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Structured photoelectron distributions in photodetachment induced
by trains of laser pulses: Vortices versus spirals
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The formation of quantum vortices in photodetachment by a sequence of left- and right-handed circularly po-
larized laser pulses in various configurations is analyzed using either the strong-field approximation or numerical
solution of the time-dependent Schrödinger equation. Two types of pulse sequences are considered: reducible
and irreducible. While the former can be decomposed into series of consecutive and identical (irreducible)
subtrains of pulses, the latter cannot be decomposed in that way. As we show, the vortex pattern in the probability
amplitude of photodetachment is fully determined by the irreducible pulse configuration. Additional repetitions
of an irreducible train create, in the three-dimensional momentum space, nonvortex nodal surfaces, the position
of which is estimated. The conditions for the experimental observation of quantum vortices are also determined.
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I. INTRODUCTION

The first experiments on above-threshold ionization [1]
and the low-energy peak suppression in multiphoton electron
spectra [2,3] laid the foundations for the rapid development
of scientific and technological activities devoted to the study
of quantum processes assisted by a strong light field. Fur-
ther research in this direction culminated in the discovery of
high-order harmonic generation [4,5]. The latter has in turn
led to the emergence of attophysics [6–8], which deals with
phenomena taking place on timescales typical for the electron
dynamics in atoms. More or less at the same time, a new
method of laser pulse compression was developed [9], allow-
ing not only shortening of its duration to a few femtoseconds,
but also significantly increasing the maximum intensity. As a
consequence, the area of research on the interaction of strong
laser pulses with matter has significantly expanded to include
not only nonrelativistic physics [10–18], but also relativistic
quantum electrodynamics or plasma and accelerator physics
[19–28].

Theoretical studies of multiphoton ionization by strong
light fields even preceded the experimental achievements dis-
cussed above. We mean here the approach started by Keldysh
[29] (see also the recent review articles in [30,31]) and then
further developed in various directions by other researchers
(see, e.g., [32,33]). This approach is generally called the
strong-field approximation (SFA). Moreover, along with the
development of computational techniques, the direct numer-
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ical solution of the Schrödinger equation is also intensively
developed, which allows us to compare the results obtained
by this method with the predictions arising from the SFA.
However, it should be noted that the approach based on the
purely numerical solution of the time-dependent Schrödinger
equation (TDSE) also has limitations. The most serious one is
its applicability to cases with rather moderate intensities of the
laser field. However, if possible, confronting the predictions
of the SFA with those obtained by the TDSE analysis is
desirable.

The occurrence of the spiral (and presumably also
vortex) structures in the photoelectron momentum distribu-
tions was predicted theoretically in Refs. [34–36]. The topic
was immediately taken up by other theoretical groups (see,
e.g., Refs. [37–47]), pointing to the richness of structures that
may appear in some particular laser-field configurations as
a result of interference of quantum probability amplitudes.
However, it is not only a broad theoretical continuation of
these investigations that constitutes the essential significance
of the approach initiated there, but also their experimental
verifications presented afterward in a series of papers [48–52].
These and related explorations create the possibility to inves-
tigate (experimentally and theoretically) quantum structures
in laser-assisted processes and in general open new directions
in strong-field multiphoton phenomena, not only in atomic or
molecular physics but also in relativistic quantum electrody-
namics, where the pair-creation processes exhibit far-reaching
similarities to ionization.

Although the concept of vorticity has existed for a long
time [53], its mathematical description in modern physics
initially appeared in the works by von Helmholtz [54] and
Thomson [55]. In quantum mechanics vortices have been
studied by Dirac [56], and the first experimental verification
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of the quantization of velocity circulation was demonstrated
in the superfluid He II by Viven [57]. In recent years, we
have also seen increased interest in vortices in other types
of quantum phenomena [58,59]. In particular, in atomic
physics, quantum vortex phenomena have been studied in
Refs. [40,41,44,60–66].

Another aspect of this type of investigation is the presence
of spiral structures in low-energy photoelectron momentum
distributions arising in ionization by two consecutive pulses
of opposite circular polarizations [34]. Such momentum dis-
tributions have been fully verified experimentally [48,49].
Although spiral structures are commonly associated with the
vortex motion, recent studies have shown that these concepts
are not necessarily synonymous in quantum mechanics [45].
The point is that vortices in quantum mechanics appear, in
the three-dimensional space, as curves (and at the intersec-
tions with a plane, mostly as isolated points) where the wave
function is zero and its phase is not uniquely defined. This
leads to the quantization of the nonvanishing circulation of the
wave-function phase gradient, in both position and momen-
tum space [44,67–69]. On the other hand, for spiral structures
we deal with surfaces (their intersection with a plane leads to
curves similar to the Fermat spirals) where the wave function
is reset to zero and its phase, when passing through it, jumps
by π . Accordingly, for any closed contour intersecting those
nodal surfaces an even number of times, the circulation of the
wave-function phase gradient vanishes, provided the contour
does not encircle vortex lines. This means that in quantum
physics spirals and vortices should be treated as independent
concepts. It seems to us that in recent experiments [48,49]
only the spiral structures have been detected, whereas the
experimental verification of the presence of quantum vortices
in ionization by laser pulse configurations proposed in [34]
still remains open. In light of these works, we will investi-
gate here the possibility of formation of quantum vortices in
photodetachment (or, in general, ionization) and examine how
the structured multiphoton peaks are created and controlled by
properly adjusted trains of short laser pulses.

The organization of this paper is as follows. In Sec. II
we introduce the shapes of the laser pulses considered in our
investigations and define their configurations that lead to dif-
ferent spiral and vortex structures. Sections III and IV describe
the theoretical tools (i.e., the SFA and TDSE, respectively)
used in our studies. Analysis of the vortex and spiral structures
for some selected laser train configurations is presented in
Secs. V and VI. A summary and conclusions of the possible
experimental analysis are presented in Sec. VII.

In our numerical analysis, we use the atomic units of mo-
mentum p0 = αmec, energy E0 = α2mec2, length a0 = h̄/p0,
time t0 = h̄/E0, electric-field strength E0 = α3m2

ec3/|e|h̄,
and laser-field intensity I0 = ε0cE2

0 ≈ 7.02 × 1016 W/cm2,1

where me and e = −|e| are the electron rest mass and charge,

1Contrary to very long pulses where the time averaging is applied,
we define the atomic unit of intensity as it follows directly from the
definition of the Poynting vector. Thus, its value depends only on
the electric field and is independent of the polarization properties. In
our opinion, for very short pulses, the peak electric field is the most
convenient measure of the laser pulse strength.

α is the fine-structure constant, and ε0 = e2/4παh̄c is the vac-
uum permittivity. In analytical formulas we set h̄ = 1, while
keeping explicitly the remaining fundamental constants.

II. LASER PULSE CONFIGURATIONS

In order to define the laser pulse configurations, let us
assume that the light field propagates in a direction determined
by the unit vector n. This allows us to introduce two unit and
real polarization vectors ε j ( j = 1, 2) such that ε1 × ε2 = n.
Next we define the vector function

Fσ (t ) =
{
N sin2( ωt

2Nosc
)F0(t, σ ) for 0 � t � τp

0 otherwise,
(1)

with

F0(t, σ ) = sin(ωt + χ )ε1 − σ cos(ωt + χ )ε2. (2)

Above, the constant N is chosen such that

max
t∈[0,τp]

|Fσ (t )| = 1, (3)

i.e., the maximum length of the vector Fσ (t ) is normalized
to 1. Moreover, ω and χ are the carrier frequency and the
carrier-envelope phase of the pulse. The duration of a sin-
gle pulse τp is set to 2πNosc/ω, where Nosc is the number
of field cycles. The polarization properties of the field are
controlled by σ , and in our further analysis we choose σ =
±1; under this assumption, the normalization factor N is
independent of σ .

Having defined the shape of a single pulse, we can intro-
duce the train of pulses with alternating circular polarizations

Fσ1σ2···σn (t ) =
n∑

	=1

Fσ	

(
t − (	 − 1)τp −

	∑
	′=1

D	′

)
, (4)

where D	′ � 0 (	′ = 2, . . . , n) represents the time delay of
the 	th pulse with respect to the preceding one and D1 � 0
is the time delay of the first pulse in a train. In the following
investigation, we consider such a train of pulses to be in the
configuration (σ1σ2 · · · σn). For instance, the pulse considered
in Ref. [34] was in either the (+−) or the (−+) configuration.
In this paper, we will assume that all D	 = 0. Now we can
define the electric field of the pulse

E (t ) = ηEE0Fσ1σ2···σn (t ), (5)

where E0 is the atomic unit of the electric-field strength and
the dimensionless parameter ηE determines the maximum
intensity of the laser pulse. For the case of the non-negative
integer Nosc � 2, the electric field fulfills the condition∫ ∞

−∞
E (t )dt = 0, (6)

which allows us to introduce the electromagnetic potential in
a particular gauge such that

A(t ) = −
∫ t

−∞
E (t ′)dt ′ =

∫ ∞

t
E (t ′)dt ′ (7)

and

lim
t→±∞ A(t ) = 0. (8)
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FIG. 1. (a) Vector potential eA(t ) and (b) electric field eE (t ),
as functions of time, for the driving laser field used in this paper
[Eqs. (1)–(7)]. The x components are shown as blue solid lines and
the y components are shown as red dashed lines. We consider a
train of three laser pulses in the (+ − +) configuration; each one
of them comprises four oscillations (Nosc = 4). We choose a wave-
length λ = 800 nm (ω = 1.55 eV) and a maximum field strength
Emax = 0.002E0 (Imax ≈ 2.8 × 1011 W/cm2). Also shown is the time
evolution of the tips of the (c) vector potential and (d) electric field
in polar coordinates. Both figures start and end at the origin of
coordinates and evolve counterclockwise for σ = +1 and clockwise
for σ = −1. All plots in this figure are presented in atomic units.

In the following discussion, we choose the polarization
vectors as ε1 = ex and ε2 = ey, the carrier frequency ω cor-
responds to a wavelength of 800 nm, and the carrier-envelope
phase is χ = 0. In Figs. 1(a) and 1(b) we present the x (blue
solid lines) and y (red dashed lines) components of the vec-
tor potential [Fig. 1(a)] and the electric field [Fig. 1(b)] for
a train of laser pulses in the configuration (+ − +) com-
prising Nosc = 4 cycles each. The parameter ηE = 0.002,
which corresponds to the maximum intensity Imax = 4 ×
10−6ε0cE2

0 ≈ 2.8 × 1011 W/cm2. In Figs. 1(c) and 1(d) we
show the evolution of tips of the vectors eA(t ) and eE (t ),
respectively, in polar coordinates. Depending on the polar-
ization, the tips rotate either counterclockwise (σ = +1) or
clockwise (σ = −1).

In Fig. 2 we present the time dependence of the vector
potential and the electric field for a train of three pulses in
the configuration (+ + −). The remaining field parameters
are the same as in Fig. 1. In fact, both plots look quite
similar. Nevertheless, due to the interference of probability
amplitudes, the photodetachment patterns created by these
two configurations are different, as it will be shown shortly.

All configurations of the laser pulse defined by Eq. (5)
can be divided into two groups, which we call reducible and
irreducible. The reducible configuration (σ1σ2 · · · σn) is such
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FIG. 2. Same as in Fig. 1 but for the train configuration (+ + −).

that there exist integers k and 	 for which n = k · 	 and

(σ1σ2 · · · σn) = [(σ1σ2 · · · σk )]	, (9)

i.e., the entire train of pulses consists of 	 identical subtrains.
If such a division is not possible then the configuration is
called irreducible. For instance, the configurations (++) =
[(+)]2 and (+ − +−) = [(+−)]2 are reducible, but (+−) and
(+ − −+) are not. The type of configuration is important as
(at least within the SFA with neglected depletion and rescat-
tering processes) the vortex lines are determined only by the
irreducible configurations and further repetitions of them do
not create new vortex lines but only add extra nodal surfaces.

III. STRONG-FIELD APPROXIMATION

In this section we present the analytical expression for the
probability amplitude of photodetachment from negative ions
under the scope of the SFA. Even though it has been calcu-
lated before (see, e.g., Refs. [66,70]), here we present part
of its derivation. Our objective is to determine the transition
probability of an electron which in the remote past (t → −∞)
is found in the bound state |�0〉 of the anion and in the far
future (t → ∞) is found in the scattering state of asymp-
totic momentum p. (For a discussion about those scattering
states, we refer the reader to, e.g., Refs. [65,71,72].) Such a
transition is caused by the action of the laser pulse, defined
by an oscillating electric field E (t ). Both the single-active-
electron approximation and the dipole approximation are used
in our derivations. Furthermore, we limit our calculations to
the length gauge, as suggested by Gribakin and Kuchiev in
Ref. [70].

The theoretical analysis of light-induced photodetache-
ment was, at the beginning, based on complex ab initio
calculations where electron correlations at the core were as-
sumed to play a major role (see, e.g., [73–75]). However,
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Gribakin and Kuchiev [70] demonstrated that it is in fact the
proper asymptotic form of the electron wave function which
is crucial for a correct treatment of the problem. The authors
used a zero-range potential to model the interaction of the out-
ermost electron with the neutral core. Note that the ionization
potential of negative ions is considerably smaller compared
to their neutral counterparts. This is because the outermost
electron is bound by weaker forces than the strong Coulomb
force. Hence, the interaction of the laser pulses considered
in this paper with an atomic anion will detach the outermost
electron with the largest probability. Taking these observa-
tions into account, we conclude that the single-active-electron
approximation is fully justified in our treatment.

In order to proceed, we first establish the conventions used
in this paper. The closure relations for the position and mo-
mentum eigenvectors (|r〉 and |k〉, respectively) are∫

d3r|r〉〈r| = 1̂,

∫
d3k

(2π )3
|k〉〈k| = 1̂, (10)

where 1̂ represents the identity operator. The Fourier trans-
form of an arbitrary function g(r) [here denoted by g̃(k)] and
the inverse Fourier transform are given by

g̃(k) =
∫

d3r e−ik·rg(r), g(r) =
∫

d3k

(2π )3
eik·rg̃(k), (11)

respectively. This implies that the plane wave is eik·r = 〈r|k〉.
The total energy of the electron can be separated into three

parts: a kinetic energy part, represented by the Hamiltonian
Ĥkin = p̂2/2me; a potential energy part for the electron-core
interaction, represented by ĤV = V (r̂); and the electron–laser-
field interaction part, represented by ĤI(t ). The latter must be
specified depending on the gauge being considered. Together,
the kinetic and potential energy parts constitute the unper-
turbed ionic Hamiltonian Ĥion,

Ĥion = Ĥkin + ĤV = p̂2

2me
+ V (r̂), (12)

while the total Hamiltonian governing the evolution of the
electron is

Ĥ (t ) = Ĥion + ĤI(t ). (13)

Before the interaction with the laser field starts (t < 0) the
wave function describing the electron is an eigenstate of Ĥion

with eigenvalue EB, namely,

Ĥion|�0〉 = EB|�0〉, (14)

where the stationary eigenstate |�0〉 depends on the particular
binding potential V (r̂). It has been shown that, for nega-
tive ions, zero-range or short-range potentials can be used
to model the interaction of the outermost electron with the
neutral core [70,76]. We consider a zero-range potential model
for our derivations.

According to the description presented above, the proba-
bility amplitude of detachment A(p) is given by

A(p) = lim
t ′′→∞

lim
t ′→−∞

〈p − |Û (t ′′, t ′)|�0〉, (15)

where 〈r|p−〉 is the scattering state for the ionic
Hamiltonian Ĥion with the incoming spherical waves and
Û (t ′′, t ′) is the evolution operator associated with the full

Hamiltonian Ĥ (t ) in Eq. (13). This evolution operator
contains information about the electron interaction with both
the laser field and the binding potential. Its explicit form is in
general unknown.

In order to proceed further, we introduce here the
Lippmann-Schwinger equation for Û (t ′′, t ′). Namely,
we write

Û (t ′′, t ′) = Ûion(t ′′, t ′) − i
∫ t ′′

t ′
dt Û (t ′′, t )ĤI (t )Ûion(t, t ′),

(16)
where Ûion(t ′′, t ′) is the evolution operator associated with
the ionic Hamiltonian Ĥion presented in Eq. (12). It acts on
a bound state |�(t ′)〉 as Ûion(t ′′, t ′)|�(t ′)〉 = |�(t ′′)〉, i.e., it
evolves the wave function from time t ′ to t ′′ with t ′′ > t ′.

By inserting the Lippmann-Schwinger equation [Eq. (16)]
into the expression for the probability amplitude A(p)
[Eq. (15)] we arrive at the formula

A(p) = − i lim
t ′′→∞

∫ t ′′

−∞
dt〈p − |Û (t ′′, t )ĤI (t )|�0(t )〉

= − i
∫ ∞

−∞
dt〈p(t )|ĤI(t )|�0(t )〉. (17)

Here |�0(t )〉 = e−iEBt |�0〉 and in addition we have used
the fact that bound and continuum states are orthogonal;
in particular, 〈p − |�0〉 = 0. We have also introduced the
exact scattering state of the electron, defined as 〈p(t )| =
limt ′′→∞〈p − |Û (t ′′, t ).

Up to now, the probability amplitude in Eq. (17) has been
exact. However, the difficulties in finding an expression for
Û (t ′′, t ′) are now transferred into finding the exact scattering
state |p(t )〉. The latter also depends on the electron interac-
tion with both the laser field and the binding potential. For this
reason, some approximations need to be introduced.

The SFA consists in replacing the exact scattering state by
the so-called Volkov solution [77] of a free electron in the laser
field [here denoted by |ψp(t )〉]. In other words, it is assumed
that the photoelectron does not interact with the residual ion
once it is promoted to the continuum. This assumption is
fully justified in strong-field photodetachment of negative ions
when the binding potential is modeled as a short- (zero-)range
potential. In contrast, the predictions arising from the SFA in
low-energy photoionization of neutral atoms are expected to
depart from experimental observations or ab initio calcula-
tions. This is due to the long-range nature of the Coulomb
potential associated with the positively charged residue.

In the SFA, the probability amplitude of detachments reads

A(p) = −i
∫ ∞

−∞
dt〈ψp(t )|ĤI(t )|�0(t )〉, (18)

where |ψp(t )〉 and ĤI(t ) are both gauge dependent. By re-
placing the exact scattering state by the Volkov solution, the
gauge invariance of the theory is broken; different results
are expected when the velocity or length gauges are used.
However, as it was suggested by Gribakin and Kuchiev [70]
and later corroborated in Ref. [66], the probability amplitude
of detachment is gauge invariant when the binding potential is
modeled as a zero-range potential. Moreover, and according
to Refs. [44,45], the results obtained from the SFA coincide,
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up to a large extent, with the predictions arising from the
numerical solution of the TDSE.

We are considering photodetachment driven by finite laser
pulses or trains of pulses of total duration Tp [for instance, if
in Eq. (4) all time delays D	 = 0, then Tp = nτp]. Hence, the
interaction Hamiltonian ĤI(t ) vanishes at t < 0 and t > Tp. In
the length gauge, it is given by

ĤI(t ) = −eE (t ) · r̂, (19)

while the Volkov solution takes the form

|ψp(t )〉 = |�p(t )〉 exp

(
− i

2me

∫ t

0
dt ′�2

p(t ′)
)

, (20)

where �p(t ) is the kinetic momentum of the electron in the
laser field,

�p(t ) = p − eA(t ). (21)

By inserting Eqs. (19) and (20) into Eq. (18) we find out that
the probability amplitude in the length gauge reads

A(p) = ie
∫ Tp

0
dt〈�p(t )|E (t ) · r̂|�0(t )〉

× exp

(
i

2me

∫ t

0
dt ′�2

p(t ′)
)

. (22)

From the closure relation for position eigenvectors [see
Eq. (10)] we obtain

A(p) = ie
∫ Tp

0
dt

∫
d3r〈�p(t )|r〉[E (t ) · r]�0(r)eiGp(t )

= ie
∫ Tp

0
dt eiGp(t )

∫
d3r e−i�p(t )·r[E (t ) · r]�0(r). (23)

Here �0(r) = 〈r|�0〉 is the bound-state wave function in po-
sition representation and we have introduced the phase

Gp(t ) = 1

2me

∫ t

0
dt ′[p − eA(t ′)]2 − EBt . (24)

Finally, from the definition of the Fourier transform given by
Eq. (11) and by noting that ∇ke−ik·r = −ire−ik·r (∇k is the
gradient calculated over the momentum coordinates k), we
arrive at

A(p) = ie
∫ Tp

0
dt E (t ) · �̃0(p − eA(t ))eiGp(t ), (25)

where we have introduced the function

�̃0(k) = i∇k�̃0(k). (26)

The set of equations (24)–(26) is the starting point for our
numerical calculations.

We are interested in the photodetachment from the
H− anion in its ground state (s state). As it was done before
(see Refs. [44,45,66,70]), we use the zero-range potential
to model the electron interaction with the core. Under such
circumstances, the bound-state wave function �0(r) is [70,76]

�0(r) = �s(r) = A√
4πa0

e−κr/a0

r
. (27)

Here κ and A are dimensionless parameters that depend on
the particular anion. While κ is determined by the experi-
mental value of the ionization potential (or electron affinity)
as EB = −(αmec)2κ2/2me, the parameter A can be obtained
by comparison with other ab initio calculations. In this paper
we use the values suggested by Gribakin and Kuchiev [70],
κ = 0.2354 and A = 0.75, such that |EB| = 0.754 eV.

The Fourier transform of the ground-state wave function
[Eq. (27)] is [44,45,66,70]

�̃s(k) = 2
√

π/a0A

(κ/a0)2 + k2 (28)

and the function �̃s(k) for s states, as defined in Eq. (26), is
given by

�̃s(k) = − 4i
√

π/a0A

[(κ/a0)2 + k2]2
k. (29)

Finally, with the electric field of the pulse (or series of pulses)
given in Eq. (5), we can calculate the probability amplitude of
detachment A(p) under the SFA framework. The time integral
in Eq. (25) is performed numerically.

IV. TIME-DEPENDENT NUMERICAL ANALYSIS

In this section we summarize the main aspects of solving
the TDSE (for further details, see Refs. [44,45]).

The electron evolution in photodetachment is governed by
the full Hamiltonian Ĥ (t ) shown in Eqs. (12) and (13), i.e.,

Ĥ (t ) = p̂2

2me
+ V (r̂) + ĤI(t ). (30)

For our computational model, we assume that the effective
binding potential can be described as a short-range (Yukawa)
potential

V (r) = −β
e−γ r

r
, (31)

where the parameters β = 1.1αc and γ = 1/a0 guarantee that
the bound-state energy EB corresponds to the measured value
for the H− anion. The numerical method presented here is
gauge invariant and, in contrast to the SFA treatment, we
consider only the velocity gauge for our calculations. In doing
so, we write the interaction Hamiltonian (up to the linear term
in the vector potential) as

ĤI(t ) = − e

me
A(t ) · p̂. (32)

Taking into account Eqs. (31) and (32), the full Hamiltonian
[Eq. (30)], in position representation, reads

Ĥ (r, t ) = − 1

2me
∇2 + i

e

me
A(t ) · ∇ − β

e−γ r

r
. (33)

We are interested in finding the solution ψ (r, t ) to the differ-
ential equation

i∂tψ (r, t ) = Ĥ (r, t )ψ (r, t ). (34)

To this end, we expand the electron wave function in a
(truncated) basis of spherical harmonics. Namely, in spherical
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FIG. 3. SFA analysis of photodetachment for four different irreducible configurations of trains of pulses containing (a)–(d) Nosc = 4 cycles
and (e)–(h) Nosc = 5 cycles, for θp = 0.5π . The remaining laser-field parameters are ω = 1.5498 eV (which corresponds to a wavelength of
800 nm), ηE = 0.002, and χ = 0 and all the time delays are D	 = 0 [see Eqs. (1)–(4)]. As expected, an increasing number of laser cycles
in each individual pulse leads to narrower multiphoton peaks. The amplitudes A(p) are presented in atomic units and ν = 1/2 is chosen for
visual purposes. While the circular plots show the magnitude of the probability amplitude as a function of px and py, the rectangular plots show
the same but as a function of the photoelectron kinetic energy Ep and azimuthal angle ϕp. The latter changes from 0 to 6π , i.e., we show three
copies of the distribution from 0 to 2π .

coordinates (r, θr, ϕr),

ψ (r, t ) ≈
lmax∑
l=0

l∑
m=−l

ψlm(r, t )

r
Ylm(θr, ϕr). (35)

The functions ψlm(r, t ), which guarantee that Eq. (34) is
satisfied, are determined numerically. In doing so, the radial
coordinate is discretized according to the finite-difference
method. Furthermore, the evolution forward in time is de-
termined by means of the Crank-Nicolson method. Once the
coefficients ψlm(r, t ) are found, the probability amplitude of
detachment is directly calculated [44,45],

A(p) = 2π

p

∑
l,m

(−i)l eiδlYlm(θp, ϕp)

×
∫ rmax

0
dr rψlm(r, tf )Rpl (r). (36)

Here rmax is the maximum value for the radial integration and
tf is the final time of propagation; δl defines the phase shift and
Rpl (r) is the radial part of the scattering state of the field-free

effective potential V (r). We have also introduced the spherical
coordinates in momentum space (p, θp, ϕp). Equation (36)
will be used for our numerical illustrations.

In solving the TDSE we have used lmax = 5 [see Eq. (35)].
While the propagation in time is done in steps δt = 0.05t0,
the propagation in space is done with δr = 0.1r0. We have
chosen the number of radial points to be 1.12 × 105. Those
parameters ensure that convergence is achieved.

V. IRREDUCIBLE CONFIGURATION OF PULSES

In our previous study [45] we analyzed photodetachment
driven by laser pulses (or trains of pulses) comprising three
cycles within a sin2 envelope and with a wavelength of
4000 nm. In order to investigate up to what extent the results
presented there are independent of the laser pulse frequency
and its time duration, we consider now a light field which
is more commonly used in strong-field physics. Namely, we
are interested in analyzing photodetachment driven by laser
pulses of wavelength 800 nm (ω ≈ 1.5498 eV) and compris-
ing Nosc = 4 or 5 cycles. In Fig. 3 we present the modulus
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of the probability amplitude of detachment A(p) (raised to
the power ν = 1/2, for visual purposes) in the plane de-
fined by the polar angle of electron detection θp = 0.5π . The
number of field oscillations within a single pulse is Nosc =
4 [Figs. 3(a)–3(d)] or Nosc = 5 [Figs. 3(e)–3(h)]. For each
train configuration (σ1 · · · σn) we show two plots: a circular
one, where the magnitude of the amplitude is presented as
a function of the momentum components px and py (with
pz = 0), and a rectangular one, where the magnitude of the
probability amplitude is shown as a function of the electron
kinetic energy Ep = p2/2me and the azimuthal angle of elec-
tron detection ϕp (with θp = 0.5π ). In order to emphasize that
the amplitude A(p) is a periodic function of ϕp, we present
three copies of |A(p)|ν for 0 � ϕp � 6π . It appears that, by
doing so, the vortices and nodal lines will be better displayed.
Results for the single pulse [Figs. 3(a) and 3(e)] clearly ex-
hibit the multiphoton structure in the signal of ionization.
Indeed, for an infinite plane wave one expects the presence
of well-defined δ peaks in the probability rates, located at en-
ergies EN = EB − Up + Nω, where Up = (eηEE0)2/2meω

2 is
the ponderomotive energy associated with the circularly polar-
ized plane wave and ηEE0 is the amplitude of the electric-field
strength. In contrast, for finite pulses, these peaks manifest
themselves as broad humps of finite heights in the probability
distributions. For the values of EB, ηE , and ω considered here
we get EN = 0.78, 2.33, and 3.88 eV for N = 1, 2, and 3,
respectively (plane-wave estimations). On the other hand, for
Nosc = 4 and ϕp = π we can roughly estimate these energies
to be 0.72, 2.25, and 3.9 eV, which agree fairly well with the
predictions that follow from the plane-wave analysis. There
is however an important difference: Although in the polar
plots the multiphoton peaks are represented by rings, in the
rectangular plots they show up as wavy stripes. The reason for
that is the nonvanishing value of the time average of the vector
potential A(t ) for short pulses. Moreover, as it clearly follows
from the analysis presented above, vortex structures appear in
between multiphoton peaks (deep minima in the probability
amplitude can be found there), where the ionization signal is
marginally small. This makes the experimental detection of
them practically impossible.

We see that the vortices in the distributions are present
already for a single pulse in the configuration (+). For Ep not
larger than 2 eV and for Nosc = 4 or 5 we observe two vortices
for ϕp = 0 or π (one vortex is located very close to the origin).
Such structures appear as deep-blue isolated points in the
rectangular plots [see Figs. 3(a) and 3(e)]. In contrast, for the
train of two pulses in the configuration (+−) we detect only
nodal lines represented either by the Fermat-type spirals in the
polar plots or by ∪-shape lines in the rectangular plots. Their
tips are located at the position where the vortices appeared
for the configuration (+).2 Moreover, when passing from the
one-photon peak to the two-photon peak we observe the ram-

2The transmutation of the vortex for the configuration (+) into
the tip of the ∪-shape nodal line for the configuration (+−) takes
place for the particular carrier envelope phases χ = 0 or π , as in
these cases the positions of vortices for the configurations (+) and
(−) are the same. For other phases the situation is more complicated
and its investigation is beyond the scope of the present analysis.

ification of the nodal lines (or Fermat-type spirals) of type �
or ∪∪. Sometimes, such a doubling of a particular spiral might
look like a trident ramification of a single nodal line [see, e.g.,
the case for Nosc = 5 in Fig. 3(f)], but in fact we observe a tiny
avoided crossing of the nodal lines located where the vortex
in the configuration (+) appeared [compare with Fig. 3(e)].
The absence of vortex structures for the configurations (+−)
and (−+) is also supported by the vanishing circulation of
the amplitude phase gradient. These findings are very similar
to the ones presented in Ref. [45] and show that, within the
approximations made in our theoretical analysis, the vortex
structures exist already for single pulses of the type (+) or
(−). However, for laser trains in the configurations (+−) and
(−+), the vortices disappear (or are transmuted into spiral
lines). This is independent of the laser pulse wavelength and
the number of cycles.

As mentioned above, the vortices appear in between mul-
tiphoton peaks, where the ionization signal is very small.
This could severely prevent possible experimental detection
of them. Thus, important questions arise: Can one control the
positions of vortices such that they appear for momenta for
which the ionization signal is maximum? Can one create, by
properly adjusted laser pulses, structured multiphoton peaks
that exhibit both spirals and vortices?

In order to investigate these problems, one has to go be-
yond the configurations considered so far. Ionization (or in
our case, photodetachment) driven by more complex trains of
pulses needs to be analyzed. To this end, in Figs. 3(c) and
3(g) and Figs. 3(d) and 3(h) we present the results for the
configurations (+ − +) and (+ + −), respectively, for which
the time-dependent vector potential A(t ) and the electric field
E (t ) are presented in Figs. 1 and 2. Independently of the
fact that the time dependences of the electric fields for these
configurations are very similar, the probability distributions of
photoelectrons exhibit different structures, which is due to the
interference of amplitudes related to the individual pulses in
the corresponding sequences as well as to their time ordering.
This difference can be seen clearly on the rectangular plots.
For the configuration (+ − +) [Figs. 3(c) and 3(g)] and for
the peak corresponding to the one-photon detachment we
observe a regular honeycomb structure in the distributions for
both Nosc = 4 and Nosc = 5 (we call it the vortex lattice, as
it resembles similar, but not necessarily hexagonal, structures
observed in superconductivity [78]). For the two-photon peak
this pattern is repeated with a denser packing of hexagonal
cells [this follows from the doubling of the nodal lines for
the configuration (+−)]. In contrast, for the configuration
(+ + −) [Figs. 3(d) and 3(h)] the spiral-type structure ob-
served for (+−) is preserved, but additionally new vortices
are created in the middle of the one-photon peak. A closer
look at the rectangular plot reveals that also for this config-
uration we observe the honeycomb structure, but with the
irregular hexagons elongated in the direction of increasing
ϕp and Ep. In both configurations, the new vortices are sur-
rounded by regions of maximum probability (or are embedded
into the multiphoton peaks, where the ionization signal is
maximum), which makes their experimental detection easier.
Note also that the visualization of vortex structures looks
better on the rectangular plots than on the polar ones. This
is because, in the latter case, the vortices are stretched along
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FIG. 4. SFA analysis for Nosc = 4, θp = 0.4π , and the configu-
ration (+ − +). The remaining laser pulse parameters are the same
as in Fig. 3. The amplitude A(p) is presented in atomic units and
ν = 1/2 is chosen for visual purposes.

circles, which could lead to their misinterpretation as nodal
lines.

A. Robustness of vortex structures

In experimental setups the photoelectron distribution is
measured with finite energy and angular resolutions. The re-
sults presented in Fig. 3 suggest that the resolutions �Ep =
0.1 eV and �ϕp = 0.1π are sufficient for the experimental
observation of vortex structures for laser pulses containing
Nosc = 4 or 5 cycles. Still, the open question is how these
patterns depend on the polar angle θp. To this end, we present
in Fig. 4 the modulus of the amplitude A(p) for θp = 0.4π ,
Nosc = 4, and the configuration (+ − +). On the polar plot,
we present it in the plane (px, py ) (i.e., we show the projection
of the probability amplitude calculated on the conical surface
with the axis along the ez unit vector and with a half-opening
angle θp = 0.4π ), whereas on the rectangular plot we keep
the same horizontal axis as before, i.e., the kinetic energy of
photoelectrons Ep. The comparison of this rectangular plot
with the corresponding one in Fig. 3(c) shows a very sim-
ilar structure with almost the same positions of vortices in
the plane (Ep, ϕp). In order to ensure that this is indeed the
case, we calculate the circulation (or the so-called topological

0 0.1 0.2 0.3 0.4 0.5

-2

0

2

0 0.1 0.2 0.3 0.4 0.5
-0.5

0

0.5

1

1.5

(a)

(b)

FIG. 5. (a) Topological charge m(pr ) [see Eq. (37)] as a function
of the photoelectron momentum pr = √

2meEp for the polar angle
θp = 0.5π . The laser-field parameters are ω = 1.5498 eV, ηE =
0.002, and Nosc = 4. (b) Difference of topological charges calculated
at the polar angles θp = 0.5π and 0.4π [cf. Eq. (38)]. Among 250
points, only one value of pr gives a nonvanishing difference, which
indicates the robustness of the vortex locations in the rectangular
plane (Ep, ϕp).

charge) m(pr ),

(37)

where the counterclockwise oriented circle C(pr ) is defined
such that p2

x + p2
y = p2

r sin2 θp and pz = pr cos θp. It is known
that this quantity acquires integer values and in general de-
pends on both pr = √

2meEp and θp. However, to simplify the
notation, we neglect the dependence on the polar angle θp for
a reason which will soon be clear.

In Fig. 5(a) we present the circulation m(pr ) calculated for
θp = 0.5π , Nosc = 4, and the same remaining parameters as
in Fig. 3. As expected, the circulation acquires integer values
and jumps whenever the contour C(pr ) encircles new vortices.
In order to verify the robustness of this pattern against the
change of the polar angle, we also calculate the circulation for
θp = 0.4π and present the difference

�m(pr ) = m(pr )|θp=0.5π − m(pr )|θp=0.4π (38)

in Fig. 5(b). The calculation of m(pr ) has been done either by
applying the trapezoid integration scheme for the ϕp integral
in (37) or by evaluating the Fourier transform, in both cases
with 214 points. We see that, except for a single point, this
difference is equal to 0, which indicates that the positions of
vortices in the (Ep, ϕp) plane are in principle independent of
the polar angle θp, at least within the interval [0.4π, 0.6π ].
This suggests that the collection of experimental data with
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FIG. 6. TDSE analysis of photodetachment for two train config-
urations (a) (+ − +) and (b) (+ + −). Each single pulse comprises
Nosc = 4 oscillations and the polar angle of photoelectron detection
is θp = 0.5π . The remaining laser pulse parameters are the same
as in Fig. 3. We observe very good agreement between the TDSE
and the SFA analyses, with the only difference being an overall
scaling factor. The amplitudes A(p) are presented in atomic units
and ν = 1/2 is chosen for visual purposes.

the angular resolution �θp = 0.1π should not erase the vortex
structures observed for θp = 0.5π .

Note that �m(pr ) vanishes nearly for all points also for
much larger laser intensities corresponding, for instance, to
ηE = 0.01. However, for such intensities the applicability of
the SFA in the low-energy part of the spectra of photoelectrons
might be questionable due to significant depletion effects be-
tween the pulses and due to rescattering processes.

B. TDSE analysis

The SFA, which is the approach considered so far, has
limited validity. First, because of the Born approximation
applied to the final scattering state of photoelectrons, this
approach can be appropriate for the high-energy part of the
photoelectron spectrum. Second, as discussed in [45,66], it
can be used for the low-energy part of the spectrum provided
the total ionization probability is smaller than 1; hence, the
intensity of the laser pulse cannot be arbitrarily large. Under
such circumstances, the depletion and rescattering effects are
small (in fact, these effects could spoil or significantly modify
the subtle vortex and spiral structures of multiphoton peaks
discussed here) and we can expect to reach good agreement
with the TDSE analysis. This has been demonstrated in our
previous study [45] of low-frequency laser pulses. There we
showed very good agreement between the SFA and TDSE
approaches for the configuration (+−). For this particular
train of configuration, only spiral structures were observed in
the probability amplitude of detachment and no vortices were
detected. In order to go beyond our previous studies and to
observe both the spirals and vortex structures embedded into
multiphoton peaks, we have considered above the configura-
tions (+ + −) and (+ − +). In Fig. 6 we present the TDSE
analysis of photodetachment for the short-range (Yukawa) po-
tential model [see Eq. (31)]. The driving field consists of trains
of laser pulses in the configurations (+ − +) and (+ + −);

FIG. 7. Comparison of the (a) SFA and (b) TDSE analyses of
photodetachment for the configuration (+ + −) and Nosc = 4. The
remaining laser-field parameters are the same as in Fig. 3. We see that
the positions of vortices are independent of the theoretical approach
being applied. The main difference between the two figures is an
overall scaling factor, which can be easily introduced in the parame-
ter A of Eq. (27). The amplitudes A(p) are presented in atomic units
and ν = 1/2 is chosen for visual purposes.

each one comprises Nosc = 4 laser cycles. The remaining
laser-field parameters are the same as in Fig. 3. Comparison of
the rectangular plots in Fig. 6 with the corresponding ones in
Fig. 3 [i.e., Figs. 3(c) and 3(d)] shows astonishing agreement
of the photodetachment patterns obtained from the SFA and
TDSE with in principle the same positions of vortices em-
bedded into multiphoton peaks. [In Fig. 7 we compare the
SFA and TDSE analyses for the configuration (+ + −) in
more detail.] The only difference is that TDSE predicts
smaller ionization probabilities compared to the results from
the SFA, but this difference can be compensated by properly
adjusting the normalization factor A present in the definition
of the bound state (27). This factor is in fact a fitting parame-
ter. Thus, our investigations show the robustness of the vortex
and spiral structures in multiphoton spectra against different
theoretical models, hence providing a strong argument that
similar structures should in principle be observed experimen-
tally.

VI. REDUCIBLE CONFIGURATION OF PULSES

Up to now, we have considered only the irreducible con-
figuration of pulses. Thus, the questions arise of how the
photodetachment pattern discussed above is modified if the
sequence of pulses is repeated a few times or if one can expect
the creation of new vortices for such a reducible configuration
of pulses. Providing a general answer to these questions is
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difficult even if one applies purely analytical methods. The
reason for that is that the photodetachment (or, in general,
ionization) pattern is modified by the rescattering processes
[15]. However, the common understanding of strong-field
ionization is such that the rescattering modifies significantly
only the high-energy portion of the spectrum. In contrast, its
low-energy portion is sufficiently well described by the direct
process, that is, by the SFA presented above. This conclusion
is also supported by our previous investigations [44,45]. For
these reasons we apply the SFA to study the problems stated
above.

To this end, let us consider a general reducible config-
uration of pulses of the form (9) and let us assume that
the irreducible configuration (σ1σ2 · · · σk ) lasts for time T1.
Hence, the entire train of pulses lasts for time 	T1. The ion-
ization amplitude for such a train can be put in the form
[cf. Eq. (25)]

A	(p) =
∫ 	T1

0
Hp(t )eiḠp(t )ei〈Gp〉t dt, (39)

where

Hp(t ) = ieE (t ) · �̃0(p − eA(t )). (40)

Moreover, by introducing the time average of an arbitrary
periodic function F (t ) with period T1,

〈F〉 = 1

T1

∫ T1

0
F (t )dt = 1

	T1

∫ 	T1

0
F (t )dt, (41)

we have

Ḡp(t ) =
∫ t

0

(
1

2me
[p − eA(τ )]2 − EB − 〈Gp〉

)
dτ (42)

and

〈Gp〉 = 1

2me
[p − e〈A〉]2 + e2

2me
[〈A2〉 − 〈A〉2] − EB. (43)

For very long pulses the so-called displacement 〈A〉 is nearly
0, but for short pulses it could acquire a significant value
such that its experimental detection becomes feasible (see,
e.g., [79]).

The essence of the decomposition (39) is that the functions
Hp(t ) and Ḡp(t ) are periodic in time, i.e.,

Hp(t ) = Hp(t + MT1), Ḡp(t ) = Ḡp(t + MT1) (44)

for M = 1, . . . , 	 − 1 and t ∈ [0, T1]. Due to these properties
we get

A	(p) =
	∑

M=1

∫ MT1

(M−1)T1

Hp(t )eiḠp(t )ei〈Gp〉t dt (45)

=
	∑

M=1

ei(M−1)〈Gp〉T1

∫ T1

0
Hp(t )eiḠp(t )ei〈Gp〉t dt,

and after summing up the geometrical series we arrive at

A	(p) = exp

(
i
	 − 1

2
〈Gp〉T1

)
sin( 	

2 〈Gp〉T1)

sin( 1
2 〈Gp〉T1)

A1(p). (46)

Hence, the ionization amplitude for a reducible configuration
of pulses can be presented as the product of three terms.

The first one is the overall phase factor that is always differ-
ent from 0 and disappears when calculating the probability
distributions. The second factor with the sine functions is
the typical interference term known, for instance, from the
Fraunhofer diffraction [80]. The last one is the amplitude
for the irreducible configuration. Thus, the reducibility of the
pulse configuration introduces new nodes that follow only
from the sine function in the numerator of (46). These nodes
appear for momenta pL such that 	〈GpL

〉T1 = 2πL for an
integer L, provided L is not a multiple of 	, as

A	(pL ) =
{
	A1(pL ) for L = 	N

0 otherwise.
(47)

Note that for L = 	N , N = 1, 2, . . . , we observe a coherent
enhancement of the probability amplitude, i.e., the ampli-
tude grows linearly with 	. Hence, the repetition of the same
laser pulse produces coherent comb structures in the proba-
bility distributions, which are present also in other quantum
processes, such as Compton scattering [81], Breit-Wheeler
particle-antiparticle pair creation [82], and the dynamical
Sauter-Schwinger process [83].

As follows from (43), the momenta pL for these new zeros
satisfy the equation

(pL − e〈A〉)2 = P2
L , (48)

with

P2
L = 4πme

L

	T1
− e2(〈A2〉 − 〈A〉2) + 2meEB > 0 (49)

for sufficiently large L. Hence, these new nodes form spheres
in momentum space of radius PL, centered at e〈A〉, and the
amplitude phase arg[A	(p)], when traversing this surface,
jumps by π .3 This leads us to the conclusion that the vortex
structures can be created only by the irreducible pulse con-
figuration and that the repetition of them only generates extra
nodal surfaces in the form of concentric spheres.

Note that the neighboring spheres are distanced from each
other in momentum space by

PL+1 − PL = 4πme

	T1(PL+1 + PL )
(50)

or in the energy space by

1

2me

(
P2

L+1 − P2
L

) = 2π

	T1
. (51)

Hence, they are well separated from each other for small 	

and T1, which means that the most favorable situation for
the experimental verification of this analysis would be to
consider the repetition of two pulses with a vanishing time
delay between them. This situation is illustrated in Fig. 8 for
the reducible configuration (++) = (+)2 and Nosc = 4. As
expected from (51), for Nosc = 5 (i.e., for larger T1) the pattern
remains qualitatively the same, but with a denser distribution

3This is the generic situation. It might happen, however, that for
particular momenta the nodal surfaces or the vortex lines created by
A1(p) intersect these spheres and the phase pattern becomes more
complicated.
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FIG. 8. SFA analysis for Nosc = 4 and the reducible configura-
tion (++). The remaining laser pulse parameters are the same as
in Fig. 3. The individual one- and two-photon rings, observed in
Fig. 3(a), now are split into finer structures due to the presence of
extra nodal surfaces. As expected from our analysis, the repetition
of the pulse does not produce new vortices. The amplitude A(p) is
presented in atomic units and ν = 1/2 is chosen for visual purposes.

of nodal rings (not shown). Moreover, the time delays D	 en-
large T1 and, in consequence, also lead to denser distributions
of the nodal spheres. Similar effects have been predicted for
Compton and Thomson scattering [81] and for the strong-field
Breit-Wheeler pair production [82,84].

VII. CONCLUSION

The theoretical investigations initiated in [34] and their
subsequent experimental verification presented in [48] on the
spiral structures in ionization by a sequence of two circu-
larly polarized pulses opened a new direction in multiphoton
physics. It was argued that the momentum distribution of
photoelectrons corresponding to a particular multiphoton peak
acquires new structures, presumably in the form of quantum
vortices, as spirals are commonly attributed to vortices. Our
recent analysis of photodetachment has shown that this is not
necessarily the case. It has been demonstrated theoretically
that vortex-type distributions can be generated already by

single linearly [44] or circularly [45] polarized pulses without
spiral-type signatures and, in contrast, for the train of two
circularly polarized pulses in the configuration (+−) and
for the field parameters considered, the spiral structures are
created without vorticity. The fact that the spirals have been
experimentally detected is because they are embedded into
the multiphoton peaks. On the other hand, vortices generated
by the configuration (+) or (−) are located at positions in the
momentum space for which the ionization signal is very small.
Hence, for such configurations, their experimental detection
seems impossible.

The aim of this paper was to propose another experimental
setup for which one can expect to detect both vortices and
spirals embedded into multiphoton peaks so that their ex-
perimental verification could be easier. Such a setup would
consist of a train of pulses in the configurations (+ + −) and
(+ − +), for which we have analyzed the properties of
structured multiphoton peaks for photodetachment. We have
shown the robustness of these structures against small changes
of photoelectron kinetic energy and emission angles, which
shows that their experimental detection is feasible. Our
analysis has been carried out by applying two theoretical
approaches commonly used in this type of investigation. First,
we applied the SFA analysis with the zero-range binding
potential, which appears to be a very good theoretical tool
for photodetachment of negative ions (see, e.g., the thorough
theoretical studies presented in [70]). Second, we performed
the TDSE analysis for the short-range Yukawa potential. For
the train of laser pulses in the configurations (+ + −) and
(+ − +) we demonstrated that both theoretical approaches
used in our studies lead to the same vortex and spiral struc-
tures embedded in the multiphoton peaks. This finding could
indicate that these structures are determined solely by the
properties of the laser pulse, provided its intensity is not too
large to neglect the depletion and rescattering effects.

The fact that the vortex and spiral structures discussed
in this paper are to some extent independent of the theo-
retical models for atomic systems (i.e., of the form of the
Hamiltonian without the electron–laser-field interaction term)
allows us to expect that similar patterns can be observed also
for systems with the Coulomb tail. It is known that in quantum
mechanics, such systems need special attention and it is an
open question whether the SFA with appropriate Coulomb
corrections can provide equally good agreement with the
TDSE analysis.
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