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Adiabatic expressions for the wave function of an electron in a finite-range potential and an intense
low-frequency laser pulse
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The wave function of an electron interacting with a finite-range potential and an intense low-frequency
laser pulse is analyzed within the adiabatic approximation. The closed analytic form for the wave function,
which includes the rescattering corrections, is obtained with quasiclassical accuracy for an electron in both the
initial bound and continuum states. We discuss the parametrizations of amplitudes of fundamental strong-field
processes in terms of laser and binding-potential parameters. Based on the analytic results for the adiabatic
wave functions, we develop the perturbation theory in an additional weak field. The modification of high-order
harmonic generation amplitude caused by a weak extreme ultraviolet pulse is discussed in the first order of the
perturbation theory.
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I. INTRODUCTION

The quantum mechanical description of fundamental pro-
cesses in an intense laser field consists in the calculation of
corresponding transition matrix elements, which involve the
exact wave function of an electron dynamically interacting
with an intense laser field [1,2]. This wave function obeys the
time-dependent Schrödinger equation (TDSE), whose solu-
tion for a given atomic potential and electron-laser interaction
cannot be found in a closed analytic form. This obstacle can
be overcome either by getting this wave function numerically
from the TDSE [3,4] or by applying some approximations
ensuring different levels of accuracy for the transition matrix
element [1,5,6].

The mostly accepted approximation consists in the expan-
sion of the wave function in the formal series in an atomic
potential [1,5] (see also Refs. [7,8]). This expansion leads to
the Born-like series for a transition amplitude, whose terms
are associated with the n-times perturbative interaction of
an electron with an atomic potential. These terms represent
a partial amplitude of nth order in an atomic potential and
can be expressed as a convolution of the Volkov Green’s
function with an atomic potential. Due to exponential de-
pendence of the Volkov Green’s function on the classical
action of an electron in an intense low-frequency field, the
partial amplitudes can be analyzed within the saddle-point
method, resulting in the quantum orbit approach [9]. This
approach provides a transparent physical interpretation of
strong-field phenomena in terms of classical trajectories, and
thereby it justifies the consistency of the rescattering model
for fundamental processes in an intense laser field [1,5,10,11].
Moreover, the results obtained within the Born-like theory
constitute a background for a parametrization of strong field
processes amplitudes in terms of a product of laser and atomic
parameters [12–15].

Although the approach based on the Born-like expansion
has a big impact on the description of strong-field phenom-
ena, it does not provide an accurate account of an atomic
potential, whose influence on strong-field processes may be
crucial [16–21]. In order to improve this issue, there were
several attempts dealing with quasiclassical calculations of the
exact quantum-mechanical propagator in an intense laser field
[22,23] within the Feynman path-integral method [24,25].
In contrast to the Born-like formalism, in this approach
an atomic potential enters the equation for quantum orbits
(i.e., for calculations of classical trajectories with a complex
initial condition). Although the mentioned approach shows
reasonable agreement with numerical TDSE results for above-
threshold ionization (ATI) spectra, there are open theoretical
questions which require further discussions. For an intense
low-frequency field, the part of classical action related to an
atomic potential is significantly smaller than the part of action
for a free electron in a laser field. Thus the seeming “exact”
account of an atomic potential for a quantum orbit may lead
to the exceeding accuracy in the calculated matrix element.
Indeed, an atomic potential contributes more strongly to the
slowly varying pre-exponential term, and it should be properly
taken into account. Even in the case of comparable contribu-
tion to both the pre-exponential and exponential (through the
classical action) factors, the influence of an atomic potential
is considered only within the quasiclassical accuracy [26].

To the best of our knowledge, the first work in which
the effects of an atomic potential were treated essentially
exactly along with the quasiclassical accuracy for the account
of electron-laser interaction is Ref. [27]. Based on the low-
frequency (or adiabatic) approximation, Kroll and Watson
[27] deduced the wave function of a continuum electron in-
teracting with both an atomic potential and a laser field. The
desired accuracy for the account of electron-laser interaction
was restricted by the zero order in the ratio of electron-atom
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scattering amplitude to the amplitude of the quiver motion
of a free electron in a laser field. Within this accuracy, the
laser-assisted scattering state is determined by the continuum
state in atomic potential with modified asymptotic momen-
tum, which is the kinematic electron momentum in a laser
field. Although this result was intensively used for the calcu-
lation of collisional amplitudes [27,28], its extension for the
treatment of rescattering-induced processes has not been yet
discussed.

For an initially bound electron subjected to an intense
laser field, the low-frequency approximation was suggested
in Ref. [29]. In the lowest order of the low-frequency ap-
proximation, the shape of the wave function is given by the
quasistationary state in the DC field [30], whose strength is
determined by the instant strength of the laser electric field.
The further development of the low-frequency approximation
was focused mostly in two directions: (1) the decomposition
in a series in frequency for the wave function [29] and (2) the
development of an asymptotic solution of TDSE based on the
solutions in the DC field [31]. In the latter case, the developed
approach was successfully applied for description of plateau
effects in spectra of the above-threshold detachment (ATD)
[31] and high harmonic generation (HHG) [32].

There is no doubt that analytical approaches are in de-
mand for deeper understanding of strong-field phenomena
in terms of specific properties of the wave function in an
intense laser field (see, e.g., Refs. [6,33]). The limited num-
ber of such analytical approaches stimulates us to extend in
the present paper our recently developed adiabatic approach
for the ATD analysis [34] to the description of the laser-
dressed wave function. In particular, we focus our study on
the “rescattering part” of the wave function for two cases, in
which an electron is initially in either a bound or continuum
state of a finite-range potential U (r). In our analysis we take
into account effects of the potential U (r) essentially exactly,
while effects of electron-laser interaction are treated with the
quasiclassical accuracy. We show that the rescattering part
of the wave function can be presented as a superposition
of outgoing-wave scattering states with modified asymptotic
momenta in the potential U (r). Applying this result to the
calculation of strong-field process amplitudes, we show that
amplitude parametrizations are the result of specific properties
of the wave function in an intense laser field. Moreover, we
utilize the analytic results for the wave functions in an intense
low-frequency laser field to develop the perturbation theory
in some additional weak field. In particular, we apply this
perturbation theory for calculation of corrections to the HHG
amplitude caused by a weak attosecond pulse.

The paper is organized as follows: in Sec. II we give a short
overview of the general equations for the wave function in an
intense laser field; in Sec. III, within the low-frequency ap-
proximation, we discuss the wave function in an intense laser
field for initially bound and continuum electrons; in Sec. IV
we present practical applications of our analytical results for
the wave function; in Sec. IV A we show the connection
between parametrizations of strong-field process amplitudes
and the analytical structure of the wave function; and in
Sec. IV B the perturbation theory is developed with further
application to the HHG in the presence of a weak extreme
ultraviolet (XUV) pulse. A summary and outlook are given

in Sec. V. All necessary mathematical details are given in
Appendixes A and B. Atomic units (a.u.) are used throughout
this paper unless specified otherwise.

II. GENERAL EQUATIONS

The study of strong field phenomena in the single active
electron approximation is based on the TDSE solution:

i
∂�(r, t )

∂t
= Ĥ (r, t )�(r, t ),

Ĥ (r, t ) = T̂ + Û (r) + V̂ (r, t ), (1)

where T̂ = −∇2/2 is the kinetic energy operator, Û = U (r)
is the interaction potential of an active electron with an atomic
target, and V̂ (r, t ) is the operator describing the electron-laser
interaction. We consider the electron-laser interaction in the
dipole approximation by applying the length gauge, which is
the most appropriate for approximate estimations of the wave
function and transition matrix elements [35–39]:

V (r, t ) = r · F(t ),

where F(t ) is the electric field of a laser pulse.
Equation (1) is accompanied by the initial condition for-

mulated at some instant t = t0 (the turning-on moment of the
laser field):

�(r, t )
∣∣
t=t0

= �0(r, t0), �0(r, t ) = ϕ0(r)e−iE0t , (2)

where ϕ0(r) and E0 are eigenstate and eigenvalue of the laser-
field-free Hamiltonian Ĥ0 = T̂ + Û . [The state ϕ0(r) may be
either discrete or continuum state of Ĥ0.] Formally, a solu-
tion of Eq. (1) can be written in terms of the nonstationary
retarded Green’s function, G(r, t ; r′, t ′), for the Hamiltonian
Ĥ (r, t ) [36]:

�(r, t ) = �0(r, t )

+
∫ ∞

−∞
dt ′

∫
dr′G(r, t ; r′, t ′)V (r′, t ′)�0(r′, t ′). (3)

The Green’s function satisfies the equation[
i
∂

∂t
− Ĥ (r, t )

]
G(r, t ; r′, t ′) = δ(r − r′)δ(t − t ′), (4)

and the condition G(r, t ; r′, t ′) ≡ 0 for t < t ′.
It can be shown (see Appendix A) that the solution (3)

for the case of a finite-range potential U (r) satisfies the inte-
gral equation involving the retarded Volkov Green’s function,
GV (r, t ; r′, t ′), for a free electron in a laser field:

�(r, t ) = {ψ (V )
p (r, t )}

+
∫ ∞

−∞
dt ′

∫
dr′GV (r, t ; r′, t ′)U (r′)�(r′, t ′), (5)

where {ψ (V )
p (r, t )} ≡ 0 if the electron is initially in a bound

state and {ψ (V )
p (r, t )} ≡ ψ (V )

p (r, t ) is the Volkov wave func-
tion if the electron initially is in a continuum spectrum. The
retarded Green’s function GV (r, t ; r′, t ′) is a solution of the
equation[

i
∂

∂t
− T̂ − V̂ (r, t )

]
GV (r, t ; r′, t ′) = δ(r − r′)δ(t − t ′)
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and has the form

GV (r, t ; r′, t ′)

= −i
θ (t − t ′)

(2π )3

∫
[ψ (V )

p (r′, t ′)]∗ψ (V )
p (r, t ) d p, (6)

where θ (t − t ′) is the Heaviside step function,

ψ (V )
p (r, t ) = e−iφp(t )+iP(t )·r,

P(t ) = p + A(t ), φp(t ) =
∫ t P2(τ )

2
dτ, (7)

where p is the electron momentum and A(t ) is the vector po-
tential of a laser field with the electric vector F(t ) = −dA/dt .

III. THE WAVE FUNCTION IN THE ADIABATIC LIMIT

An adiabatic analysis of the integral equation (5) was
recently performed within the quasistationary quasienergy
states approach [34]. Here we use a similar approach to
obtain the explicit form for the wave function (3) in an in-
tense low-frequency laser pulse, which evolves from an initial
bound or continuum state �0(r, t ) of the Hamiltonian Ĥ0.
The mathematical details of our derivations can be found in
Appendix B, so we proceed in this section with final results
and its discussion. We should note that an alternative approach
for the analysis of the wave function in a strong laser field can
be found also in Ref. [31].

A. The case of initial bound state

In the quasiclassical limit, the wave function (3) for the
initially bound electron can be presented as the sum of the
bound state ϕ0(r) with detachment threshold Ip = −E0 and
the rescattering part of the wave function, �(r)(r, t ), com-
posed of the laser-field-free scattering states ψ (+)

p (r) having
the outgoing-wave asymptotics (see Appendix B)

�(r, t ) = e−iE0t [ϕ0(r) + �(r)(r, t )], (8a)

�(r)(r, t ) =
∑

s

as(t )ψ (+)
Ks

(r), (8b)

where

as(t ) = a(tun)
s (t )a(pr)

s (t ), (9a)

Ks = ks + A(t ), ks = − 1

t − t ′
s

∫ t

t ′
s

A(τ ) dτ, (9b)

and the index s enumerates the tunneling events happened
at the time moments t ′

s ≡ t ′
s(t ). The tunneling time t ′

s as a func-
tion of time t can be found from the (saddle-point) equation
(see Ref. [40] for details)

K ′
s · K̇

′
s = 0, (10)

where

K ′
s = ks + A(t ′

s ), K̇
′
s = ∂K ′

s

∂t ′
s

.

In Eq. (9a), the time-dependent “tunneling factor,” a(tun)
s (t ),

is given by the tunneling exponent in the DC field of the

strength Fs(t ):

a(tun)
s (t ) ≡ a(tun)(t, t ′

s ) = Cκl
e− κ

3
s (t )

3Fs (t )

√
κs(t )Fs(t )

Ylm(es), (11)

where Cκl is the asymptotic coefficient of the bound
state ϕ0(r):

ϕ0(r)|κr�1 ≈ Cκl
e−κr

r
Ylm(r̂), κ = √

2Ip,

Ylm(r̂) is the spherical harmonic, and

κs(t ) =
√

κ2 + K ′
s
2
, Fs(t ) =

√
F ′

s
2 − K ′

s · Ḟ
′
s,

F ′
s = F(t ′

s ), Ḟ
′
s = ∂F(t ′

s )

∂t ′
s

,

es = (K ′
s + i
sK̇

′
s)/κ, 
s = κs(t )/Fs(t ).

The propagation factor, a(pr)
s (t ), is determined by the

expression

a(pr)
s (t ) ≡ a(pr)(t, t ′

s ) = eiS(ks;t,t ′
s )

(t − t ′
s )3/2

, (12)

S(ks; t, t ′) = E0(t − t ′) − 1

2

∫ t

t ′
[A(τ ) + ks]

2dτ. (13)

The general structure of �(r)(r, t ) shows that each partial
term in sum (8b) is formed in two steps: the tunneling (the
first step) creates a wave packet in the continuum, whose
propagation (the second step) in the continuum leads to for-
mation of the scattering state ψ

(+)
Ks

(r) with the momentum Ks.
The contribution of different scattering states for a given time
t is determined by the tunneling time t ′

s and corresponding
tunneling factor a(tun)(t, t ′

s ). We should note that although the
result (8) was obtained under the conditions of an “intense”
laser field, F 2/ω3 � 1, and Ip/ω � 1, there is also some
additional restriction for the electric field strength, which
justifies the appearance of a tunneling exponent (11) and the
absence of any depletion factors in Eq. (9a): F 
 Fat, where
Fat = (2Ip)3/2 is a characteristic atomic field.

In Fig. 1 we present the time dependence of tunneling
times t ′

s for different laser pulses and use color coding to show
the magnitude of tunneling factors. Our numerical examples
show that the tunneling event is realized near the maxi-
mum of the electric field. In these examples we use pulses
with linear [Fig. 1(a)] and elliptical [Fig. 1(b)] polarizations,
two-color laser pulse with linearly polarized components in
mutually perpendicular directions [Fig. 1(c)], and bicircular
pulse [Fig. 1(d)]. All pulses are determined by the correspond-
ing vector potentials:

Aa(t ) = −x̂
F

ω
f (t ) sin(ωt ), (14a)

Ab(t ) = −F

ω
f (t )

x̂ sin(ωt ) − ηŷ cos(ωt )√
1 + η2

, (14b)

Ac(t ) = −F

ω
f (t )[x̂ sin(ωt ) − ŷ cos(2ωt )], (14c)

Ad(t ) = −F

ω
f (t )Im(ê+e−iωt + ê−e−2iωt ), (14d)
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FIG. 1. The time dependence of roots of Eq. (10) [t ′
s (t )] for

linearly polarized pulse (a), elliptically polarized pulse (η = 0.3)
(b), two-color pulse with linearly polarized components in mutually
perpendicular directions (c), and bicircular pulse (d). Thin gray lines
show the time dependence of F 2(t ) (in arbitrary units). Color coding
shows the magnitude of the tunneling factor (11) for the initial
s-state (l = m = 0). I = cF 2/(8π ) = 1014 W/cm2, h̄ω = 0.62 eV,
T = 2π/ω, c is the speed of light.

where F , ω, η are the strength, carrier frequency, and
ellipticity of the field, ê± = ∓(x̂ ± iŷ)/

√
2, and f (t ) is

the sin2-envelope with the total duration T = 2πN/ω

with N = 5:

f (t ) =
{

sin2
(

πt
T

)
t ∈ [0, T ]

0 otherwise
.

B. The case of initial continuum state

For the scattering state of an electron with the asymptotic
momentum p in an intense laser field, the wave function can
be presented in the form (see Appendix B)

�p(r, t ) = e−iφp(t )
[
ψ

(+)
P(t )(r) + �(r)

p (r, t )
]
, (15a)

�(r)
p (r, t ) =

∑
s

A(K ′
s, P′

s)a(p; t, t ′
s )ψ (+)

Ks
(r), (15b)

where A(K ′
s, P′

s) is the amplitude of elastic electron scattering
on the potential U (r),

a(p; t, t ′
s ) = eiS(p,ks;t,t ′

s )√
F ′

s · (p − ks)(t − t ′
s )3

, (16a)

P′
s ≡ P(t ′

s ), F ′
s = F(t ′

s ). (16b)

The times t ′
s for this case are found from the equation

P′
s
2 = K ′

s
2
. (17)

We note that for possible complex solutions of Eq. (17) the
vectors P′

s and K ′
s are complex and the scattering amplitude

is considered in the sense of analytic continuation for corre-
sponding vectors.

The rescattering part of the wave function, �(r)
p (r, t ), in

Eq. (15b) is presented as a linear combination of the scattering
states, similarly to the case of a bound electron [see Eq. (8b)].
However, in contrast to the case of a bound electron, the for-
mation of the scattering state with momentum Ks is realized
through the scattering [determined by the scattering amplitude
A(K ′

s, P′
s)] and subsequent propagation [described by the fac-

tor a(p; t, t ′
s )]. Moreover, the coefficients at the laser-field-free

scattering states in Eq. (15b) do not have exponential small-
ness, while they have smallness of the order ∼|A|/aq with
respect to the plane wave term [see the first term in Eq. (15a)],
where |A| is the order of magnitude for the scattering am-
plitude, and aq = F/ω2 is the quiver radius of free electron
in a laser field [41,42]. We emphasize that �(r)

p (r, t ) gives
a low-frequency correction to the well-known Kroll-Watson
result [27]. In Fig. 2 we present the time dependence of t ′

s for
the same laser parameters as in Fig. 1 and electron momenta
p = 1.2x̂ and p = 1.2ŷ a.u. In contrast to the case of an initial
bound electron, the solutions t ′

s(t ) of Eq. (17) depend on the
momentum p, which leads to more complex dependence on
the laser pulse waveform. The collisional times t ′

s require a
special analysis for each particular geometry of the momen-
tum p and vector potential A(t ).

IV. DISCUSSION AND APPLICATIONS

In Sec. III, the time-dependent wave function in an intense
laser field has been analyzed within the adiabatic approxima-
tion for an electron initially in a bound or continuum state.
For these two cases the wave function can be partitioned into
two, “slowly” and “rapidly” varying parts. For an initially
bound electron, the slow part is given by the unperturbed
initial state,1 while for an initially free electron this part of
the wave function is given by the laser-field-free scattering
state with instantaneous momentum P(t ) [see Eq. (15a)]. The
rapidly varying parts for both cases are given by the linear
combination of laser-field-free scattering states with differ-
ent instantaneous momenta [cf. Eqs. (8b) and (15b)]. Since
the amplitude of a strong-field process involves spatial and
temporal integration of the function �(r, t ) [or �p(r, t )], the
aforementioned representation of the rapidly varying part of

1The more accurate analysis of the integral equation (5) shows that
this function should be replaced by the wave function in the static
field with the instantaneous field strength F(t ) [31].
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FIG. 2. The time dependence of roots of Eq. (17) [t ′
s (t )] for

linearly polarized pulse (a), elliptically polarized pulse (η = 0.3)
(b), two-color pulse with linearly polarized components in mutually
perpendicular directions (c), bicircular pulse (d), and for two electron
momenta: p = 1.2x̂ a.u. (red lines), p = 1.2ŷ a.u. (black lines). The
laser parameters are the same as in Fig. 1.

�(r, t ) [or �p(r, t )] leads to the the specific form for the
strong-field processes amplitudes, which describe reactions
with the creations of high-energy electrons or photons. In
particular, these amplitudes can be presented as a coherent
sum of partial amplitudes, which are the product of a laser
parameter and a laser-field-free amplitude of the photorecom-
bination or the elastic electron scattering on an atomic core.
Below in this section, we provide applications of our general
results (8b) and (15b) for calculating the amplitudes of HHG,
ATD for high-energy electrons, laser-assisted electron scatter-
ing (LAES), laser-assisted radiative attachment (LARA), and
laser-assisted bremsstrahlung (LABrS).

Another application of the obtained results consists in anal-
ysis of the amplitudes of strong-field phenomena modified

by a weak perturbation caused by an additional interaction
with a field having different temporal or spatial properties. For
instance, the interaction with the XUV field can be treated
within the perturbation theory (see, e.g., Ref. [43]). In this
section, we show how the results (8) and (15) can be effec-
tively used for the development of the perturbation theory
based on the nonperturbative wave functions of electron in
the infrared (IR) field and the potential U (r). For simplicity,
we consider only the first order of the perturbation theory in a
weak interaction and apply it to the HHG process.

A. Parametrization for amplitudes of fundamental processes in
a strong laser field

1. High harmonic generation

The HHG process consists in the laser-stimulated photon
emission with a frequency � and polarization vector e′

�. The
HHG amplitude can be expressed in terms of the dipole tran-
sition matrix element [36]:

DHHG(�) =
∫

〈�0(r, t )|r|� (r)(r, t )〉ei�t dt, (18)

where the function � (r)(r, t ) = e−iE0t�(r)(r, t ) and �(r)(r, t )
is given by Eq. (8b). Substituting (8b) into Eq. (18) and in-
tegrating over t with methods suggested in Refs. [40,44], we
obtain

DHHG(�) =
∑

j

D( j)
HHG(�), (19a)

D( j)
HHG(�) = ei�t j a(tun)

j a jd(K j ), (19b)

a j =
√√√√ 2π i

K j · F j + K2
j

t j−t ′
j

a(pr)
j , F j = F(t j ),

d(K j ) = 〈ϕ0(r)|r|ψ (+)
K j

(r)〉, (19c)

where a(tun)
j ≡ a(tun)(t j, t ′

j ) and a(pr)
j ≡ a(pr)(t j, t ′

j ) are tunnel-
ing [see Eq. (11)] and propagation [see Eq. (12)] factors,
calculated for the jth pair of tunneling (t ′

j) and recombination
(t j) times (for details, see Refs. [40,44]). The values of times
t ′

j and t j are found from the coupled system of two transcen-
dental equations:

K ′
j · K̇

′
j = 0, K2

j = 2(� + E0), (20)

where

K ′
j = A(t ′

j ) − 1

t j − t ′
j

∫ t j

t ′
j

A(τ ) dτ, K̇
′
j = ∂K ′

j

∂t ′
j

,

K j = A(t j ) − 1

t j − t ′
j

∫ t j

t ′
j

A(τ ) dτ.

Using the obtained expression (19a) for the HHG amplitude,
the HHG yield (summed over photon polarizations), YHHG,
can be presented in the well-known factorized form [45]

YHHG = |DHHG(�)|2
4π2c3

= W (E )σrec, (21)

where W (E ) is the electron wave packet and σrec is the exact
photorecombination cross section for the potential U (r).
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FIG. 3. (a) HHG yield (21) for the potential (22) (U0 = 1.908,
α = 1) and linearly polarized pulse with parameters as in Fig. 1(a).
Solid thick orange line: the result extracted from the numerical
TDSE solution; thin black line: the result obtained with analytical
expression (19); red dotted line: the analytical result from Ref. [44].
Arrows show positions of merging of short and long classical elec-
tron trajectories. (b) Numerical TDSE results for HHG spectra for the
potential (22) and linearly polarized pulse with laser parameters as
in Fig. 1(a). Solid thick orange line is the same as in panel (a) (U0 =
1.908, α = 1); blue thin line: the result for U0 = 1.1, α = 0.1; dotted
blue line: the scaled result for U0 = 1.1, α = 0.1 (the scaling factor
is 0.114).

In Fig. 3(a) we present a comparison of the analytical result
(19) with corresponding result obtained from the numerical
solution of the TDSE for the Yukawa potential:

U (r) = −U0
e−αr

r
. (22)

Calculations were performed for U0 = 1.908, α = 1, and lin-
early polarized pulse (14a) (with peak intensity 1014 W/cm2,
N = 5, and carrier frequency h̄ω = 0.62 eV) using the algo-
rithm described in Refs. [40,44]. The analytical result (19) is
in a good agreement with the TDSE result excluding narrow
vicinities of the zeros of second derivative of the action (13),
which corresponds to merging of short and long electron
trajectories [see arrows in Fig. 3(a)]. In these areas the HHG
amplitude can be treated more precisely (in terms of the Airy
function) in order to remove the unphysical peaks in HHG
spectra (see Ref. [44]).

In Fig. 3(b) we compare high-energy parts of HHG spectra
calculated for two different parameters of the potential (22):
U0 = 1.908, α = 1 and U0 = 1.1, α = 0.1. For the first set of
parameters, the potential (22) supports a single bound state
with binging energy E1s = −13.6 eV, while for the second set
there are two bound states with E1s = −13.6 eV and E2s =
−1.8 eV. Our results show that key scaled parameters for the
high-energy harmonic yield are the binding energy and the

asymptotic coefficient in the wave function of an initial state,
as well as the intensity and carrier frequency of laser pulse. If
these parameters are the same for two cases, the shape of the
high-energy parts of HHG spectra is similar.

2. Above-threshold detachment

Laser-induced ionization or detachment of an atomic
system accompanies any process in an intense laser field
by creating electrons in the continuum. The energies of
these electrons may exceed the characteristic energy of a
free electron in a laser field, which is up = F 2/(4ω2). The
corresponding transition amplitude for producing such fast
electrons is expressed in terms of the function � (r)(r, t ) [34]:

A(r)
ATD(q) = − 1

4π2

∫
〈ψ (V )

q (r, t )|U (r)|� (r)(r, t )〉 dt, (23)

where q is the momentum of an ionized electron. Substituting
the explicit form of the Volkov wave function and �(r)(r, t )
[see Eqs. (7) and (8b), respectively], taking into account the
definition for T -matrix (B7), and integrating in Eq. (23) over
t by the saddle-point method (see details in Ref. [34]), we
obtain

A(r)
ATD(q) =

∑
j

A(r)
ATD, j (q), (24a)

A(r)
ATD, j (q) = ei[φq(t j )−E0t j ]a(tun)

j ǎ jA(Q j, K j ),

ǎ j =
√√√√ 2π i

(K j − Q j ) · F j + K2
j

t j−t ′
j

a(pr)
j ,

Q j = q + A(t j ), (24b)

where a(tun)
j and a(pr)

j are given by Eqs. (11) and (12) for the
jth tunneling and rescattering events corresponding to time
instants t ′

j and t j . The details of calculation of real tunneling
and rescattering times t ′

j and t j can be found in Refs. [34,46].
For high-energy electrons, the differential detachment yield is
given by

dW = 2πq|A(r)
ATD(q)|2 dEq d�q, (25)

where Eq = q2/2 and d�q is the solid angle along the momen-
tum q. We note that the good agreement of the analytical result
(24) with the result extracted from the numerical solution of
the TDSE for the Yukawa potential has been demonstrated in
Ref. [34].

3. Laser-assisted electron scattering

An incident electron can be elastically scattered on atomic
target in the presence of an intense laser pulse with changing
its momentum and energy due to interaction with a laser field.
The amplitude of such an LAES process can be expressed in
terms of the Volkov wave function and exact continuum state
in a laser field (see, e.g., Ref. [27]):

ALAES(q, p) = − 1

4π2

∫
〈ψ (V )

q (r, t )|U (r)|�p(r, t )〉 dt, (26)

where p and q are initial and final momenta of the electron.
For a given LAES amplitude, the differential scattering cross
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section is

dσ = q

p
|ALAES(q, p)|2dEq d�q. (27)

The LAES amplitude can be partitioned into two terms,
according to the two-term expression (B26)

ALAES(q, p) = A(s)
LAES(q, p) + A(r)

LAES(q, p),

where the first term, A(s)
LAES(q, p), corresponds to the first term

in expression (15a), while the second term, A(r)
LAES(q, p), is

determined by �(r)
p (r, t ). The spatial integration in these two

amplitudes is performed using the definition of a T -matrix
(B7), while the integration over the time t by the saddle-
point method shows that obtained T -matrices are taken on
the energy shell and can be replaced by amplitudes of elas-
tic scattering [see Eq. (B25)]. Routine calculations give for
A(s)

LAES(q, p)

A(s)
LAES(q, p) =

∑
j

A(s)
LAES, j (q, p), (28a)

A(s)
LAES, j = a(s)

j (q, p)A(Q j, P j ), (28b)

a(s)
j (q, p) =

√
2π i

F j · (p − q)
ei[φq(t j )−φp(t j )],

P j = p + A(t j ), (28c)

where a(s)
j (q, p) is the laser factor and t j is the solution of

transcendental (saddle-point) equation

Q2
j = P2

j . (29)

For the monochromatic linearly polarized field, the factor
A(Q j, P j ) does not depend on the index j and can be factored
out [42]. For this case the scattering cross section [correspond-
ing to the amplitude A(s)

LAES(q, p)] can be presented as the
product of the laser factor (expressed in terms of the Bessel
function) and exact elastic electron scattering cross section
on the potential U (r) [27]. For arbitrary laser field shape, the
direction and length of the vector Q j depend on j (see, e.g.,
Ref. [42]), and factorization of the scattering cross section on
laser factor and field-free cross section is impossible.

Similar calculations give the expression for amplitude
A(r)

LAES(p, q), which describes high-energy or rescattering
electrons [42]:

A(r)
LAES(q, p) =

∑
j

A(r)
LAES, j, (30a)

A(r)
LAES, j = A(K ′

j, P′
j )ã(p; t j, t ′

j )A(Q j, K j ), (30b)

ã(p; t j, t ′
j ) =

√
2π i

F j · (k j − q)

×a(p; t j, t ′
j )e

i[φq(t j )−φp(t j )],

P′
j = p + A(t ′

j ), (30c)

where a(p; t j, t ′
j ) is given by Eq. (16a) and pair of times t j, t ′

j
is the solution of the system of saddle-point equations:

P′
j
2 = K ′

j
2
, K2

j = Q2
j . (31)

4. Laser-assisted radiative attachment

An electron being in the continuum may spontaneously
emit a photon passing into a bound state. This process can be
assisted by a laser field, which induces new channels for the
radiative recombination or attachment. The LARA amplitude
is expressed in terms of the functions �(r, t ) and �p(r, t ):

DLARA(�) =
∫

〈�̃(r, t )|r|�p(r, t )〉ei�t dt, (32)

where � is the frequency of spontaneous photon, and
�̃(r, t ) = e−iE0t�̃(r, t ) is the dual function with the asymp-
totics of ingoing spherical waves at large distances [47–49].
The dual function can be obtained from �(r, t ) by complex
conjugation, reversing the time and all time-odd quanti-
ties. However, �̃(r, t ) may be approximated by �0(r, t ) =
e−iE0tϕ0(r) since the rescattering part has the exponential
smallness [caused by the tunneling factor (11)]. The LARA
cross section (integrated over directions and summed over
polarizations of the emitted photon) is given by

dσ = �3|DLARA(�)|2
3π2c3 pT d�, (33)

where T is the duration of a laser pulse.2

Substituting the two-terms result (15a) for �p(r, t ) into
Eq. (32) and approximating �̃(r, t ) by �0(r, t ), the amplitude
(32) in the adiabatic limit reduces to

DLARA(�) = D(s)
LARA(�) + D(r)

LARA(�). (34)

The expression for D(s)
LARA(�) is

D(s)
LARA(�) =

∑
j

â(s)
j d(P j ), (35a)

â(s)
j =

√
2π i

F j · P j
ei[(�−Ip)t j−φp(t j )], (35b)

where d(P j ) is given by Eq. (19c) replacing K j → P j . [For
linearly polarized monochromatic field, as for the case of
LAES, d(P j ) can be factored out.] The time t j satisfies the
equation

P2
j = 2(� − Ip).

The similar consideration gives the result for the rescatter-
ing part of the LARA amplitude D(r)

LARA(�):

D(r)
LARA(�) =

∑
j

D(r)
LARA, j (�), (36a)

D(r)
LARA, j (�) = ei�t j A(K ′

j, P′
j )â(p; t j, t ′

j )d j, (36b)

â(p; t j, t ′
j ) =

√
2π i

F j · K j
a(p; t j, t ′

j )e
i[E0t j−φq(t j )], (36c)

where d j is determined by Eq. (19c) and the pair of times
{t ′

j, t j} is found from the coupled system of Eqs. (B23)
and (20):

P′
j
2 = K ′

j
2
, K2

j = 2(� − Ip). (37)

2Note that dσ/d� tends to zero at T → 0, since DLARA(�) ∝ T
in this case.
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5. Laser-assisted bremsstrahlung

The LABrS is the fundamental process in an intense laser
field, in which an electron emits the spontaneous photon being
in the continuum. For the initial and final electron momenta p
and q, the LABrS amplitude is given by the expression [28]

DBrS(q, p; �) =
∫

〈�̃q(r, t )|r|�p(r, t )〉ei�t dt, (38)

where � is the frequency of spontaneous photon, and �̃q(r, t )
is the continuum state, whose asymptotics at large distances
contains the Volkov state and ingoing spherical waves. This
wave function can be obtained from the function �q(r, t )
[cf. Eq. (15a)] as follows (see, e.g., Ref. [50]):

�̃q(r, t ) = �∗
−q(r,−t )

∣∣∣
A(t )→−A(−t )

. (39)

The LABrS cross section dσ/d� with emission of the spon-
taneous photon of energy � (integrated over directions and
summed over polarizations of the photon) is given by

dσ

d�
=

∫
2�3|DBrS(q, p; �)|2

3c3π3 pT
dq

(2π )3
. (40)

The dipole matrix element DBrS(q, p; �) can be partitioned
into two parts:

DBrS(q, p; �) = D(s)
BrS(q, p; �) + D(r)

BrS(q, p; �). (41)

The first part corresponds to the transition between two laser-
field-free scattering states in the potential U (r):

D(s)
BrS(q, p; �) =

∫
ei[φq(t )−φp(t )+�t]d(Q(t ), P(t ))dt, (42)

d(q, p) = 〈ψ (−)
q (r)|r|ψ (+)

p (r)〉, (43)

where ψ (−)
q (r) = [ψ (+)

−q (r)]∗. The quasiclassical analysis (see
Refs. [28,50]) shows that this transition happens at the times
t j , which are roots of the equation

P2
j

2
= Q2

j

2
+ �. (44)

The dipole matrix element (42) with quasiclassical accuracy
can be presented as

D(s)
BrS(q, p; �) =

∑
j

D(s)
BrS, j (q, p; �), (45a)

D(s)
BrS, j (q, p; �) = ei�t j a(s)

j (q, p)d(Q j, P j ), (45b)

where a(s)
j (q, p) is given by Eq. (28c). The rescattering part of

the LABrS matrix element expressed in terms of laser-field-
free continuum states and the rescattering part of the laser-
assisted scattering wave function (15b) is given by

D(r)
BrS(q, p; �)

=
∫

dtei[φq(t )−φp(t )+�t]

×(〈ψ (−)
Q(t )(r)|r|�(r)

p (r, t )〉 + 〈�̃(r)
q (r, t )|r|ψ (+)

P(t )(r)〉). (46)

The rescattering part of the continuum state, �̃(r)
q (r, t ), can be

obtained from Eq. (15b) within the procedure in Eq. (39) for

transformation �q(r, t ) to �̃q(r, t ):

�̃(r)
q (r, t ) =

∑
s

A∗(Qs, K ′
s)a(q; t, t ′

s )ψ (−)
Ks

(r), (47)

where we use the reciprocity theorem for the scattering
amplitude [26]. Within the saddle-point approximation and
expressions (15b) and (47), the rescattering LABrS dipole
moment can be approximated by

D(r)
BrS(q, p; �) =

∑
j

ei�t jD(r,1)
BrS, j (q, p; �),

+
∑

j

ei�t ′
jD(r,2)

BrS, j (q, p; �),

D(r,1)
BrS, j (q, p; �) = A(K ′

j, P′
j )ã(p; t j, t ′

j )d(Q j, K j ),

D(r,2)
BrS, j (q, p; �) = A(Q j, K j )ã(q; t ′

j, t j )d(K ′
j, P′

j ). (48)

The partial amplitude D(r,1)
BrS, j (q, p; �) describes the di-

rect mechanism for LABrS [the electron is rescattered on
the potential U (r) and then emits the photon], while the
term D(r,2)

BrS, j (q, p; �) describes the inverse mechanism (i.e.,
the electron initially emits the photon and then rescatters
on the potential). In contrast to the HHG process, in which
case the inverse mechanism is strongly suppressed in com-
parison with the direct one (see discussion in Ref. [36]), for
the LABrS both terms in Eq. (48) contribute [50,51]. For the
direct LABrS mechanism, the pair of times {t ′

j, t j} is found
from the system [50]

P′
j
2 = K ′

j
2
, (49a)

Q2
j

2
− K2

j

2
= �, (49b)

while for the inverse mechanism this pair is determined by the
system

K ′
j
2

2
+ � = P′

j
2

2
, (50a)

Q j
2 = K j

2. (50b)

We emphasize, that the factorized analytic results for am-
plitudes of strong-field processes presented in this section
provide the exact account of effects of the potential U (r) along
with quasiclassical accuracy for the account of electron-laser
interaction in the adiabatic limit. The quasiclassical accuracy
means that the classical action S of a free electron in the laser
pulse is much larger than the Plank constant, S ∝ F 2/ω3 � 1,
thereby justifying the validity of the saddle-point method for
the temporal integral evaluation and representation of ampli-
tudes in terms of laser-induced classical trajectories.

B. Perturbation theory based on the adiabatic wave functions

Let W (r, t ) be a weak time-dependent perturbation, which
we present as the sum of two terms:

W (r, t ) = W+(r, t ) + W−(r, t ),

W+(r, t ) = w(r, t )e−i�wt ,

W−(r, t ) = W ∗
+(r, t ), (51)
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where w(r, t ) is a smooth function of t [w(r, t )�w �
dw(r, t )/dt]. The wave function, �W (r, t ), of an electron in
the potential U (r), an intense low-frequency field, and ad-
ditional weak field [see Eq. (51)] can be presented in terms
of series expansion in W (r, t ). In the first order in W (r, t ),
�W (r, t ) is given by

�W (r, t ) = �(r, t )

+
∫ ∞

−∞
dt ′

∫
dr′G(r, t ; r′, t ′)W (r′, t ′)�(r′, t ′),

(52)

where the wave function �(r, t ) and the Green’s function
G(r, t ; r′, t ′) are determined by Eqs. (3) and (4). Clearly that
stumbling stone in the estimation of Eq. (52) is the Green’s
function G(r, t ; r′, t ′), whose exact explicit form can be ob-
tained only in exceptional cases. However, the approximate
expression for G(r, t ; r′, t ′) can be obtained based on the func-
tions �(r, t ) and �p(r, t ) [see Eqs. (8) and (15)]. Indeed, these
functions are linearly independent [it can be proofed using
explicit form of these functions in Eqs. (8) and (15)] and
satisfy (with the quasiclassical accuracy) the TDSE (1). With
these wave functions, the Green’s function can be presented
as follows:3

G(r, t ; r′, t ′) = −i

[
�(r, t )�∗(r′, t ′)

+(2π )−3
∫

�p(r, t )�∗
p (r′, t ′)d p

]
. (53)

For the quasiclassical estimation of �W (r, t ) and transition
amplitudes, we need the Green’s function in two limiting
cases: (i) for t ≈ t ′ and (ii) for well-separated t and t ′. The
first case is usable at the estimation of the temporal integral
on the upper limit in Eq. (52), while the second one is utilized
at the saddle-point estimation of the integral. Straightforward
calculations of the Green’s function using Eqs. (53), (8), and
(15) show that in the first case it can be approximated by
the nonstationary Green’s function for the potential U (r),
GU (r, t ; r′, t ′), while for well-separated times by the product
of the wave functions (15) and the Volkov Green’s function:

G(r, t ; r′, t ′) ≈
{

GU (r, t ; r′, t ′), t ≈ t ′

GV (0, t ; 0, t ′)ψ (+)
K (r)[ψ (+)

K ′ (r′)]∗, t �= t ′ ,

K ≡ K(t, t ′) = A(t ) − 1

t − t ′

∫ t

t ′
A(τ ) dτ,

K ′ ≡ K ′(t, t ′) = A(t ′) − 1

t − t ′

∫ t

t ′
A(τ ) dτ. (54)

Substituting the expression (54) into Eq. (52), we separate
slowly (� (s)

W ) and rapidly (� (r)
W ) varying parts of the wave

function �W (r, t ):

�W (r, t ) = �
(s)
W (r, t ) + �

(r)
W (r, t ). (55)

3If the potential U (r) supports more than one bound state, the
product of functions �(r, t ) should be replaced by a sum over all
solutions �n(r, t ) corresponding to bound states: �(r, t )�∗(r′, t ′) →∑

n �n(r, t )�∗
n (r′, t ′).

Evaluating the integral in Eq. (52) near t ′ ≈ t within the
approximation (54), we obtain

�
(s)
W (r, t )

= e−iE0t

[
ϕ0(r) +

∫
GE+ (r, r′)W+(r′, t )ϕ0(r′) dr′

+
∫

GE− (r, r′)W−(r′, t )ϕ0(r′) dr′
]
, (56)

where E± = E0 ± �w and GE (r, r′) is the stationary Green’s
function for the potential U (r) with the outgoing-wave
asymptotics. As is seen from Eq. (56), the slow part of the
wave function is given by the superposition of the bound state
and the wave packet originated due to electron interaction with
the weak perturbation (51).

The time dependence of the rapidly varying part �
(r)
W (r, t )

is determined by the classical action of a free electron in a
laser field and can be partitioned into four terms:

�
(r)
W (r, t ) = e−iE0t�(r)(r, t )

+
∑

s

as(t )
∫

GE+(t )(r; r′)W+(r′, t )ψ (+)
Ks

(r′) dr′

+
∑

s

as(t )
∫

GE−(t )(r; r′)W−(r′, t )ψ (+)
Ks

(r′) dr′

+
∑

s

g(t, t̃ ′
s )ψ (+)

K̃s
(r), (57a)

E±(t ) = K2
s

2
± �w, (57b)

g(t, t̃ ′
s ) = g(pr)(t, t̃ ′

s )gU (t, t̃ ′
s ), (57c)

g(pr)(t, t̃ ′
s ) = − 1

2π

e−iS(t,t̃ ′
s )

(t − t̃ ′
s )3/2

(57d)

gU (t, t̃ ′
s ) =

〈ψ (+)

K̃
′
s

(r′)|W+(r′, t̃ ′
s )|�0(r′, t̃ ′

s )〉√
K̃

′
s · F(t̃ ′

s ) + 2E+(t − t̃ ′
s )−1

,

S(t, t̃ ′
s ) = 1

2

∫ t

t̃ ′
s

[
A(τ ) − 1

t − t̃ ′
s

∫ t

t̃ ′
s

A(ξ ) dξ

]2

dτ, (57e)

where times t̃ ′
s are found from the equation

K̃ ′
s
2 = 2E+, (58)

K̃
′
s = A(t̃ ′

s ) − 1

t − t̃ ′
s

∫ t

t̃ ′
s

A(ξ ) dξ,

and �0(r, t ) and �(r)(r, t ) are given by Eqs. (2) and (8b). In
expression (57a) for �

(r)
W (r, t ), we neglect contribution from

the channel, which is associated with the emission of a photon
with energy �w from the initial state.

In order to illustrate the application of the developed
perturbation theory, we use the wave function (55) for cal-
culation of the HHG amplitude in an intense IR field and
a weak field, associated with the perturbation W (r, t ). For
the correct calculation of the HHG amplitude, along with the
wave function �W (r, t ) we should use the dual wave function
�̃W (r, t ) with the ingoing-wave asymptotics at large distances
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[49]. The function �̃W (r, t ) can be obtained from �W (r, t )
according to the procedure similar to described in Eq. (39).
Moreover, as it was discussed in Ref. [36], in the function with
the ingoing-wave assymptotics (i.e., �̃W ) it is not necessary
to use the rescattering part. As a result, for harmonics with
� > E+ the dipole transition matrix element for the HHG is
given by the expression

D(�) =
∫

ei�t 〈�̃ (s)
W (r, t )|r|� (r)

W (r, t )〉 dt

= DHHG(�) + δD(+)
1 (�) + δD(−)

1 (�)

+δD2(�), (59)

where DHHG(�) is determined by Eq. (19), while δD(±)
1 (�)

and δD2(�) we discuss in turn. The calculation of δD(±)
1 (�)

and δD2(�) is similar to calculations presented in Sec. IV A,
so below we proceed to the final result.

The corrections δD(±)
1 (�) correspond to the emission of

harmonics due to interaction between the field associated with
the potential W (r, t ) and the electronic wave packet created by
the tunneling in an intense IR field:

δD(±)
1 (�) =

∑
j

ei(�+E0 )t j χ
(±)
j a(tun)

j a(pr)
j , (60)

χ
(±)
j = 〈ϕ0(r)|W±(r, t j )GE∓ (r, r′)r′|ψ (+)

K j
(r′)〉

+〈ϕ0(r)|rGE±(t j )(r, r′)W±(r′, t j )|ψ (+)
K j

(r)〉 , (61)

where the index j enumerates pairs of ionization (t ′
j) and

recombination (t j) events. The times t ′
j and t j are roots of the

system of transcendental equations [cf. Eq. (20)]:

K ′
j · K̇

′
j = 0, K2

j = 2[� + E±], (62)

where K ′
j , K̇

′
j , and K j are determined in Eq. (20). The ex-

plicit form of χ
(±)
j in the Eq. (61) shows that they can be

interpreted as the amplitudes of recombination (with emission
of harmonic with frequency �) assisted by the emission or
absorbtion of a photon with energy �w. It should be noted that
the HHG channel described by χ

(−)
j contributes for harmonics

with energies smaller than the maximal gained energy of an
electron in IR field, so that this channel becomes significant
for harmonics forbidden by the dipole selection rules in the
IR field. In contrast to the correction δD(−)

1 (�), the term
δD(+)

1 (�) contributes for harmonics above the cutoff of the
HHG spectrum in the IR field. This channel was discussed in
Refs. [52–54] and has been utilized recently for the attosecond
pulse metrology [55] and time-frequency analysis of HHG by
means of probe XUV pulse [56].

The last correction in the HHG amplitude (59) also can be
presented in the closed analytical form

δD2(�) =
∑

j

g(pr)(t̃ j, t̃ ′
j )gU (t̃ j, t̃ ′

j )d(K̃ j ), (63)

where for d(K̃ j ) [see Eq. (19c)] and the pair of times t̃ j , t̃ ′
j is

the solution of equations

K̃ ′
j
2 = 2E+, K̃

′
j = K ′(t̃ j, t̃ ′

j ), (64a)

K̃2
j = 2(� + E0), K̃ j = K(t̃ j, t̃ ′

j ). (64b)

In accordance with Eq. (63), the correction δD2(�) can
be interpreted in terms of the three-step scenario of HHG. In
the first step, the interaction of the bound electron with the
perturbation W (r, t ) liberates the electron to the continuum
state with momentum K ′

j . If Ip > �w, the interaction with
W (r, t ) forms an intermediate (quasienergy) state, which de-
cays into the continuum to the state with momentum K ′

j ≈ 0
by the tunneling through the barrier formed by the potential
U (r) and IR field [57]. If �w > Ip, the electron appears in
the continuum by absorbing the photon �w with subsequent
population of the continuum state with energy E0 + � > 0. In
the second and third steps, the liberated electron propagates
in the continuum and recombines to the initial state with
emission of harmonic having the frequency �. Equation (64b)
for recombination event explicitly shows that the energy of an
emitted harmonic cannot exceed the maximal gained energy
in the IR field, so that the correction δD2(�) contributes for
those harmonic energies, which can be effectively produced
by the IR field. Finally, we should note that the magnitude
of the correction δD2(�) can be comparable with DHHG(�).
Indeed, the one-photon matrix element in Eq. (57e) may have
the same or larger magnitude than the tunneling exponent
(11). This fact makes possible the manifestation of the term
δD2(�) in experiments (see Ref. [58]), as well as in the
numerical calculations (see Refs. [58–62]).

V. SUMMARY AND OUTLOOK

In this work, we explored the analytical structure of the
wave function �(r, t ) for an electron interacting with a finite-
range potential U (r) and an intense low-frequency laser pulse.
In our analysis of the laser-distorted wave function we con-
sidered two cases of initial conditions, when an electron is
initially in a bound (i) or scattering (ii) states of the potential
U (r). The closed analytical forms were obtained for �(r, t )
for both cases [see Eq. (8) for the electron in the bound state
and Eq. (15) for the continuum state] and in each case �(r, t )
was partitioned into two parts: the “slow” and “rapid.” The
slow part is expressed in terms of the bound state for case
(i) and the scattering state with the laser-modified (kinematic)
momentum for case (ii). For both cases, the rapid part of
�(r, t ) is presented as a superposition of scattering states
with time-dependent asymptotic momenta [see Eqs. (8b), and
(15b)], whose directions and magnitudes are determined by
the classical “rescattering” condition. For case (i), the electron
returns to the origin at the moment t , assuming that it appears
in the continuum at the moment t ′

s(t ). For case (ii), t ′
s(t ) is

the instant of the first electron-core collision in the presence
of the laser pulse. The time-dependent coefficients in the su-
perposition of scattering states for the rapid part of �(r, t ) in
case (i) are presented as a product of the tunneling exponential
[describing the electron appearance in the continuum with
minimal energy at the time t ′

s(t )] and the time-dependent (at
the time moment t) propagation factor (12) [see Eq. (8b)]. In
case (ii), these coefficients involve the electron scattering am-
plitude (describing the electron-core collision accompanied
by the energy transfer from the laser pulse to the electron)
[see Eq. (15b)] instead of the tunneling factor in case (i). We
emphasize that the key ingredient of the rescattering part of
the laser-dressed wave function is the set of times t ′

s. These

033109-10



ADIABATIC EXPRESSIONS FOR THE WAVE FUNCTION … PHYSICAL REVIEW A 104, 033109 (2021)

times do not depend on the shape of the potential U (r) and de-
termine the instantaneous magnitudes of the tunneling factor
[for case (i)] and elastic electron scattering amplitude [for case
(ii)], as well as the corresponding time-dependent propagation
factors for both cases.

Based on the analytic expressions for the wave func-
tions including the rescattering corrections, we obtain the
parametrizations for transition matrix elements and cross sec-
tions for fundamental strong-field processes in terms of laser
and binding-potential parameters with the exact account of
effects of the potential U (r) and quasiclassical accuracy for
the account of electron-laser interaction (see Sec. IV A). The
deduced parametrizations include aforementioned tunneling
factors or scattering amplitudes and propagation factors in-
volved in the laser-dressed state and evaluated at the particular
pairs of times (t ′

j, t j ) depending on the initial and final elec-
tron states.

The analytic results for the wave functions �(r, t ) were
also utilized for the development of the perturbation theory
in an additional weak field (see Sec. IV B). The perturba-
tive result for the wave function was formulated in terms
of the Green’s function, whose approximate expression was
obtained within the analytic expression for the adiabatic wave
function �(r, t ). We obtained the first-order perturbative cor-
rection to �(r, t ) and used this result to calculate the HHG
amplitude in an intense low-frequency IR field and a weak
perturbation. We found that a weak perturbation leads to new
channels for harmonic generation. In principle, these new
HHG channels may interfere with other channels caused by
an account of the perturbation in high orders. Indeed, the
interaction of an atomic system with a short XUV pulse can
be considered in terms of the perturbation theory even in the
presence of intense IR field. In this case, the additional per-
turbative interaction of the XUV field with an atomic system
in an intense IR field leads to the HHG channels with the
absorption of the XUV photons. The harmonics produced
within such channel may have an energy close to the energy
of the second harmonic of the XUV field generated in the
presence of IR field, so that the amplitudes with absorption
of one and two XUV photons may interfere [56]. Such inter-
ference carries an information about the nonlinear interaction
of an atomic system with the laser field in the XUV range,
which is of the growing interest nowadays due to increasing
intensities of XUV sources.

Our analytical results in this paper were obtained for a
finite-range potential, so that the corresponding corrections
for the Coulomb field should be taken into account applying
these results for atomic systems. However, the calculation of
the Coulomb corrections for the wave function is unlikely,
so that these corrections can be more tractably introduced di-
rectly in transition matrix elements of fundamental processes
in an intense laser field and finite-range potential. Based on
the parametrizations discussed in Sec. IV A, it can be seen
that the Coulomb corrections should be introduced by (i)
replacing the finite-range amplitudes (the attachment, de-
tachment, and scattering amplitudes) to the corresponding
Coulomb-modified counterparts and (ii) introducing qua-
siclassical Coulomb corrections at the subbarrier electron
motion and propagation in the continuum. Although the gen-
eral conception of Coulomb corrections was formulated in

Refs. [63–66], the practical realization with subsequent test-
ing of their accuracy is still a challenge for a strong-field
process in a tailored laser pulse.
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APPENDIX A: DERIVATION OF EQ. (5)

In this Appendix we use Dirac’s notations for shortness of
intermediate expressions. The nonstationary retarded Green’s
function for the Hamiltonian Ĥ (r, t ), G ≡ G(r, t ; r′, t ′), satis-
fies the Dyson relation for Green’s functions:

G = GV + GV UG, (A1)

where the retarded Volkov Green’s function, GV ≡
GV (r, t ; r′, t ′), is given by Eq. (6) and the short notation
GV UG means

GV UG ≡
∫ ∞

−∞
dt ′′

∫
dr′′GV (r, t ; r′′, t ′′)

× U (r′′)G(r′′, t ′′; r′, t ′).

Substituting Eq. (A1) into Eq. (3), we obtain

|�〉 = |�0〉 + |GV �0〉
= |�0〉 + |GV V �0〉 + |GV U GV �0〉︸ ︷︷ ︸

|�〉−|�0〉
= |�0〉 + |GV V �0〉 + |GV U�〉 − |GV U�0〉. (A2)

For further transformation of Eq. (A2), we use the well-known
relation for a stationary wave function [68]:

|�0〉 = {|ϕ0〉} + |G0U�0〉, (A3)

where {|ϕ0〉} is zero if |�0〉 belongs to the discrete spectrum
and {|ϕ0〉} ≡ |ϕ0〉 is an eigenvector of the kinetic energy oper-
ator (i.e., a plane-wave state) if |�0〉 belongs to the continuum
spectrum, and G0 is the nonstationary Green’s function for
a free electron. Substituting (A3) into the second term of
Eq. (A2), we obtain

|�〉 = |�0〉 + {|GV V ϕ0〉} + | GV V G0︸ ︷︷ ︸
GV −G0

U�0〉

+|GV U�〉 − |GV U�0〉
= {|ϕ0〉 + |GV V ϕ0〉}︸ ︷︷ ︸

|ψV 〉
+|GV U�〉

= {|ψV 〉} + |GV U�〉, (A4)

where |ψV 〉 is the Volkov state of a free electron in a laser
field. The first term (the term in braces) in Eq. (A4) should
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be omitted if |�0〉 represents a bound state. Equation (A4) is
equivalent to Eq. (5).

APPENDIX B: DERIVATION OF EQS. (8) AND (15)

1. The case of initial bound state ϕ0(r)

We seek the solution of Eq. (5) in the form

�(r, t ) = e−iE0t�(r, t ).

Within Eqs. (5) and (6), the function �(r, t ) can be presented
in terms of a function f (p, t ′) [34]:

�(r, t ) = −i
∫

d p
∫ t

−∞
dt ′ ei[P(t )·r+S(p;t,t ′ )] f (p, t ′), (B1)

f (p, t ) = 1

(2π )3

∫
e−iP(t )·rU (r)�(r, t ) dr,

S(p; t, t ′) = E0(t − t ′) − 1

2

∫ t

t ′
P2(τ ) dτ. (B2)

The function f (p, t ) is the key object in the evaluation of
the function �(r, t ) in the low-frequency (or adiabatic) limit,
which is ensured by inequalities F 2/ω3 � 1 and Ip/ω � 1,
where F and ω give the order of magnitude for the electric
field strength and carrier frequency of a strong low-frequency
laser pulse, and Ip is the detachment threshold (E0 = −Ip).
We note that in the low-frequency limit, the laser-induced
population of exited states is negligibly small4 [67] and the
initial state can be considered as isolated (we do not consider
the laser-induced resonances between atomic levels, which
require a special consideration for the low-frequency fields).
In the adiabatic limit, the function f (p, t ) can be presented
as a sum of the slowly varying in time function f (s)(p, t ) and
rapidly oscillating function f (r)(p, t ):

f (p, t ) = f (s)(p, t ) + f (r)(p, t ). (B3)

The function f (s)(p, t ) is expressed in terms of the function
f0(p), which determines the initial bound state ϕ0(r) [34]:

ϕ0(r) =
∫

eip·r f0(p)

E0 − p2/2
d p, (B4a)

f (s)(p, t ) = f0(P(t )). (B4b)

The function f (r)(p, t ) has the form [34]

f (r)(p, t ) =
√

2π

i

∑
s

∫
eiS(k;t,t ′

s )

√
αs

×T (P(t ), K(t )) f0(K(t ′
s )) dk,

αs = ∂2S(k; t, t ′
s )

∂t ′
s
2 = −K(t ′

s ) · F(t ′
s ), (B5)

where times t ′
s ≡ t ′

s(k, t ) are found from the equation

K2(t ′
s ) = 2E0, K(t ) = k + A(t ). (B6)

In Eq. (B5) the effects of electron-core interaction are pre-
sented by two factors: the function f0(K(t ′

s )) and the half-shell

4The exponentially small population of exited states in a short-
range potential cannot affect strong-field phenomena considered here
[see discussion of Fig. 3(b) in Sec. IV A 1].

T -matrix T (P(t ), K(t )). The T -matrix T (p, k) describes the
electron scattering on the potential U (r) with momentum
exchange from k to p [68]:

T (p, k) = 1

(2π )3

∫
e−ip·rU (r)ψ (+)

k (r) dr, (B7)

where ψ
(+)
k (r) is the scattering state of an electron with the

momentum k in the potential U (r) having the asymptotics of
outgoing waves.

The calculation of transition matrix elements for strong-
field phenomena is performed mostly in the coordinate space,
in which case the explicit form of �(r, t ) is necessary. We
show that expression for �(r, t ) can be deduced in the closed
analytic form and expressed in terms of functions ϕ0(r) and
ψ

(+)
k (r). Let us substitute the expression (B3) into Eq. (B1)

and express the wave function �(r, t ) in terms of functions
ϕ(s)(k, t ) and ϕ(r)(k, t ):

�(r, t ) =
∫

eiK(t )·rϕ(s)(k, t ) dk

+
∫

eiP(t )·rϕ(r)(p, t ) d p, (B8)

where

ϕ(s)(k, t ) = −i
∫ t

−∞
eiS(k;t,t ′ ) f (s)(k, t ′) dt ′, (B9a)

ϕ(r)(p, t ) = −i
∫ t

−∞
eiS(p;t,t ′ ) f (r)(p, t ′) dt ′. (B9b)

In the low-frequency approximation, the temporal in-
tegrals in Eqs. (B9) can be analytically estimated. There
are two contributions in integrals (B9) (see, e.g., Ref. [69]):
(i) the contribution from the vicinity of the upper limit and (ii)
the contribution from saddle points t ′

s [see Eq. (B6)].
For the integral (B9a), the estimation near the upper limit

is achieved by approximating the integrand in Eq. (B9a) near
t ′ = t within substitutions:

S(k; t, t ′) ≈
[

E0 − K2(t )

2

]
(t − t ′),

f (s)(k, t ′) = f0(K(t ′)) ≈ f0(K(t )),

and evaluating the integral in t ′ [we mark this contribution to
the integral (B9a) as ϕ

(s)
0 (p, t )]:

ϕ
(s)
0 (k, t ) = f0(K(t ))

E0 − K2(t )/2
. (B10)

Integration over k of the function ϕ
(s)
0 (k, t ) with the weight

function eiK(t )·r in Eq. (B8) can be performed by taking into
account the equality (B4a)∫

eiK(t )·rϕ(s)
0 (K(t ), t ) dk = ϕ0(r). (B11)

Estimating integral (B9a) for ϕ(s)(k, t ) by the saddle-point
method [we mark this contribution to the integral (B9a) as
ϕ

(s)
1 (k, t )], we obtain

ϕ
(s)
1 (k, t ) =

√
2π

i

∑
s

eiS(k;t,t ′
s )

√
αs

f0(K(t ′
s )), (B12)
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where the summation is taken for all appropriate solutions of
Eq. (B6).

Let us further estimate the function ϕ(r)(p, t ) in Eq. (B9b):

ϕ(r)(p, t ) = −i

√
2π

i

∑
s

∫
dk

eiS(k;t,t ′
s ) f0(K(t ′

s ))√
αs

×
∫ t

−∞
dt ′ e

i
2

∫ t
t ′ [K2(τ )−P2(τ )] dτ T (P(t ′), K(t ′)).

(B13)

We evaluate the integral in second line of Eq. (B13) near the
vicinity of the upper limit t ′ = t [we mark this contribution
as ϕ

(r)
1 (p, t )], while we neglect the contribution from saddle

points, which gives the second-order correction of the expo-
nential smallness caused by the imaginary part of t ′

s. As a
result, we obtain

ϕ
(r)
1 (p, t ) =

√
2π

i

∑
s

∫
eiS(k;t,t ′

s ) f0(K(t ′
s ))√

αs

× 2T (P(t ), K(t ))

K2(t ) − P2(t ) + i0
dk, (B14)

where the sign of an infinitesimal ensures both the conver-
gence of the temporal integral in Eq. (B13) and outgoing-wave
behavior at large distances for �(r, t ).

In the next, we combine together the integrated results for
ϕ

(s)
1 (k, t ) and ϕ

(r)
1 (p, t ):

�(r)(r, t )

=
∫

eiK(t )·rϕ(s)
1 (k, t ) dk +

∫
eiP(t )·rϕ(r)

1 (p, t ) d p

=
√

2π

i

∑
s

∫
dk

eiSE0 (k;t,t ′
s )

√
αs

f (0)
E0

(K(t ′
s ))

×
[

eiK(t )·r + 2
∫

eiP(t )·r T (P(t ), K(t ))
K(t )2 − P(t )2 + i0

d p
]
.

Taking into account the well-known expression in the scatter-
ing theory [68]

ψ
(+)
k (r) = eik·r + 2

∫
eip·r T (p, k)

k2 − p2 + i0
d p, (B15)

we obtain �(r, t ) and �(r)(r, t ) in the form

�(r, t ) = ϕ0(r) + �(r)(r, t ), (B16a)

�(r)(r, t ) =
√

2π

i

∑
s

∫
eiS(k;t,t ′

s )

√
αs

× f0(K(t ′
s ))ψ (+)

K(t )(r) dk. (B16b)

The further simplification is achieved by applying adiabatic
approximation to Eq. (B16b), which consists in the evaluating
integral in k by saddle-point method and series expansion of
S(k; t, t ′

s ) in imaginary part of t ′
s (see Ref. [34] for details).

After these calculations the wave function �(r, t ) can be
approximated by expression (8).

2. The case of initial continuum state

The case of initial electron in the continuum state with
asymptotic momentum p is considered similarly to the case of
bound electron, which we have discussed above. In this case
the wave function can be presented in the form

�(r, t ) = e− i
2

∫ t P2(τ ) dτ�p(r, t ), (B17)

where

�p(r, t ) = eiP(t )·r

−i
∫

dk
∫ t

−∞
dt ′ei[K(t )·r+S(p,k;t,t ′ )] fp(k; t ′),

(B18a)

S(p, k; t, t ′) = 1

2

∫ t

t ′

[
P2(τ ) − K2(τ )

]
dτ, (B18b)

fp(k, t ) = 1

(2π )3

∫
e−iK(t )·rU (r)�p(r, t ) dr. (B18c)

The function fp(k, t ) satisfies the equation

fp(k; t ) = u(k − p) − i
∫

dq u(k − q)

×
∫ t

−∞
dt ′eiS(p,q;t,t ′ ) fp(q; t ′),

u(k − p) = 1

(2π )3

∫
e−i(k−p)·rU (r) dr. (B19)

The analysis of Eq. (B19) is similar to presented in Ref. [34].
The function fp(k; t ) is partitioned into “slow,” f (s)

p (k, t ), and
“rapid,” f (r)

p (k, t ), terms:

fp(k; t ) = f (s)
p (k; t ) + f (r)

p (k; t ). (B20)

The slow part follows from Eq. (B19) by estimating temporal
integral near the upper limit:

f (s)
p (k; t ) = u(k − p) + 2

∫ u(k − q) f (s)
p (q; t )

P2(t ) − Q2(t )
dq,

Q(t ) = q + A(t ). (B21)

Since k − p = K(t ) − P(t ) and k − q = K(t ) − Q(t ),
Eq. (B21) coincides with the integral equation for the
half-shell T -matrix [68], so that f (s)

p (k, t ) is expressed in
terms of the T -matrix with instantaneous laser-modified
momenta:

f (s)
p (k; t ) = T (K(t ), P(t )). (B22)

The equation for the rapid part, f (r)
p (k, t ), is deduced from

Eq. (B19) in the same manner as in Ref. [34], so we proceed
to the final result for f (r)

p (k, t ), which can be obtained from
Eq. (B5) by formal replacements:

k → q,

S(k; t, t ′
s ) → S(p, q; t, t ′

s ),

f0(K(t ′
s )) → f (s)

p (q, t ′
s ),

αs → F(t ′
s ) · (p − q),
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where t ′
s is found from the transcendental saddle-point

equation:

P2(t ′
s ) = Q2(t ′

s ). (B23)

As a result, we obtain f (r)
p (k, t ):

f (r)
p (k, t ) =

√
2π

i

∑
s

∫
eiS(p,q;t,t ′

s )√
F(t ′

s ) · (p − q)

×T (K(t ), Q(t )) T (Q(t ′
s ), P(t ′

s )) dq. (B24)

We note, that in accordance with the saddle-point equation
(B23), the T -matrix T (Q(t ′

s ), P(t ′
s )) in Eq. (B24) is taken on

the energy shell, so that it can be expressed in terms of the
elastic scattering amplitude A(Q(t ′

s ), P(t ′
s )):

T (Q(t ′
s ), P(t ′

s )) = − 1

4π2
A(Q(t ′

s ), P(t ′
s )). (B25)

The equality Eq. (B25) is valid for the classically allowed
region of electron momenta p5, which ensures the real-valued
scattering times t ′

s. For the classically forbidden region of p
the analytic continuation for the scattering amplitude should
be applied.

Substituting the expession (B20) into Eq. (B18a) and using
the low-frequency results (B22) and (B24), we obtain the

5In the considered case, the classically allowed region of electron
momenta means, that the transmitted energy A(t ′

s ) · (q − p) in the
laser field does not exceed the difference between the final (k2/2)
and initial (p2/2) electron energies: 2A(t ′

s ) · (q − p) � k2 − p2.

adiabatic result for �p(r, t ):

�p(r, t ) = �(0)
p (r, t ) + �(r)

p (r, t ). (B26)

In Eq. (B26) the term �(0)
p (r, t ) represents the adiabatic re-

sult in the lowest order and coincides with the well-known
Kroll-Watson low-frequency result for the scattering state
[27]:

�(0)
p (r, t ) = ψ

(+)
P(t )(r), (B27)

where ψ
(+)
P(t )(r) is the scattering state in the potential U (r) with

instantaneous momentum P(t ). To obtain the result (B27),
we estimated the temporal integral in Eq. (B18a) taking into
account only the vicinity of the point t ′ = t and approxi-
mating f (s)

p (k, t ′) ≈ f (s)
p (k, t ). The second term, �(r)

p (r, t ), in
Eq. (B26) is the rescattering correction to the Kroll-Watson
wave function:

�(r)
p (r, t ) =

( i

2π

)3/2 ∫ ∑
s

eiS(p,k;t,t ′
s )√

F(t ′
s ) · (p − k)

×A(K(t ′
s ), P(t ′

s ))ψ (+)
K(t )(r) dk. (B28)

The result (B28) is obtained taking into account the saddle-
point contribution to the temporal integral in Eq. (B18a) for
the term containing f (s) and the contribution of point t ′ = t for
the term containing f (r) [cf. the derivation of the rescattering
result (B16b) for the initial bound state in the potential U (r)].
Finally, evaluating the integral over k in Eq. (B28) by the
saddle-point method, we obtain Eq. (15).
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