relates to temporal reconstruction of the laser field. More
specifically, our time-frequency analysis of the LARR spectra
demonstrates the possibility of in situ measurement of the
laser field. The method is insensitive to the parameters of the
field and can be used for the metrology of both isolated pulses
and pulse trains, therefore proving its great versatility.

The paper is organized as follows. In Sec. II we for-
mulate the theoretical framework of laser-assisted radiative
recombination. We start our consideration by analyzing the
case of a monochromatic electron wave in the initial state
(Sec. II A), which then is generalized to account for coherent
superposition of such waves (Sec. II B). For completeness,
in Sec. II C we provide simplified formulas which are based
on the bandwidth-limited probability amplitude. The electron-
wave-packet model and the laser-field model used in our
paper are introduced in Secs. II D and II E, respectively. The
energy distributions of laser-assisted recombination radiation
are calculated numerically according to our comprehensive
approach and the simplified one in Sec. III A. While the results
discussed there are for isolated laser pulses, in Sec. III B we
present the LARR energy spectra for pulse trains. As a follow-
up, in Sec. III C we perform a time-frequency analysis of our
results. The proposal to use the time-frequency analysis for in
situ measurement of the laser field is put forward in Sec. III D.
Finally, we summarize our results and give prospects for fur-
ther investigations in Sec. IV. More details on derivations are
given in the Appendices.

In our numerical analysis we use the atomic units of mo-
mentum p0 = αmec, energy E0 = α2mec2, length a0 = h̄/p0,
time t0 = h̄/E0, electric-field strength E0 = α3m2

ec3/|e|h̄, and
laser-field intensity I0 = ε0cE2

0 ≈ 7.02 × 1016 W/cm2, where
me and e = −|e| are the electron rest mass and charge, respec-
tively, α is the fine-structure constant, and ε0 = e2/4παh̄c is
the vacuum permittivity. In analytical formulas, on the other
hand, we set h̄ = 1 while explicitly keeping the remaining
fundamental constants.

II. THEORETICAL FORMULATION

Processes which occur in a laser field can be identified
as either laser induced or laser assisted. To mention a few
examples, ionization and high-order harmonic generation are
among laser-induced processes, whereas laser-assisted radia-
tive recombination and scattering belong to the second group.

Such a distinction originates from the fact that laser-induced
processes occur only in the presence of the field, while laser-
modified processes can occur irrespective of it. Note that
properties of the latter are significantly modified by the laser
field.

The probability amplitude of a quantum process can al-
ways be represented as a time integral, which follows from
a relevant dynamical equation such as the Schrödinger equa-
tion in nonrelativistic quantum mechanics. Unfortunately, the
explicit form of the integral is typically not known and one
has to rely on approximations, with the SFA being one of
the most commonly used in the area of strong-field physics.
Irrespective of approximations, the analysis of the time inte-
gral for laser-induced and laser-assisted processes that occur
in a finite laser field is different. Assume that the field lasts
within the finite-time interval from ti to t f . For laser-induced
processes, the corresponding time integral can be simply re-
duced to the interval [ti, t f ]; otherwise the integrand is zero.
However, for laser-assisted processes this is not the case.
The reason is that laser-assisted processes occur irrespective
of the field and hence the integrand defining the probability
amplitude is nonzero also for times t < ti and t > t f . Thus,
the integration limits cannot be restricted in this case to the
interval [ti, t f ]. In fact, restricting the integration limits is
equivalent to introducing an artificial cutoff of the integrand,
which results in the so-called Gibbs effect [38,39]. The lat-
ter leads to the appearance of unphysical oscillations of the
probability distributions, as can be seen in various papers on
LARR (see, e.g., [32–34]). In order to avoid this problem, one
has to appropriately transform the time integral. Below we
illustrate how to perform such a transformation in the case of
laser-assisted radiative recombination, but the same concerns
other laser-assisted processes.

In the following, we present the theoretical formulation
of the laser-assisted radiative electron-atom recombination
followed by the formation of a H− ion and emission of a
resulting photon. The latter can in principle carry an arbitrary
energy, even though it is typically considered in the context
of generation of high-energy x-ray radiation. Keeping this
in mind, we start our investigations by analyzing the LARR
resulting from the interaction with a monochromatic electron
wave.

A. LARR by the impact of a monochromatic electron wave

Consider recombination of an electron by a short-range
atomic potential V (r) in the presence of a laser field, thus
resulting in emission of a photon. The latter is represented by
a quantized electric-field operator

ÊK (r, t ) = Ê (+)
K (r, t ) + Ê (−)

K (r, t ), (1)

where

Ê (+)
K (r, t ) = iεK

√
ωK

2ε0V
âKe−i(ωK t−K·r),

Ê (−)
K (r, t ) = −iεK

√
ωK

2ε0V
â†

Kei(ωK t−K·r). (2)

Here V is the quantization volume and âK and â†
K are the

annihilation and creation operators, respectively, of a photon
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with energy ωK , wave vector K, and linear polarization εK . In
the length gauge, the probability amplitude of recombination
is given by

A(p) = −i
∫ ∞

−∞
dt〈ψB(t ); 1K | − eEK (r, t ) · r|ψ (+)

p (t ); 0K〉,
(3)

where |ψ (+)
p (t ); 0K〉 describes the initial state of the system,

which involves the electron carrying the momentum p in the
scattering state ψ (+)

p (r, t ) and no photons, and |ψB(t ); 1K〉 is
the final state of the system that describes the electron in the
bound state ψB(r, t ) of energy EB and an emitted photon. In
this case, Eq. (3) becomes

A(p) = e

√
ωK

2ε0V

∫ ∞

−∞
dt

∫
d3r ψ∗

B (r, t )(εK · r)

× ψ (+)
p (r, t )ei(ωK t−K·r), (4)

where in principle ψB(r, t ) and ψ (+)
p (r, t ) represent the exact

electronic wave functions. In our calculations, we approxi-
mate them by

ψB(r, t ) = e−iEBtψB(r) (5)

and

ψ (+)
p (r, t ) = 1√

V
exp

(
− i

p2

2me
t + i[p − eA(t )] · r

+ i

2me

∫ t

0
dτ [2eA(τ ) · p − e2A2(τ )]

)
. (6)

Note that Eq. (5) expresses the stationary time evolution of the
atomic bound state that is not dressed by the laser field. This
is justified as we are dealing in this paper with recombination
assisted by short laser pulses. On the other hand, Eq. (6)
describes the electron of an initial asymptotic momentum p
propagating in the laser field. In other words, we neglect the
influence of the atomic potential on the initial electron. Such
an approximation is particularly well suited for short-range
potentials, like the ones binding the negative ions. It is also
a fundamental quality of the SFA [35–37], which is widely
used in strong-field physics. Note that in Eq. (6), the laser
field is represented by the vector potential A(t ), which will
be specified in Sec. III.

Next we introduce a function

�̃B(p) =
∫

d3r ψ∗
B (r)(εK · r)eip·r

= −i(εK · ∇p)ψ̃∗
B (p), (7)

where ψ̃B(p) denotes the Fourier transform of ψB(r) and ∇p

is the gradient calculated with respect to the momentum coor-
dinates. This allows us to rewrite the probability amplitude of
radiative recombination (4) in the form

A(p) = e

V

√
ωK

2ε0

∫ ∞

−∞
dt �̃B(π(t ))eiQt+iH (t ), (8)

where we introduce the abbreviations

π(t ) = p − eA(t ) − K, (9)

Q = EB + ωK − p2

2me
, (10)

and

H (t ) =
∫ t

0
dτ h(τ )

=
∫ t

0
dτ

(
e

me
p · A(τ ) − e2

2me
A2(τ )

)
. (11)

Note that Eq. (11) implicitly defines the function h(t ). While
Eq. (8) is very general, in order to proceed with further
derivations we need to specify the final electron state. Since
the SFA is particularly well suited to describe short-range
bound systems, we focus on negative ions. Note, however, that
derivations regarding electron-atom radiative recombination
would follow the exact same path, provided the SFA were
applicable in this case. Therefore, we claim that the presented
method is general within the range of applicability of the SFA.

Consider an electron driven by a laser field to recom-
bine into the ground state of a H− ion. As demonstrated in
Ref. [40], for multiphoton ionization of H− it is the electron
wave function at large distances which makes the dominant
contribution to the probability amplitude. For this reason,
additional effects such as polarization of an atom and electron
correlations play a secondary role. Since recombination is
a time-reversed process, we expect that the same argument
applies in our case. Hence, following the work of Gribakin and
Kuchiev [40], we assume that the ground-state wave function
of H− equals

ψB(r) = A√
4π

e−κr

r
, (12)

where κ = √
2me|EB| = 0.2354p0 and A = 0.75

√
p0. Taking

this into account, we derive from Eq. (7) that

�̃B(p) = 4i
√

πA
εK · p

(κ2 + p2)2
. (13)

Substituting now �̃B into the formula defining the probability
amplitude (8), we arrive at the expression

A(p) = 4iA

√
πωK

2ε0

e

V

∫ ∞

−∞
dt

εK · [p − eA(t )]

[κ2 + π2(t )]2
eiQt+iH (t ).

(14)
We will show now that this integral contains a contribution
from the field-free process.

Note that we consider recombination assisted by a laser
field that lasts for a short time, from 0 to Tp. This means that
the vector potential defining the field A(t ) is zero except for
t ∈ [0, Tp]. For this reason, the integral in (14) splits into two
integrals

A(p) = 4iA

√
πωK

2ε0

e

V

(
εK · p

∫ ∞

−∞
dt

eiQt+iH (t )

[κ2 + π2(t )]2

−
∫ Tp

0
dt

εK · eA(t )

[κ2 + π2(t )]2
eiQt+iH (t )

)
, (15)

with the first one needing special attention. This is reminiscent
of the fact that we deal with a laser-assisted process, which
happens even in the absence of the field. In the following, we
will treat this integral according to the prescription introduced
by Boca and Florescu in the context of Compton scattering
[41], which we have adapted for our purpose in Appendix A.
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Thus, using Eq. (A8), we obtain that the probability amplitude
of LARR equals

A(p) = 4iA

√
πωK

2ε0

e

V

(
2πδ(Q)

εK · p(
κ2 + π2

0

)2

− εK · p
Q + iε

∫ Tp

0
dt

F (t )

[κ2 + π2(t )]2
eiQt+iH (t )

−
∫ Tp

0
dt

εK · eA(t )

[κ2 + π2(t )]2
eiQt+iH (t )

)
, (16)

where the iε prescription (ε > 0) allows us to circum-
vent the singularity at Q = 0. Moreover, we recall from
Appendix A that π0 ≡ π(0) = p − K. In addition, we write
down the explicit form of the function F (t ),

F (t ) = e

me
p · A(t ) − e2

2me
A2(t ) + 4i

eE (t ) · π(t )

κ2 + π2(t )
, (17)

where, from Eq. (A4), we have substituted the definition of
h(t ) [as it follows from Eq. (11)]. Here E (t ) = −dA(t )/dt
defines the laser field.

In the most general case, the emitted photon can be ellipti-
cally polarized. More specifically,

εK = cos δεK1 + i sin δεK2, (18)

where δ is the ellipticity parameter, whereas two linearly po-
larized vectors εK1 and εK2 are orthonormal, i.e., εKi · εK j =
δi j for i, j ∈ {1, 2}. In light of Eq. (16), we define the partial
probability amplitudes for each polarization component εK j

( j = 1, 2),

R(0)
j = A(np · εK j )

1(
κ2 + π2

0

)2 , (19)

R(1)
j = A(np · εK j )

∫ Tp

0
dt

F (t )

[κ2 + π2(t )]2
eiQt+iH (t ), (20)

R(2)
j = −A

∫ Tp

0
dt

εK j · eA(t )

[κ2 + π2(t )]2
eiQt+iH (t ), (21)

where np = p/|p| stands for the direction of the electron ini-
tial momentum. Introducing now the abbreviations

R(�)
δ = cos δR(�)

1 + i sin δR(�)
2 (22)

for � = 0, 1, 2 and also

N = 4i

√
πωK

2ε0

e

V
= −4π i

V

√
2αcωK, (23)

we transform Eq. (16) into

A(p) = N
(

2π |p|δ(Q)R(0)
δ − |p|

Q + iε
R(1)

δ + R(2)
δ

)
. (24)

It is interesting now to interpret this expression.
For this purpose, we use the Sokhotski-Plemelj formula

1

x + iε
= P

(
1

x

)
− iπδ(x), (25)

which allows us to distinguish in Eq. (24) two contributions
of essentially different origins, namely,

A(p) = AFM(p) + AFI(p), (26)

where the field-modified and the field-induced probability
amplitudes of recombination are

AFM(p) = 2πN |p|δ(Q)
(
R(0)

δ + i

2
R(1)

δ

)
, (27)

AFI(p) = N
[
−P

(
1

Q

)
|p|R(1)

δ + R(2)
δ

]
. (28)

It follows from Eqs. (17) and (20)–(22) that in the absence of
the laser field R(1)

δ = R(2)
δ = 0. This immediately shows that

the former amplitude AFM(p) simplifies to

AFF(p) = 2πN |p|δ(Q)R(0)
δ , (29)

which is independently derived in Appendix B for the field-
free process. As it is well known, the Dirac δ function in
(29) expresses the energy conservation condition. Namely, it
follows from this condition that the field-free recombination
occurs provided Q = 0. In other words, in the absence of the
laser field, we observe monochromatic radiation with energy

ωK = p2

2me
+ |EB|. (30)

With the laser field included, there is still the contribution
from the field-free process [see Eq. (27)]. This time, however,
it is modified by the laser field. For this reason, we refer to this
process as field-modified recombination. Note that Eq. (30) is
still valid in this case. In contrast, the field-induced contribu-
tion (28) vanishes in the absence of the laser field. Moreover,
we have in this case the contribution from Q 
= 0. Altogether
this means that one should observe a broad spectrum of gen-
erated radiation together with the peak at Q = 0.

So far, we have formulated the theory of laser-assisted
recombination by the impact of a monochromatic electron
wave. This led us to Eq. (24), which possesses a field-free
singularity. Both singular distributions δ(Q) and P ( 1

Q ) can be
removed, however, by considering an electron wave packet, as
presented in the next section.

B. LARR by the impact of an electron coherent wave packet

Assume that initially we have a coherent electron wave
packet that recombines with a hydrogen atom in the presence
of a laser field. The profile of the wave packet is given by the
function fp(q), which is peaked around the momentum p,

fp(q) ≈ δ(3)(q − p). (31)

In other words, we consider a nearly monochromatic initial
electron beam. In order to generalize Eq. (4), we need to
replace the scattering state ψ (+)

p (r, t ) present there by the
wave packet ψ (+)

p [r, t | fp], which functionally depends on the
profile function, namely,

ψ (+)
p [r, t | fp] =

∫
d3q ψ (+)

q (r, t ) fp(q). (32)

By doing that, we immediately realize that the probability am-
plitude of LARR [Eq. (4)] integrated over the initial electron
momentum profile equals

〈A(p)〉 =
∫

d3qA(q) fp(q). (33)
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Taking into account the formula (24), we derive that

〈A(p)〉 = N 〈Rδ (p)〉, (34)

where

〈Rδ (p)〉 = 2π |p|R(0)
δ 〈δ(Q)〉 − |p|

〈
1

Q + iε

〉
R(1)

δ + R(2)
δ .

(35)

Here we have assumed that the amplitudes R(0)
δ , R(1)

δ , and
R(2)

δ are slowly varying functions of their arguments. In
addition,

〈δ(Q)〉 =
∫

d3q δ(Qq) fp(q), (36)
〈

1

Q + iε

〉
=

∫
d3q

fp(q)

Qq + iε
, (37)

and Qq = EB + ωK − q2

2me
. Thus, the momentum profile

smears the singularity at Q = 0 in Eq. (35). Importantly, the
resulting probability amplitude (34) accounts coherently for
contributions from different electron scattering waves con-
tributing to the wave packet (32). In the following, we will
use the amplitude (34) to define the energy distribution of
laser-assisted recombination radiation.

Based on Eq. (34), we define the total energy [per the initial
electron flux je(p)] that is irradiated due to the interaction of
an electron wave packet with a H atom in the presence of a
laser field,

E (p) = 1

je(p)

∫
V d3K
(2π )3

ωK |〈A(p)〉|2. (38)

Here we integrate over the density of final radiation states
V d3K/(2π )3. Next, using the relation |K| = ωK/c, we derive
that d3K = ω2

KdωKd2�K/c3, where d2�K is the solid angle
of emitted photons. One can also figure out that the initial
electron flux is

je(p) = |p|
me

1

V
. (39)

Substituting Eqs. (23), (34), and (39) into (38), we obtain

E (p) = 4α

πc2

me

|p|
∫

d2�K

∫
dωK ω4

K |〈Rδ (p)〉|2. (40)

Rewriting this formula as

E (p) =
∫

d2�K

∫
dωK

d3EK (p)

dωKd2�K
, (41)

we conclude that the triply differential energy distribution (per
the initial electron flux) of photons emitted in the solid angle
d2�K and having energy within the interval (ωK, ωK + dωK )
is

d3EK (p)

dωKd2�K
= 4α

πc2

me

|p|ω
4
K |〈Rδ (p)〉|2, (42)

with 〈Rδ (p)〉 given in (35). This is the main result of our
theoretical formulation, which will be illustrated numerically
in Sec. III. It will be also compared there with the simplified
formulation of LARR, as introduced in Ref. [32]. For com-
pleteness, we will present the aforementioned formulation
below.

C. Simplified formulation of LARR

Following Ref. [32], it is tempting to replace Eq. (14) by

A(p) = 4iA

√
πωK

2ε0

e

V

∫ Tp

0
dt

εK · [p − eA(t )]

[κ2 + π2(t )]2
eiQt+iH (t ),

(43)

where we have restricted the time integral to the interval
from 0 to Tp. This is equivalent to replacing the function
G(t ) = εK ·[p−eA(t )]

[κ2+π2(t )]2 by G(t )θ (t )θ (Tp − t ), where θ (·) is the step
function. Here the integrand is forcefully set up to zero at
times t = 0 and t = Tp, which introduces discontinuity of the
integrand at those times. As we will discuss in Sec. III, such
an abrupt cutoff of the integration limits will lead to some
spurious effects. At this point, we also note that the above
formula coincides with Eq. (14) only if εK · p = 0, i.e., when
the LARR photons are polarized in the direction perpendicular
to the electron’s initial momentum. In this case, photons are
generated along the propagation direction of the electron,
which is the least favorable configuration for LARR. In fact,
we will compare both formulations numerically in Sec. III. To
proceed, we introduce here εK in the most general form given
by Eq. (18). Defining

R̃ j = A
∫ Tp

0
dt

εK j · [p − eA(t )]

[κ2 + π2(t )]2
eiQt+iH (t ), (44)

along with

R̃δ = cos δR̃1 + i sin δR̃2, (45)

we can rewrite Eq. (43) in a more concise form A(p) = NR̃δ ,
with N defined by Eq. (23). To have a reliable comparison
with the results based on the formulation presented in the pre-
ceding section, we introduce now the averaging with respect
to the initial electron momentum distribution fp(q) [Eq. (33)].
Since R̃δ is a regular function of the electron momentum, such
averaging basically gives

〈A(p)〉 = NR̃δ (p). (46)

Hence, following derivations from Sec. II B, we find that the
energy distribution per the initial electron flux is given by
exactly the same formula as (42) except that now 〈Rδ (p)〉 is
replaced by R̃δ (p). Thus, in Sec. III we will calculate (42)
numerically and compare it for both formulations.

D. Electron-wave-packet model

Here we specify the profile of the initial electron wave
packet fp(q) satisfying the condition (31), which will be
used in our numerical analysis. In order to perform integrals
over all intermediate momenta, like the one in Eq. (33), it
is useful to define the cylindrical coordinates with respect to
the direction of the central momentum of the electron wave
packet, np = p/|p|. Specifically, we use the longitudinal and
the transverse components of electron momenta, q‖ = q · np

and q⊥ = q − q‖np, respectively. For a well-collimated elec-
tron beam, we assume that

fp(q) ≈ 1

π

�|p|
(q‖ − |p|)2 + (�|p|)2

δ(2)(q⊥), (47)
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where we neglect the spread of the electron wave packet in
the direction perpendicular to p. The contributing longitudinal
momentum components, on the other hand, are distributed
according to the Lorentzian function which is peaked at |p|
and has the half-width at half maximum (HWHM) equal to
�|p|. It also holds that

lim
�|p|→0

1

π

�|p|
(q‖ − |p|)2 + (�|p|)2

= δ(1)(q‖ − |p|). (48)

With such a model of the wave-packet profile (47), we can
calculate now the averages given by Eqs. (36) and (37). Hence,
we obtain

〈δ(Q)〉 = me

πq0

�|p|
(q0 − |p|)2 + (�|p|)2

(49)

and 〈
1

Q + iε

〉
= 2me

q2
0 − p2 − 2i|p|�|p| − 2iπ〈δ(Q)〉, (50)

where q0 = √
2me(EB + ωK ) is the magnitude of the initial

electron momentum which results in the field-free peak. In
deriving Eq. (50) we used the Sokhotski-Plemelj formula (25).
Note also that it was derived to the leading order in �|p|.
Finally, combining it with 〈 1

Q+iε 〉 = 〈P ( 1
Q )〉 − iπ〈δ(Q)〉, we

obtain that, to the leading order in �|p|, the following holds:〈
P

(
1

Q

)〉
= 2me

q2
0 − p2 − 2i|p|�|p| − iπ〈δ(Q)〉. (51)

It follows from these equations that at |p| = q0, i.e., when
Q = 0, we have 〈δ(Q)〉 = O( 1

�|p| ) and 〈P ( 1
Q )〉 = O(( 1

�|p| )
0).

Furthermore, these formulas allow us to calculate 〈Rδ (p)〉 ac-
cording to Eq. (35) and hence the energy distribution defined
by Eq. (42). This will be done for a model of the laser field
introduced below.

E. Laser-field model

In our numerical illustrations, we will use a linearly po-
larized laser field that is described by the vector potential
A(t ) = A(t )ε such that

A(t ) =
{

A0 sin2M ( ωt
2Nosc

) sin(ωt + χ ) for 0 � t � Tp

0 otherwise.
(52)

It represents a train of identical Nrep laser pulses where each of
them lasts for τp = 2πNosc/ω. Since they have minimal delay
to guarantee their temporal separation, the time duration of
the train equals Tp = Nrepτp. Here ω is the carrier frequency,
Nosc defines the number of cycles within a pulse, χ is the
carrier-envelope phase (CEP), and the parameter M is used to
shape the envelope of a single pulse. We define the constant A0

such that the corresponding electric field E (t ) = E (t )ε, where
E (t ) = −dA(t )/dt , satisfies the condition

max
t

|E (t )| = ηE0. (53)

In principle, η is an arbitrary constant. This means that the
maximum intensity equals

Imax = ε0cη2E2
0 = η2I0. (54)
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FIG. 1. (a) Electric field E (t ) and (b) vector potential A(t ) rep-
resenting a two-cycle (Nosc = 2), sine-squared (M = 1) laser pulse
(52) (Nrep = 1) such that λ = 4000 nm, η = 0.005, and the CEP is
either χ = 0 or π/2, as shown in the legend.

As an example, in Fig. 1 we plot the time dependence of
the electric field E (t ) and the vector potential A(t ) for a two-
cycle laser pulse (Nrep = 1 and Nosc = 2) with the wavelength
λ = 2πc/ω = 4000 nm (hence ω = 0.31 eV) and the sine-
squared envelope (M = 1). In addition, χ = 0 (solid line) or
χ = π/2 (dashed line), whereas the peak intensity of the pulse
is determined by the parameter η = 0.005. As one can see
from Fig. 1, the vector potential satisfies the condition A(0) =
A(Tp) = 0 (here Tp = τp), which follows from a more funda-
mental requirement that for the laser field,

∫ ∞
−∞ dt E (t ) = 0.

The same holds true for our train of identical pulses (52), as
A(�τp) = 0 for � = 0, 1, . . . , Nrep. At this point, it is worth
mentioning that the same laser-field parameters have been
used in our works on strong-field ionization of H− [42,43].
In those papers, we showed that the SFA gives nearly the
same results as numerical integration of the time-dependent
Schrödinger equation with the electron-atom interaction being
modeled by the short-range Yukawa potential. This indicates
that the current parameters are also justified for the SFA-based
description of LARR presented in this paper. For such mod-
els of the laser field, we present next the directional energy
distributions of emitted radiation.

III. NUMERICAL ILLUSTRATIONS

A. Energy distributions of laser-assisted
recombination radiation

Figure 2 shows the energy distributions of emitted radi-
ation resulting from the interaction of a coherent electron
wave packet with a hydrogen atom assisted by the laser pulse;
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FIG. 2. Energy spectra of radiation emitted by an electron evolv-
ing in a laser pulse and being captured by a hydrogen atom. The laser
pulse is plotted in Fig. 1 for χ = 0. The electron is represented by the
wave packet centered at momentum p such that Ep = p2

2me
= 1 eV.

The momentum profile of the wave packet (47) is well collimated,
with the longitudinal spread �|p| = me/ζ |p|τp, where ζ = 104. The
thick blue curve corresponds to Eq. (42), whereas the thin red curve
follows from the simplified LARR theory, as introduced in Sec. II C.
(a) Plot of the data in logarithmic scale and (b) the high-energy
portion of the spectra (which does not contain the field-free peak)
plotted in linear scale.

the latter was represented in Fig. 1 for χ = 0. We assume
that the central momentum of the electron wave packet (47)
corresponds to its initial kinetic energy Ep = p2

2me
= 1 eV. In

order to estimate the HWHM in the electron momentum
distribution (47), we note that the following relation holds:
�Ep = |p|

me
�|p|. We ensure that the electron wave packet does

not spread much during the interaction with the laser pulse,
i.e., over time τp. This is satisfied provided �Epτp � 1.
We can choose ζ � 1 such that �Epτp = ζ−1. Hence, the
HWHM of the momentum distribution (47) equals �|p| =
me/ζ |p|τp. For numerical purposes we take the parameter
ζ = 104. Moreover, we choose the geometry such that np =
ex and nK = cK/ωK = ez. This means that p · K = 0, which
makes for the most efficient generation of the laser-assisted
recombination radiation. For the given geometry, we plot the
energy distribution of radiation that is calculated either ac-
cording to Eq. (42) (thick blue line) or using a simplified
theorem based on Eq. (46) (thin red line). The results are
presented in logarithmic scale in Fig. 2(a) and their enlarged
portions are shown in linear scale in Fig. 2(b). Note that,
for the current parameters, the generated radiation is in the
infrared and near-ultraviolet parts of the spectrum. The reason
is that we deal with a rather low-energy electron beam, so
the energy transfer is also limited. Importantly, we can see
in Fig. 2(a) that the simplified formulation of LARR leads
to an unphysical plateau in the high-energy portion of the

distribution. This tail is an artifact originating from the Gibbs
effect, which occurs in the band-limited Fourier analysis
[38,39]. Also the oscillations, which are shown clearly in
Fig. 2(b), follow from the Gibbs phenomenon. They are
not present in the LARR energy spectrum calculated from
Eq. (42). Another pronounced difference is that, while the
energy distribution (42) exhibits a characteristic peak at the
field-free energy (30), the simplified theory presented in
Sec. II C does not predict that. Despite these differences, the
overall behaviors of both distributions seem to be similar.

At this point, we note that the focus of this paper is on ra-
diative recombination assisted by laser pulses which are much
shorter in duration than the electron wave packet. The latter
is represented by 1/�Ep = me/|p|�|p| = ζ τp and indeed is
much smaller than Tp. In this case, the radiation spectrum
comprises of a very narrow peak and a plateau. As it follows
from Eq. (48), the width of the peak is inversely proportional
to the time duration of the electron wave packet. This means
that the field-modified contribution to recombination spec-
trum [Eq. (27)] is defined for ωK for which the equality Q = 0
is closely satisfied. The field-induced contribution [Eq. (28)],
on one hand, is defined for such an ωK for which Q 
= 0, which
is dictated by the principal value P (1/Q). On the other hand,
Eq. (28) also contains R(2)

δ , which is a continuous function
of Q. This in principle should lead to interference between
field-modified and field-induced contributions in the spectral
distribution of emitted radiation. It follows from Eqs. (49)
and (51), however, that the interference term is negligible (as
compared to the laser-modified one) as long as we deal with
long electron wave packets. Thus, we attribute the peak in the
spectrum to the field-modified process and the plateau to the
field-induced process. The two distinct patterns will also be
seen in spectrograms presented in Sec. III C.

In Fig. 3 we present the results for Ep = 30 eV, with the
remaining parameters the same as in Fig. 2. Naturally enough,
the radiation spectrum shown in Fig. 3(a) extends towards
larger energies, reaching the extreme ultraviolet portion of the
spectrum. We still observe artificial wiggles in the distribution
marked by the red curve, which are followed by the high-
energy oscillations extending far beyond the actual range of
emitted radiation. The latter can be explained qualitatively
with the help of Fig. 3(b), where we plot

ωK (t ) = 1

2me
[p − eA(t )]2 − EB. (55)

This quantity appears in the classical analysis of LARR
[24,30,31], where it represents the energy emitted by an elec-
tron of momentum p that evolves in a laser pulse and is
captured at time t by the atom (see, e.g., Ref. [24]). The
range of (55) is marked with the black vertical lines in both
Figs. 3(a) and 3(b). Since we deal with an electron wave
packet instead, where p represents its central momentum,
those black lines do not exactly match the end points of the
radiation spectrum, as it has been demonstrated in [24] for
a bichromatic laser field. Nevertheless, they clearly mark the
cutoff of the plateau in the LARR spectrum. In Fig. 3(a) one
can also distinguish regions with regular and irregular oscilla-
tions, being separated by the green vertical lines. They match
very well the corresponding regions in Fig. 3(b). Here we dis-
tinguish the regions where the radiation of a given energy can
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FIG. 3. (a) Energy spectra of emitted radiation for the same pa-
rameters as in Fig. 2, except that now Ep = 30 eV. The vertical black
lines mark the irradiated energy cutoffs. In addition, the vertical
green lines mark the borders between the regions of regular and
erratic oscillations. Each of them follows from the analysis of (55),
whose time dependence is plotted in (b).

be emitted either at two different times or more frequently. For
the former, the distribution exhibits very regular oscillations
as the result of interference of only two LARR probability
amplitudes. The interference of four probability amplitudes
at energies corresponding to the central region in Fig. 3(b)
causes a rather erratic behavior of the radiation spectrum. The
same is observed for a different pulse model, as presented in
Fig. 4. In either case, the simplified theory of LARR shows
additional wiggles that we can see clearly in linear scale, for
instance, in Fig. 5 where the portions of the spectra from Fig. 3
are presented. In addition, as we have checked in this case, the
nonphysical tail acquires a maximum at roughly 5 keV. This
maximum is comparable in magnitude to the plateau present
in Fig. 3. Still, we would like to caution that it is an artifact
that follows from restricting the limits of the time integral in
the probability amplitude of LARR. Another manifestation of
the Gibbs phenomenon relates to spectrograms and it will be
presented in Sec. III C.

In closing this section, let us stress that qualitatively the
same results are obtained for other laser-field parameters, in-
cluding more common wavelengths in the midinfrared range.
In this case, however, in order to observe effects similar to
those presented in our paper one has to increase the amplitude
of the laser field. Then the corresponding energy distributions
of emitted radiation have similar structure except that the
interference pattern which they exhibit is less pronounced.
We also believe that the presented SFA-based LARR theory
is justified for higher intensities of a Ti:sapphire laser field
and positively charged ions such as He+, with much higher
binding energies. In this case, however, one has to investigate
the influence of the long-range Coulomb potential on the
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FIG. 4. Same as in Fig. 3 for the laser pulse given by Eq. (52),
except that here M = 2, χ = π/2, and Ep = 10 eV.

resulting distributions of emitted radiation. This can be done,
for instance, by replacing the Volkov solution in the initial
electron state by the Coulomb-Volkov solution.

B. Frequency combs

Another important aspect to investigate is the effect
of a train of pulses on the LARR energy spectrum. For
this purpose, we consider the recombination assisted by a
repetition of two (Nrep = 2) and three (Nrep = 3) laser pulses
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FIG. 5. Enlarged portions of the spectra shown in Fig. 3 in linear
scale.
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FIG. 6. Energy distributions of laser-assisted recombination ra-
diation (42) emitted in the presence of an isolated pulse (Nrep = 1)
that is represented in Fig. 1 for χ = 0 and a train of two (Nrep = 2)
or three (Nrep = 3) such pulses. The remaining parameters are the
same as in Fig. 3. The spectra have been divided by N2

rep.

presented in Fig. 1 for χ = 0. In both cases we observe a
LARR energy spectrum similar to that presented in Figs. 3
and 5, with an extended plateau followed by sharp cutoffs.
According to our analysis above, the latter should occur at the
same energies as for the pulse, which has been confirmed by
our numerical results. There is also the δ-like peak embedded
in the spectrum. To see the difference, in Fig. 6 we plot the
enlarged portions of the energy distributions (42) divided by
N2

rep. Because of the scaling, the results for a pulse form
the envelope for other spectra, here marked with the blue
dashed (Nrep = 2) and the red solid (Nrep = 3) lines. As one
can see, if the recombination is assisted by a train of pulses,
the energy distributions of emitted radiation exhibit comblike
structures with the characteristic N2

rep scaling. At the same
time, the total energy of emitted radiation is increased by a
factor Nrep because each linewidth is narrowed by the factor
1/Nrep. The qualitative explanation of this effect can be based
on derivations presented in Sec. IV. Namely, we can relate
these derivations to Eq. (16), however, neglecting the δ peak.
In doing so, we represent the field-induced contribution of the
probability amplitude of recombination assisted by a train of
Nrep pulses as

ANrep (p) = e(i/2)(Q+Dp)(Nrep−1)τpA1(p)

× sin
[

1
2 (Q + Dp)Nrepτp

]
sin

[
1
2 (Q + Dp)τp

] , (56)

where we have adapted Eq. (C9) to our current situation.
Specifically, A1(p) stands here for the probability amplitude

of recombination assisted by a pulse, Q is given by Eq. (10),
and

Dp = 1

τp
H (τp), (57)

with H (t ) defined by Eq. (11). We conclude from Eq. (56)
that the probability amplitude ANrep takes the maximum values
when(

ωK − p2

2me
+ EB + Dp

)
Nosc

ω
= N, N ∈ Z, (58)

where we have written explicitly the value of Q and sub-
stituted τp = 2π

ω
Nosc. At those energies ωK , the interference

factor given by the sine functions equals Nrep. Thus, the re-
spective probability distributions will be enhanced by a factor
of N2

rep compared to the results for a single pulse. Note also
that this enhancement originates from constructive interfer-
ence of the probability amplitudes of recombination assisted
by each pulse from the train. Another characteristic property
of the LARR spectra is that for Nrep � 2 there appear also
Nrep − 2 secondary maxima, as shown in Fig. 6. As we have
also checked, with increasing Nrep the major peaks become
more narrow. Thus, the spectrum of laser-assisted recombina-
tion radiation becomes similar to a Dirac comb.

We have demonstrated that, due to the electron-atom re-
combination in the presence of a pulse train, the frequency
combs can be generated. Specifically, for the data presented in
Fig. 6 they fall into the extreme ultraviolet regime. In addition,
by increasing the energy of the initial electron beam, we can
extend their range even more. We have therefore a tool for
producing the radiation combs whose energy can be tuned by
the electron beam. Similarly, it can be done in laser-induced
Compton or Thomson scattering, as proposed, for instance, in
Refs. [44,45].

C. Energy distribution spectrograms

Our aim now is to define the spectrogram S(t, ωK ) of a
signal A(ω), where the latter is specified for ω1 � ω � ω2.
For this purpose, we truncate the signal such that it takes zero
values at the boundaries ω1 and ω2. The reason is that the
spectrogram is calculated using the Fourier transform. In this
case, to avoid the Gibbs phenomenon, the integrand has to
be continuous and takes the same values at the boundaries.
Therefore, we define the truncated signal

AT (ω) = A(ω) fT

( ω − ω1

ω2 − ω1
, ξT (ω2 − ω1)

)
, (59)

where ξT is a small parameter and

fT (x,�x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x � 0
sin2( πx

2�x ) for 0 < x < �x
1 for �x � x � 1 − �x
sin2( π (1−x)

2�x ) for 1 − �x < x < 1
0 for x � 1.

(60)

Next we define the short-time Fourier transform of the trun-
cated signal [46]

AST(t, ωK )=
∫ ω2

ω1

dωAT (ω)W (ω−ωK, ξW (ω2−ω1))e−iωt ,

(61)

033112-9
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FIG. 7. (a) and (b) Energy distributions of emitted laser-assisted
recombination radiation that have been presented in Fig. 3. The
spectra were calculated (a) within the complete theory (Sec. II B)
and (b) for its simplified version (Sec. II C). (c) and (d) Their corre-
sponding spectrograms were calculated using the Gaussian window
(62) and the cutoff function (60), with the parameters ξT = 0.1,
ξW = 0.03, ω1 = 1 eV, and ω2 = 65 eV. In (c) the red horizontal
lines mark the beginning and the end of the laser pulse.

where ξW is a parameter determining the width of the window
function W (x,�x). For our purpose, we assume the Gaussian
window

W (x,�x) = e−(x/�x)2

√
π�x

, (62)

which satisfies the condition∫ ∞

−∞
dx W (x,�x) = 1. (63)

Note that if the window is a low-pass function, then evaluating
the integral (61) can be understood as sending the signal
through a bandpass filter W (ω − ωK, ξW (ω2 − ω1)) centered
at the output frequency ωK . Thus, it can be thought of as
the temporal fluctuations of the signal spectrum near the fre-
quency ωK [46]. With this in mind, we define the spectrogram
as

S(t, ωK ) = |AST(t, ωK )|2. (64)

For our purpose, it is good to realize that if the truncated
signal is peaked at ω0, namely, AT (ω) ≈ δ(ω − ω0), then
S(t, ωK ) ≈ |W (ω0 − ωK, ξW (ω2 − ω1))|2. In other words, the
spectrogram represents the window function squared which is
shifted by ω0 and, most importantly, it does not depend on
time. This will be helpful to interpret our results.

In Fig. 7 we show the energy spectra [Figs. 7(a) and 7(b)]
and their corresponding spectrograms [Figs. 7(c) and 7(d)]
calculated according to the above prescription. For the cutoff

FIG. 8. Spectrograms of the energy distribution (42) calculated
for laser pulses represented in Fig. 1 for (a) χ = 0 and (b) χ = π/2.
The remaining parameters are the same as in Fig. 7. Red lines
represent the time dependence of ωK (t ) given by Eq. (55).

function and for the window we have used Eqs. (60) and (62)
with ξT = 0.1, ξW = 0.03, ω1 = 1 eV, and ω2 = 65 eV. Note
that these are the same energy spectra as presented in Fig. 3.
Namely, the results in Figs. 7(a) and 7(c) have been calculated
according to the complete theory presented in Sec. II B and the
results in Figs. 7(b) and 7(d) according to the simplified theory
from Sec. II C. We see that there are two distinct patterns in the
spectrogram in Fig. 7(c). The straight vertical line at roughly
30 eV corresponds to the field-free peak in the spectrum,
which agrees with our analysis of properties of the spectro-
gram. Obviously, this line extends for times t < 0 and t > τp,
as recombination happens also in the absence of the laser
pulse. On top of that line, there is the zigzag pattern that lasts
over the entire duration of the pulse (the latter being marked
by two horizontal lines). This zigzag pattern shows up also in
the spectrogram in Fig. 7(d). What is missing there, however,
is the contribution from the field-free process. Instead, two
unphysical lines at the pulse turning on and off times appear
as evidence of the Gibbs effect, discussed earlier in relation to
Eq. (43). Having worked out the concept of the spectrogram,
we demonstrate in Sec. III D that it can be efficiently used in
metrology of laser fields.

D. LARR-based laser-field metrology

The temporal characterization of a laser field is essential in
studying laser-matter interactions. For this reason, we propose
a method of retrieving such complete characterization of the
laser field from the spectrum of electron-atom LARR. As we
show for both isolated pulses and trains of pulses, the method
is practically insensitive to the precise temporal shape of the
field, thus proving its great versatility.
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FIG. 9. Same as in Fig. 8 but for the train of two pulses (Nrep =
2) and the CEP equal to 0.

In Fig. 8 we present the spectrogram of the energy distribu-
tion of laser-assisted recombination radiation that is generated
in the interaction of an electron with a hydrogen atom and
isolated pulses presented in Fig. 1. Figure 8(a) corresponds to
the pulse with χ = 0, whereas Fig. 8(b) is for χ = π/2. The
parameters used for calculations are the same as in Fig. 7. As
already discussed in the preceding section, both spectrograms
show the pattern which originates from the field-free recombi-
nation. It is the zigzag pattern, however, that is most important
from the point of view of laser-field reconstruction. Obvi-
ously, it varies between both panels depending on the CEP of
the pulse. However, in both cases it follows the red line, which
represents the energy released during the pulse duration by
the recombining electron, i.e., ωK (t ) given by Eq. (55). Since
ωK (t ) depends on the vector potential of the laser field, we can
conclude that A(t ) can be reconstructed from the spectrogram
of the energy distributions of laser-assisted recombination ra-
diation [Eq. (64)]. This is provided the binding energy of the
target and the momentum distribution of the initial electron
wave packet are known.

As we have already mentioned, our approach also can
be used for in situ characterization of a train of pulses. For
illustration, we show in Fig. 9 the spectrogram of the energy
spectrum of laser-assisted recombination radiation in the case
when the process occurs in the presence of a train of two laser
pulses (Nrep = 2). The remaining parameters are the same
as in Fig. 8 with χ = 0. As we see, the spectrogram shows
the same properties as for a single pulse. Most importantly,
the energy ωK (t ) released by a recombining electron at time
t while interacting with the laser field is imprinted in the
spectrogram. This is again emphasized by the red solid line,
which represents the analytical form of ωK (t ).

IV. SUMMARY

We have presented a comprehensive theoretical description
of laser-assisted electron-atom radiative recombination, which
incorporates contributions from the laser-field-free process
along with the laser-field-modified process. This improves the
originally introduced formulation of LARR by Bivona et al.
[32]. We demonstrated various differences between our com-
prehensive treatment of LARR and the one published in [32].

This includes unphysical oscillations and a high-energy tail in
the spectrum of laser-assisted recombination radiation when
calculated using the simplified theory. It also appears there
as an unphysical pattern in spectrograms of emitted radiation.
As we have shown, those features originate from an artificial
cutoff of the range of time integral defining the probability
amplitude of LARR and are related to the Gibbs effect.

We studied the electron-atom recombination assisted by
an isolated laser pulse and a train of pulses. In both cases,
the spectrum of emitted radiation looks similar. Namely, it
consists of a δ-like spectrum embedded in the continuum,
the extent of which can be estimated from the classical argu-
ment presented in Sec. III A. As compared to a single pulse,
the energy spectrum of laser-assisted recombination radiation
emitted in the presence of a pulse train exhibits an additional
structure. More specifically, we observe the frequency combs
with the major maxima scaling as N2

rep, where Nrep is the num-
ber of pulses in a train. Such scaling is a signature of coherent
enhancement. As it follows from our derivations, it can be
attributed to constructive interference of probability ampli-
tudes describing recombination in the presence of each pulse
from the train. Also, with increasing Nrep, the pattern starts
to resemble the Dirac comb. It is particularly interesting as
our predictions take into account the momentum spread of the
initial electron beam. Despite such spread, we still observed
very clear comb structures. Moreover, by changing the initial
electron beam energy we can in principle generate combs in
the broad range of the electromagnetic spectrum. All of these
have potential use in various applications in spectroscopy and
metrology.

A separate problem is that the experimental observation of
LARR is limited. In fact, in neither of the experiments [8–12]
was the mechanism of LARR described in our paper directly
realized. We believe that performing such an experiment,
involving three-body collisions between the laser beam and
beams of electrons and atoms (or ions), is a very demanding
task. Note that a similar level of difficulty concerns, for in-
stance, the laser-assisted electron diffraction experiments by
Kanya et al. [47–49]. This suggests that the current mech-
anism of LARR can in principle be realized in laboratory
by experimental groups studying laser-assisted scattering pro-
cesses. For this to happen, the available experimental setups
have to be equipped with radiation detectors.

We showed in the paper that the laser-assisted recombi-
nation radiation allows for in situ measurement of the laser
field. Namely, the vector potential describing the laser field
can be fully reconstructed from the spectrogram of the emitted
radiation. As long as we consider the electron-atom LARR,
the technique is versatile and can be used, in principle, in
the broad range of the electromagnetic spectrum. As we
have checked, it can also track the CEP variations and is
independent of the particular shape of the laser field. Thereby,
it can be successfully used in the diagnostics of both isolated
pulses and pulse trains.

In closing, we note that our analysis considers the re-
combination by a short-range atomic potential. In this case,
the influence of the Coulomb tail does not blur the effect
of the laser field on the LARR spectra. While we expect
that the main features of the spectra (such as the appearance
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of frequency combs) will be still visible in the presence of
the Coulomb interaction, they will surely be modified. The
same concerns the proposed LARR-based laser diagnostic
method, which works very well for electron-atom radiative
recombination but still has to be verified for the electron-ion
process.
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APPENDIX A: BOCA-FLORESCU TRANSFORMATION

We consider the regularized integral

I (ε) =
∫ ∞

−∞
dt

eiQt+iH (t )−ε|t |

[κ2 + π2(t )]2
, (A1)

where ε > 0 guarantees its absolute convergence. Dividing
this integral into two intervals (−∞, 0] and [0,+∞) and
integrating by parts each of the corresponding integrals, we
arrive at

I (ε) = eiH (0)

[κ2 + π2(0)]2

(
1

i(Q − iε)
− 1

i(Q + iε)

)

− 1

i(Q − iε)

∫ 0

−∞
dt ei(Q−iε)t

(
eiH (t )

[κ2 + π2(t )]2

)′

− 1

i(Q + iε)

∫ ∞

0
dt ei(Q+iε)t

(
eiH (t )

[κ2 + π2(t )]2

)′
,

(A2)

where the prime stands for derivative with respect to t . Re-
turning to the definitions (9) and (11), we have

H (0) = 1, π(0) ≡ π0 = p − K. (A3)

In addition, we introduce the function

F (t ) = h(t ) + 4i
eE (t ) · π(t )

κ2 + π2(t )
, (A4)

with h(t ) implicitly defined in Eq. (11). Here E (t ) =
−dA(t )/dt is the electric component defining the laser field.
Since

(
eiH (t )

[κ2 + π2(t )]2

)′
= iF (t )

[κ2 + π2(t )]2
eiH (t ) (A5)

is zero except for the interval t ∈ [0, Tp], Eq. (A2) takes the
form

I (ε) = 1(
κ2 + π2

0

)2

2ε

Q2 + ε2

− 1

Q + iε

∫ Tp

0
dt

F (t )

[κ2 + π2(t )]2
ei(Q+iε)t+iH (t ). (A6)

In light of Eq. (15), we are interested in the limit of the
above expression when ε → 0. Using the model of the Dirac
δ function

δ(Q) = lim
ε→0

1

π

ε

Q2 + ε2
, (A7)

we obtain, from Eq. (A6),

lim
ε→0

I (ε) =
∫ ∞

−∞
dt

eiQt+iH (t )

[κ2 + π2(t )]2
= 2πδ(Q)

1(
κ2 + π2

0

)2

− 1

Q + iε

∫ Tp

0
dt

F (t )

[κ2 + π2(t )]2
eiQt+iH (t ), (A8)

which is the foundation of our derivations in Sec. II A. Note
that we still keep ε in the term 1/(Q + iε), as it defines the
prescription of how to handle the singularity at Q = 0.

APPENDIX B: FIELD-FREE RECOMBINATION

The probability amplitude of recombination of an electron
carrying the momentum p by a short-range potential V (r) is
given by Eq. (4), where the electron scattering state ψ (+)

p (r, t )
is a plane wave

ψ (+)
p (r, t ) = 1√

V
exp

(
−i

p2

2me
t + ip · r

)
. (B1)

Similar to Eq. (6), the above wave function is normalized in
the volume V . Substituting this formula into Eq. (4) along with
Eq. (7), we obtain that, for the field-free process,

AFF = e

V

√
ωK

2ε0
�̃B(π0)

∫ ∞

−∞
dt ei(EB+ωK−p2/2me )t , (B2)

where π0 was defined in Eq. (A3) and �̃B for a H− ion
considered in this paper was defined by Eq. (13). Substituting
here Eq. (13) and performing the remaining time integral,
which gives the Dirac δ function, we conclude that

AFF = 8iA

√
πωK

2ε0

πe

V

εK · p(
κ2 + π2

0

)2 δ(Q). (B3)

Here we have substituted the definition of Q [Eq. (10)]. Rep-
resenting now εK as in Eq. (18) and also p = |p|np, as well
as substituting the definition of the constant N from Eq. (23),
we arrive at

AFF = 2πN |p|δ(Q)R(0)
δ , (B4)

with R(0)
δ given by Eq. (19).

APPENDIX C: COMBLIKE STRUCTURES IN
LASER-INDUCED AND LASER-ASSISTED PROCESSES

As explained in Sec. II, there is a significant difference in
the theoretical treatment of laser-induced and laser-assisted
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processes. The difference comes from the fact that laser-
assisted processes can happen even in the absence of the field,
which is not the case for laser-induced processes. As argued
in the main text, the probability amplitude of a laser-assisted
process has field-modified and field-induced contributions,
both of which have to be accounted for. It is the latter that
can exhibit coherent comb structures, as we show below. Note
that the same is applicable to laser-induced processes.

Consider the probability amplitude of a quantum process
involving the train of Nrep identical laser pulses, each of
duration τp,

ANrep =
∫ Nrepτp

0
dt G(t )eiQt+iH (t ), (C1)

where Q is a constant and H (t ) = ∫ t
0 dτ h(τ ). We assume that

the function G(t ) is continuous and satisfies the condition

G(0) = G(τp) = 0. (C2)

Moreover, it is repeated Nrep times. The same concerns the
function h(t ). In contrast, H (t ) is not changing repeatedly over
the duration of the train. However, the function Hosc(t ) defined
such that

Hosc(t ) =
∫ t

0
dτ [h(τ ) − D], (C3)

where

D = 1

τp

∫ τp

0
dτ h(τ ) = H (τp)

τp
, (C4)

already is. It also satisfies the condition

Hosc(0) = Hosc(τp) = 0. (C5)

Keeping in mind these definitions, we represent (C1) as

ANrep =
∫ Nrepτp

0
dt G(t )ei(Q+D)t+iHosc (t ). (C6)

Dividing this integral into the sum of integrals as

ANrep =
Nrep∑
K=1

∫ Kτp

(K−1)τp

dt G(t )ei(Q+D)t+iHosc (t ) (C7)

and shifting the variable of integration in each of them by
(K − 1)τp, we conclude that

ANrep = A1

Nrep∑
K=1

ei(K−1)(Q+D)τp, (C8)

where A1 is defined by Eq. (C1) if Nrep = 1. Summing the
above geometric series gives

ANrep = A1e(i/2)(Q+D)(Nrep−1)τp
sin

[
1
2 (Q + D)Nrepτp

]
sin

[
1
2 (Q + D)τp

] . (C9)

As one can see, the probability amplitude of a process in-
volving the train of pulses scales like the one for a single
pulse but it is modulated (up to the overall phase factor) by
the characteristic interference factor. The latter is given by
the term with the sine functions. It follows from this for-
mula that the probability amplitude takes maximum values
when

1
2 (Q + D)τp = πN, N ∈ Z. (C10)

In this case, the interference factor equals Nrep. We therefore
expect to observe the coherent N2

rep enhancement of the re-
spective probability distributions when the above condition is
fulfilled. While the above considerations are the most general,
in this paper we demonstrated how they relate to the field-
induced contribution of the LARR process.
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[13] A. Jaroń, J. Z. Kamiński, and F. Ehlotzky, Phys. Rev. A 61,
023404 (2000).

[14] M. Y. Kuchiev and V. N. Ostrovsky, Phys. Rev. A 61, 033414
(2000).
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Krajewska, Phys. Rev. A 102, 043102 (2020).
[43] L. Geng, F. Cajiao Vélez, J. Z. Kamiński, L.-Y. Peng, and K.
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