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Angular anisotropy parameters for photoionization delays
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Anisotropy parameters describing the angular dependence of the photoionization delay are defined. The
formalism is applied to results obtained with the relativistic random phase approximation with exchange for
photoionization delay from the outermost s-orbitals in selected rare-gas atoms. Any angular dependence in
the Wigner delay is induced here by relativistic effects, while the measurable atomic delay exhibits such a
dependence also in the nonrelativistic limit. The contributions to the anisotropy from the different sources are
disentangled and discussed. For the heavier rare gases, it is shown that measurements of the delay for electrons
ejected in specific angles, relative to, e.g., those ejected along the laser polarization, are directly related here
to the Wigner delay. For a considerable range of angles, the contributions from the second photon largely get
canceled when the results in different angles are compared, and this angle-relative atomic delay is then close to
the corresponding Wigner delay.
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I. INTRODUCTION

The angular distribution of electrons released in the
photoionization process is conveniently described with the an-
gular anisotropy parameters. Originally introduced by Cooper
and Zare [1] in the 1960s, the parameters have since emerged
as the tool of choice to quantify and understand the pho-
toionization angular distribution. The parametrization gives
the photoelectron angular distribution after (multi)photon ion-
ization with linearly polarized light as

dσ

d�
= σint

4π

(
1 +

∞∑
n=1

βnPn(cos θ )

)
, (1)

where Pn are Legendre polynomials, βn are the so-called
asymmetry parameters, θ is the ejection angle with respect
to the polarization axis, and σint is the total cross section, i.e.,
the cross section integrated over all angles. For pure dipole
transitions, only the even n’s come into play, and when k
photons take part in the interaction, the sum terminates at n =
2k. In-depth discussions on the parametrization, including the
extension to unpolarized and differently polarized light, can,
for example, be found in Refs. [2–4].

The angular asymmetry is sensitive to the relative phase
shifts of the photoelectron partial waves, and it has long
been used to obtain phase information. More recently, the
development of attosecond techniques based on laser-assisted
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photoionization, such as the reconstruction of attosecond beat-
ing by interference of two-photon transitions (RABBIT) [5] or
the attosecond streak camera [6], has provided an additional
path to such information [7–15]. In these measurements,
ionization, typically by extreme ultraviolet (XUV) light, is
taking place in the presence of an infrared (IR) laser field,
phase-locked to the XUV field. This paves the way for stim-
ulated emission and absorption of IR photons, and sidebands
appear in the photoelectron spectrum. Interference between
the IR-absorption and -emission paths results in sideband
modulations, directly depending on the relative phases ac-
quired along the different routes. The sideband modulations
are further angular-dependent. Absolute phase information is
not accessible with these techniques either, but phase shifts
between electrons originating from different states within the
same atom [7,8], or from different atoms [10–12,16], are
readily available. Also, a specific angle can be used as a ref-
erence: in Refs. [15,17], the relative phases of electron wave
packets ejected in different angles were measured relative to
those emitted along the direction of polarization of the laser
field. The phase shift is related to the time it takes for an
electron to escape an atomic potential [18–20] and is often
presented in the form of a photoionization delay. The delay
measured in the RABBIT experiments is usually called the
atomic delay, and it involves always the exchange of at least
two photons, while the underlying more fundamental delay
in the one-photon ionization process is labeled the Eisenbud
[18]-Wigner [19]-Smith [20] delay (or just Wigner delay for
short).

Several aspects of laser-assisted photoionization exhibit an
angular dependence: The photoelectron angular distribution
(PAD) depends not only on the number and energy of the pho-
tons exchanged in the process, but also on the delay between
the attosecond pulse train and the probe field, as recently
discussed by Busto et al. [21], and further elaborated on by
Joseph et al. [22]. In addition, the photoionization delay varies
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with detection angle. Here we will focus on the latter aspect.
In Sec. II we will show that anisotropy parameters can be de-
fined which describe the angular dependence of the delay. The
atomic delay then takes a form similar to the corresponding
case in Eq. (1):

τA(θ ) = τ int
A + 1

2ω
arg

(
1 +

nmax∑
n=1

β̃2nP2n(cos θ )

)
, (2)

where nmax = 2 if a pure two-photon process is considered,
and τ int

A is the delay that is measured with a detector that
collects electrons emitted in all angles [23]. The laser fre-
quency is given by ω, and linearly polarized light as well as
the validity of the dipole approximation are assumed. The new
β-parameters, which we will call β̃, are closely related to the
ordinary parameters in Eq. (1), but they are complex.

In Sec. III we apply the formalism to photoionization
delay from the outermost s-orbital in argon, krypton, and
xenon exposed to linearly polarized light. In a nonrelativis-
tic description, the one-photon electron emission from an
s-orbital consists of a single channel. The photoelectron is
then described just by a p-wave; the β2-parameter is con-
sequently independent of energy, in this case β2 = 2, and
the corresponding photoionization delay (the Wigner delay)
is isotropic. The two-photon amplitudes, on the other hand,
have an angular dependence that varies with the photoelectron
energy. This dependence arises due to the presence of two
continua, in this case of s- and d-character. Consequently, the
atomic delay, cf. Sec. II B below, has an intrinsic angular de-
pendence. That this indeed is a measurable effect was shown
experimentally for helium in Ref. [17]. However, in a rela-
tivistic context we should expect the presence of two channels
for ionization of an s-orbital: s → p1/2, p3/2, to allow for an
angular dependence of the delay, which is then of relativistic
origin, already at the one-photon level. This latter case has
been discussed by Kheifets et al. [24], who presented Wigner
delays for electrons emitted from the outermost s-orbital in
rare gases. Here we calculate the two-photon amplitudes and
quantify different contributions to the angular dependence of
the experimentally accessible atomic delay.

II. THEORY

A. Two-photon matrix elements in a nonrelativistic framework

The spatial part of the photoelectron wave function can be
expressed as a sum over the contributing angular momentum
channels. Assuming a nonrelativistic framework, we have

	ε (r, θ, φ) =
∑
�,m

u�(r)Y�m(θ, φ). (3)

At large distances from the remaining ion, the radial chan-
nel functions are outgoing phase-shifted Coulomb waves
that asymptotically approach plane waves. As discussed in
Sec. II B below, we need to consider the interaction with
two photons, � (with an XUV frequency) and ω (with an
IR frequency), and write the asymptotic radial functions after

interaction with both photons as

lim
r→∞ u(2)

�
(r) = −πM (2)( f , ω,�, 0)

√
2m

πkh̄2 ei(kr+η ln 2kr+�� ),

(4)

where M (2)( f , ω,�, 0) is the complex two-photon matrix el-
ement, which connects the initial state, 0, with the final state,
f , where one electron with angular momentum � has been
released into the continuum. The superscript denotes that two
photons are exchanged. The ionized electron has momentum
k, and η = Z/ka0, with a0 being the Bohr radius and Z is the
charge of the remaining ion. The phase shift, ��, is

�� = −�
π

2
+ ση,� + δk,� (5)

with the Coulomb phase

ση,� = arg [�(� + 1 − iη)] (6)

and a possible additional phase shift, δk,�, induced by the
atomic many-body potential at short distances from the nu-
cleus.

Since the IR photon cannot by itself ionize the atom, the
dominating contribution to M (2) comes from the time order
where the XUV photon first releases the electron into the
continuum, and there it subsequently interacts with the laser
field by emitting or absorbing a laser photon. The contribu-
tion from the reversed time-order (i.e., when the laser photon
is absorbed or emitted first and the XUV photon later) has
been shown to be insignificant as long as the laser-matter
interaction is expressed in length gauge [25], and only the
dominating time-order will be treated here.

For this dominating time-order, and if electron-correlation
is neglected, the two-photon matrix element that determines
the amplitude for the transfer of an electron from orbital a to
the continuum state q is

M (2)
a→q = 1

i
EωE� lim

ε→0+

∑
s

∫ 〈q|er|s〉〈s|er|a〉
εa + � − εs + iε

. (7)

The sum over intermediate states s runs over all available
states both bound and in the continuum. Here we use the
random phase approximation with exchange (RPAE) [2] to
include important correlation effects.

RPAE accounts fully for hole-particle excitations, in-
cluding interchannel coupling and so-called ground-state
correlation, and it is well established that the method is ade-
quate to calculate (one-photon) photoionization cross sections
in regions free of narrow resonances. In particular, it is able
to describe the pronounced cross-section modulations that are
known under the name Cooper minima, which will be dis-
cussed in Sec. III below. However, RPAE does not account for
double holes and thus not for shake-up or shake-off processes
where photoionization from a particular orbital is accompa-
nied by excitation or ionization from other orbitals. Such
effects are typically seen as sharp features in photoionization
spectra.

Assuming that the interaction with the ionizing XUV-
photon is well enough described within RPAE, we can
calculate the two-photon matrix element as the transition ma-
trix element from the RPAE-level perturbed wave function to
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the final continuum state. Exterior complex scaling is used in
order to be able to use a finite numerical box, and the integra-
tion is performed numerically out to a distance far outside the
atomic core, but within the unscaled region, while the last part
of the integral is carried out using analytical Coulomb waves
along the imaginary radial axis. The amplitude and phase shift
of these Coulomb waves are determined from the numerical
solutions for the perturbed wave function, as well as from
the numerical description of a free electron in the potential of
the remaining ion. How this is done, and how the numerical
accuracy is monitored, has been discussed in quite some detail
elsewhere [25–27].

B. Sideband modulations

We will restrict the discussion here to RABBIT experi-
ments. This technique is performed with a train of attosecond
pulses, i.e., an XUV comb in the frequency domain, which
is assisted by a weak laser field, and, as discussed, e.g., in
Ref. [14], it can combine attosecond temporal resolution with
sub-eV spectral resolution. The RABBIT signal can be under-
stood and quantified from the pure two-photon contribution:
The ionization process is initiated by the XUV comb (the teeth
are all odd multiples of the driving laser field), and sidebands
are formed when an additional IR photon is either absorbed
or emitted. The absorption path from one tooth in the XUV
spectrum will then result in the same photoelectron energy, as
the next tooth accompanied by IR emission. The intensity of
a RABBIT sideband can be written as [28,29]

S = |Aa + Ae|2 = |Aa|2 + |Ae|2 + A∗
aAe + AaA∗

e

= |Aa|2 + |Ae|2 + 2 × |Aa||Ae| cos [arg(Aa) − arg(Ae)],
(8)

where Aa/e are the complex quantum amplitudes for the two-
photon processes involving absorption (a) or emission (e) of
an IR photon. The last term in Eq. (8) gives rise to oscillations
in the sideband intensity, originating from the phase difference
of the electron wave packets reaching the sideband through
the two paths. It can be shown [29] that this phase difference
has three sources: the delay between the IR and XUV pulses
(τ ), the group delay of the attosecond pulses (τXUV), and the
ionization process, which depends on the particular atomic
system (ηA):

cos [arg(Aa) − arg(Ae)] = cos [2ω(τ − τXUV) − ηA]. (9)

The latter can be interpreted as an atomic delay: τA = ηA/2ω.
Since the delay between the two light fields is controlled in

experiments and the light field group delay can be canceled
through relative measurements, the atomic contribution can
be extracted. In principle, absorption or emission of additional
IR photons can contribute to the sideband signal, which would
complicate the analysis. Experiments are therefore generally
performed with a weak IR field, and in addition Fourier tech-
niques can be used to extract the 2ω oscillation [12,23,29],
which is due to the pure two-photon signal. It is thus the
two-photon matrix elements, cf. Eq. (7), that are needed for
the theoretical modeling. A recent review of the experimental
method can be found in Ref. [29].

The quantity in Eq. (8) is of course real, but the individual
terms

A∗
eAa = (AeA∗

a )∗ = |Aa||Ae|ei[arg(Aa )−arg(Ae )] (10)

are complex, and it is their argument that determines the
sideband modulations.

C. Anisotropy parameters

The angular dependence of the photoelectron emission is
governed by the relative strengths of the different angular
momentum channels. Using Eqs. (3) and (4), and omitting
the factors common to all channels (which cannot affect the
relative strength), we write the amplitude that governs the
angular dependence as

A(θ, φ) =
∑

�,m,ms

Y�m(θ, φ)ei��M (2)
na�amms→�mms

. (11)

Here linearly polarized light and emission from a closed-shell
orbital, defined by na�a, are assumed. The azimuthal quantum
number, as well as the spin direction, of the photoelectron,
will, with linear polarization, be the same as the orbital from
which it emerged. The modulus square of the amplitude in
Eq. (11) will under these circumstances be independent of the
azimuthal angle, i.e., there will be no φ-dependence.

Angular momentum coupling theory can be used to rewrite
M (2) as a reduced matrix element that is independent of the
azimuthal quantum numbers. This reduced matrix element
consists of effective two-photon operators of rank 0, 1, and
2, and a 3 j-symbol (cf. the Appendix). For linearly polarized
light the rank-1 operator does not contribute, and it is enough
to consider the operators of rank 0 and 2. The modulus square
of the amplitude is now

|A(θ )|2 =
∑
m,ms

∣∣∣∣∣
∑
K,�

Y�m(θ, 0)(−1)�−m

(
� K �a

−m 0 m

)
ei��M(2)

�,K

∣∣∣∣∣
2

, (12)

where M(2)
�,K is the reduced two-photon matrix element on the

right-hand side of Eq. (A2) [note the difference from the quan-
tity M(2) in Eq. (11)]. Since the modulus square of the ampli-
tude lacks φ-dependence, the spherical harmonics can be eval-
uated at φ = 0. The subscript � denotes the angular momen-

tum of the photoelectron, and K is the total rank of the two-
photon interaction. The cross terms in Eq. (12) will depend
on the relative phase shift of the different angular momentum
channels, as well as on the phase of the matrix element, and
hereby the angular distribution depends on these phases.
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The standard two-photon cross section, i.e., with a single
set of photon energies (�1,�2), involves only one path to
the final energy state, e.g., the absorption path with final
energy E0 + �1 + �2. The β-parameters in Eq. (1) will then
be expressed in terms of the contributing ei��M(2)

�,K (specific
for each quantum system) and numerical constants, common
to ionization from a particular orbital angular momentum. For
example, for ionization from an s-orbital the parameters are

β2 =
2
7

∣∣M(2)
2,2

∣∣2

1
5

∣∣M(2)
2,2

∣∣2 + ∣∣M(2)
0,0

∣∣2

+
[(

M(2)
0,0

)∗
M(2)

2,2ei(�2−�0 ) + M(2)
0,0

(
M(2)

2,2

)∗
e−i(�2−�0 )

]
1
5

∣∣M(2)
2,2

∣∣2 + ∣∣M(2)
0,0

∣∣2

(13)

and

β4 =
18
35

∣∣M(2)
2,2

∣∣2

1
5

∣∣M(2)
2,2

∣∣2 + ∣∣M(2)
0,0

∣∣2 (14)

while the amplitude integrated over all angles (i.e., the quan-
tity proportional to the total cross section) is

∫
|A(θ )|2d� = 2

(
1

5

∣∣M(2)
2,2

∣∣2 + ∣∣M(2)
0,0

∣∣2
)

. (15)

In this particular case, M(2)
0,0 and M(2)

2,2 are the two-photon
matrix elements for the s → p → s and s → p → d channels,
respectively, and only the two-photon operator with K = 0
can connect the bound s-orbital with an outgoing s-electron
and only the K = 2 operator can connect it with an outgoing
d-electron. The factor of 2 comes from the sum over the
spin-projections.

It is interesting to note that the photoelectron amplitude,
perpendicular to the polarization direction, i.e., at θ = π/2,
is 0 when 4β2 − 3β4 = 8. For high kinetic energies the ra-
dial matrix elements for the two channels will approach each
other, and with the angular integrals given in Eq. (A5) we
can conclude that β2 → 20/7 and β4 → 8/7, and thus indeed
4β2 − 3β4 → 8, when the kinetic energy of the photoelectron
goes to infinity. Below, we will find that the β-parameters are
close to these values also for modest kinetic energies for the
studied cases of above-threshold ionization. This reflects the
limited possibilities for the IR-photon to change the direction
of the photoelectron, and it illustrates the range of validity of
the so-called “soft-photon approximation” [30].

Consider now the situation with two interfering amplitudes
as in Eq. (8). The diagonal terms |Aa|2 and |Ae|2 are real and
will be of the form given in Eq. (12), and the parametrization
will be with the same form of the β-parameters as in Eqs. (13)
and (14), although the values of the matrix elements and the
phases will be different in the absorption and the emission
paths. The situation for the cross terms, responsible for the
modulation of the sidebands when the delay, τ , between the
light fields is varied, is, however, different. This complex term
will be

A∗
a(θ )Ae(θ ) =

∑
m,ms

[∑
�,K

Y�,m(θ, 0)(−1)�−m

(
� K �a

−m 0 m

)
ei��Ma,�,K

]∗[∑
�,K

Y�,m(θ, 0)(−1)�−m

(
� K �a

−m 0 m

)
ei��Me,�,K

]
,

(16)

where it is understood that Ma/e denote the two-photon matrix
elements for the two paths, and the superscript (2) has thus
been dropped. We note that the form is exactly the same as in
Eq. (12) and it can readily be shown that for ionization from
an s-orbital the result is

A∗
a(θ, 0)Ae(θ, 0) = 1

4π

(
1

5
M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

)

×(1 + β̃2P2(cos θ ) + β̃4P4(cos θ ))
(17)

with

β̃2 =
2
7 M∗

a,2,2Me,2,2

1
5 M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

+ M∗
a,0,0Me,2,2ei(�2−�0 ) + Me,0,0M∗

a,2,2e−i(�2−�0 )

1
5 M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

(18)

and

β̃4 =
18
35 M∗

a2,2Me2,2

1
5 M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

. (19)

The numerical constants are the same as in Eqs. (13) and
(14), but since the absorption and emission matrix elements
are distinctly different, the β̃’s are complex. The atomic delay
can now be written as

τA(θ ) = arg
[

1
5 M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

]
2ω

+ arg[(1 + β̃2P2(cos θ ) + β̃4P4(cos θ ))]

2ω

= τ int
A + arg[(1 + β̃2P2(cos θ ) + β̃4P4(cos θ ))]

2ω
, (20)

where the delay that will be measured from an angular inte-
grated signal, i.e., τ int

A , is recognized on the first line.
Finally, we want to emphasize that although the last factor

in Eq. (17) gives unity after angular integration, there is noth-
ing forcing the last term in Eq. (20) to integrate to zero: τ int

A is
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the delay extractable from an angular integrated experiment,
it is not τA(θ ) integrated over all angles.

D. Connection to other forms of parametrization

Before continuing, we note in passing that an alternative
form of Eq. (17) is

A∗
a(θ )Ae(θ ) = 1

4π

∣∣∣∣1

5
M∗

a,2,2Me,2,2 + M∗
a,0,0Me,0,0

∣∣∣∣eiφ0

× (1 + |β̃2|eiφ20 P2(cos θ ) + |β̃4|eiφ40 P4(cos θ )),

(21)

where the phases are named by Joseph et al. [22]. Adding the
complex conjugate, Aa(θ )A∗

e (θ ), one can directly connect to
their parametrization. They write the sideband oscillation, cf.
Eq. (9), as coming from three terms: one angular-independent
term that oscillates as cos(ωτ + φ0), one term proportional
to P2(cos θ ) that oscillates as cos(ωτ + φ0 + φ20), and fi-
nally one term proportional to P4(cos θ ) that oscillates as
cos(ωτ + φ0 + φ40). The arguments of the complex β̃’s are
thus identical to the phases φ20 and φ40 in Ref. [22].

E. Relativistic formalism

In the relativistic case, the asymptotic radial wave function
is a two-component function, with a phase shift slightly dif-
ferent compared to the nonrelativistic description [31,32]:

lim
r→∞ u(n)

κ (r) = −πM (n)

√
1

1 + ζ 2

√
2m

πkh̄2

(
1 + ε

mc2

)

×
(

ei(kr+η ln 2kr+�κ )

iζei(kr+η ln 2kr+�κ )

)
. (22)

Equation (22), which is valid after one photon (n = 1), as
well as after two (n = 2) photons, replaces thus the expression
in Eq. (4). The relation between the large (upper) and small
(lower) components at infinity is

ζ =
√

E − mc2

E + mc2
= kh̄

2mc

1(
1 + ε

2mc2

) , (23)

where E = mc2 + ε is the energy including the rest mass
contribution, and k, as well as η, are given by the relativistic
generalizations of the nonrelativistic expressions:

k =
√

E2 − m2c4

h̄c
=

√
2εm

h̄

√
1 + ε

2mc2
,

η = ZαE

√
1

E2 − m2c4
= Z

a0k

(
ε

mc2
+ 1

)
. (24)

The relativistic quantum number κ is further defined as

κ = −(� + 1) for j = � + 1
2

κ = � for j = � − 1
2 , (25)

where � refers to the orbital angular momentum associated
with the larger (upper) component of the wave function, cf.
Eq. (28). The Coulomb phase shift is finally slightly different

in the relativistic case and is given by

�κ = −γπ/2 + σκ + ν + δ, (26)

where γ 2 ≡ κ2 − α2Z2 and

σκ = arg [�(γ − iη)],

e2iν =
(−κ + iZ

ka0

)
(γ + iη)

, (27)

while δ, as before, is the shift induced by the short-range
non-Coulombic potential, although now possibly adjusted by
relativistic effects.

The two-component angular-dependent amplitudes, corre-
sponding to the nonrelativistic expressions in Eq. (11), can
thus be written as

A(θ, φ) =
∑
κmj

∑
K

(−1) j+K+ ja

[
(−1) j−mj

(
j K ja

−mj 0 mj

)]

×
(∑

m� f ms
〈� f m� f sms| jm j〉Y� f ,m� f

(θ, φ)ξms

iζ
∑

m�g ms
〈�gm�gsms| jm j〉Y�g,m�g

(θ, φ)ξms

)
M̄ (n)

κ,K ,

(28)

where ξ± (for ms = ±1/2) denotes the spin function, and the
angular momentum connected with the small (lower) compo-
nent is �g = � f ± 1, where � f refers to the angular momentum
of the large (upper) component, � f = j ∓ 1/2. Further, we
have 〈ξms |ξm′

s
〉 = δ(ms, m′

s), and the notation M̄ indicates that
we now include the phase of the ionized electron, given in
Eq. (26), cf. (A4) in the matrix element. Again, we may use
Eq. (28) for both the one-photon contribution (n = 1, K = 1)
and the two-photon case (n = 2, K = 0, 2). The procedure to
obtain the β̃ is sketched below, and the explicit forms for our
test case of ionization from an s-orbital are given.

1. The Wigner delay

In the nonrelativistic framework, we calculate the one-
photon contribution to the atomic delay as

τW (ε) = arg (Ak>
) − arg (Ak<

)

2ω
, (29)

where A is the complex one-photon amplitude for the emis-
sion (k>) and the absorption arm (k<) of the RABBIT paths.
This coincides with the definition of the Wigner delay as the
derivative of the phase shift with respect to energy within the
finite-difference approximation. Since the relativistic ampli-
tude has two radial components, with different angular parts,
it might at first seem harder to define a single argument here.
Remembering that the goal is to find the one-photon contribu-
tion to the atomic delay, we note that

|Aa + Ae|2 = |A< + δAa + A> + δAe|2

= |Ak<
|2 + |Ak>

|2 + A∗
k<

Ak>
+ A∗

k>
Ak<

+ · · ·
(30)

and conclude that the pure one-photon contribution to the
RABBIT signal is given by the term

A∗
k<

Ak>
+ c.c. = 2|Ak<

||Ak>
| cos (arg (Ak>

) − arg (Ak<
)), (31)

where c.c. stands for complex conjugate. The argument of
A∗

k<
Ak>

thus indeed agrees with the expression for τW in
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Eq. (29), but since the expression is now directly related to
the modulus square of an amplitude, the argument can be
unambiguously obtained.

Following the example from the nonrelativistic deriva-
tion, and the amplitude expression in Eq. (28), we write the
angle-dependent amplitude, A∗

k<
(θ )Ak>

(θ ), as the integrated
contribution times an angle-dependent factor. One-photon
ionization from an s-orbital leads to p1/2 (κ = 1) and p3/2

(κ = −2) photoelectrons and the delay

τW (θ ) = 1

2ω
arg[M̄<,∗

κ=1M̄>
κ=1 + M̄<,∗

κ=−2M̄>
κ=−2]

+ 1

2ω
arg

[
1 + β̃W

2 P2(cos θ )
]
, (32)

where the first argument gives τ int
W , i.e., the one-photon con-

tribution to the delay characterizing the sideband modulations
of an angular integrated signal, and

β̃W
2 = M̄<,∗

κ=−2M̄>
κ=−2 − √

2(M̄<,∗
κ=1M̄>

κ=−2 + M̄<,∗
κ=−2M̄>

κ=1)

M̄<,∗
κ=1M̄>

κ=1 + M̄<,∗
κ=−2M̄>

κ=−2

.

(33)

2. Atomic delay

In the two-photon case, Eq. (28) gives, through the same
procedure as above, the atomic delay as combinations of
the matrix elements for ionization in the s1/2 (κ = −1), d3/2

(κ = 2), and d5/2 (κ = −3) channels. The first of these is due
to the two-photon operator with rank 0, and the last two are
due to the two-photon operator with rank 2, and we have
dropped the K-index in the following. The atomic delay from
the integrated signal is

τ int
A = 1

2ω
arg[D], (34)

where

D = M̄∗
a,κ=−1M̄e,κ=−1

+ 1
5 M̄∗

a,κ=2M̄e,κ=2 + 1
5 M̄∗

a,κ=−3M̄e,κ=−3, (35)

where, as in Eq. (16), it is understood that M̄a/e are two-photon
matrix elements so that the superscript (2) can be dropped,
and, as noted in connection with Eq. (28), the matrix elements
include the phase of the outgoing electron, cf. (A4). The β̃-
parameters are now

β̃2 = 1

D

{
1

5

(
M̄∗

a,κ=2M̄e,κ=2 + 8

7
M̄∗

a,κ=−3M̄e,κ=−3

)

+ 3√
15

(M̄∗
a,κ=−1M̄e,κ=−3 + M̄∗

a,κ=−3M̄e,κ=−1)

+ 2√
10

(M̄∗
a,κ=−1M̄e,κ=2 + M̄∗

a,κ=2M̄e,κ=−1)

+
2
√

3
2 (M̄∗

a,κ=−3M̄e,κ=2 + M̄∗
a,κ=2M̄e,κ=−3)

35

}
(36)

and

β̃4 = 1

D

{
6

35

(
M̄∗

a,κ=−3M̄e,κ=−3

+ 2

√
3

2
(M̄∗

a,κ=−3M̄e,κ=2 + M̄∗
a,κ=2M̄e,κ=−3)

)}
(37)

and now Eq. (2) can be used to get the angular-dependent
delay.

III. RESULTS AND DISCUSSION

The calculations of the two-photon matrix elements have
been done with a relativistic implementation [33] of the pro-
cedure described for nonrelativistic systems in Refs. [26,27].
The method is based on the random phase approximation with
exchange.

The IR-photon energy is kept at 1.55 eV in all the calcula-
tions. This corresponds to the wavelengths commonly used in
RABBIT experiments.

A. The delay from angular integrated measurements

In experiments where electrons emitted in all directions are
collected, the sideband modulations depend on the atomic de-
lay τ int

A , cf. Eqs. (34) and (35), as cos (2ω(τ + τXUV − τ int
A )),

cf. Eq. (9). This delay is shown in the top panel of Fig. 1
for ionization from the outermost s-shell in argon (solid line),
krypton (dashed line), and xenon (dash-dotted line). The mid-
dle panel shows the underlying one-photon Wigner delay, τ int

W ,

cf. Eq. (32), while the bottom panel shows the difference
between the two, i.e., the isolated contribution from the sec-
ond photon. The label (cc) in the bottom panels stands for
continuum-continuum delay.

All the systems displayed in Fig. 1 are known to have a
so-called Cooper minimum [34] in the cross section from the
outermost orbital (which is of p-character). The minima ap-
pear for photon energies where the np → d transition-matrix
element changes sign. The cross section from the outermost
s-orbital is strongly coupled to this transition, leading to a
“replica” of the Cooper minimum, sometimes called an in-
duced Cooper minimum in the ns → p channels. Precisely
at the photon energy for these cross-section minima, the two
uppermost panels in Fig. 1 show delay maxima with peaks
of several hundreds of attoseconds. Argon has been studied
experimentally in this energy region [8,23], and Ref. [23]
explains the absence of a large peak in the data with the
dominance of shake-up channels, with a different delay, at
energies where the direct ionization from 3s vanishes. It is a
general trend that the photoionization delay grows very large
when the amplitude for the process goes to zero, as will be
seen below.

For a pure Coulomb system, the contribution from an
IR-photon, exchanged when the electron already is in the
continuum, can be described with an analytical expression
[35,36]. In Ref. [26] it was shown that its results agree re-
markably well with many-body calculations of the difference
between the atomic and the Wigner delay, at least for not too
slow electrons emitted along the polarization axis. This was
further shown to hold for a range of elements and orbitals.
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FIG. 1. The delay obtained when photoelectrons emitted in all
angles are collected. Results are shown for electrons ionized from
argon 3s, krypton 4s, and xenon 5s. The top panel shows the atomic
delay [cf. Eqs. (34) and (35)], the middle panel shows the Wigner
delay [cf. Eq. (32)], and the bottom panel shows the difference
between them.

The difference between the atomic delay and the Wigner delay
is generally largest for low photoelectron energies where the
phases acquired in the absorption and the emission paths differ
the most, and it approaches monotonically zero for larger and
larger photoelectron energies. This is seen in the bottom panel
in Fig. 1, but in addition there are distinct features around the
induced Cooper minima which are specific for each element.

Below we will see that this is a property of the integrated
signal, but that the universality of the cc-delay still does hold
for a range of angles.

We now proceed to investigate the angular variation.

B. Angular dependence

Argon is essentially a nonrelativistic system. We thus ex-
pect the one-photon delay from an s-orbital to be more or less
angular-independent, implying that β̃W

2 in Eq. (33) is essen-
tially real. That this is indeed the case is shown in the right
panel of Fig. 2. The real part of β̃W

2 is close to 2, as we expect
nonrelativistically, and the imaginary part is very small. Only
at the induced Cooper minimum can small deviations from
this be observed.

The β̃’s for the two-photon process are displayed in the left
panel of Fig. 2. Again we can note the expected nonrelativistic
result discussed in Sec. II C with the real part of β̃2 being close
to 20/7 and that of β̃4 close to 8/7, both with small imaginary
parts. Only for low kinetic energies can a nonzero imaginary
part be clearly seen.

Figure 3 displays the argon results for the differences be-
tween the delay as measured in a given angle and that for
angular integrated measurements, for the atomic delay as well
as for the underlying Wigner delay. The latter, which is a pure
relativistic effect, is only of the order of a few attoseconds,
and its energy dependency follows closely the imaginary part
of β̃W

2 . This is expected since the variations in the real part
of β̃W

2 are only a few percent. At the so called magic angle
(θ ≈ 54.7), where P2(cos θ ) = 0, the Wigner delay is identical
to τ int

W . The magic angle result for the atomic delay (upper left
panel of Fig. 3) is thus solely coming from the second photon.
The difference between the atomic and the Wigner delay,
for τ − τ int, is displayed in the upper right panel; it differs
only slightly from the atomic delay in the upper left panel
showing that the angular dependence for argon is dominated
by two-photon effects.

The heavier systems krypton and xenon, cf. Fig. 4, still
show real parts of β̃2’s just below 3 and of β̃4’s just above 1,
but the modulations close to the Cooper minima get increas-
ingly more pronounced as shown in the magnified middle
panels. The deviation from β̃W

2 = 2 is also increasing sig-
nificantly, signaling the presence of an angular dependence
already at the one-photon level.

The resulting differences between the delay as measured in
a given angle, and that for an angular integrated measurement,
are displayed in Fig. 5 for krypton and xenon. The angular de-
pendence at low energy is clearly a two-photon effect (absent
in the Wigner delay), and rather similar in magnitude for the
two elements, as expected for a nonrelativistic effect. The an-
gular dependence around the induced Cooper minima, on the
other hand, is growing rapidly with the nuclear charge (note
the different scales in the right and left columns of Fig. 5),
as expected from an effect of relativistic origin. Here both
the atomic delay (top panels) and the Wigner delay (middle
panels) show significant angular variations. It is striking that
the difference between the two still is more or less constant
over a wide range of angles, as seen in the bottom panels. To
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FIG. 2. Complex β̃ parameters for ionization from the 3s subshell of argon. The left panel shows the real and imaginary parts of the
complex β̃2 and β̃4 parameters (for the two-photon process). The right panel shows the real and imaginary parts of the complex β̃W

2 parameter
(for the one-photon process).

understand why, we note that the plotted quantity is

�τA − �τW = τA(θ ) − τ int
A − (

τW (θ ) − τ int
W

)
→ τA(θ ) − τW (θ ) = �τA − �τW + (

τ int
A − τ int

W

)
. (38)

A closer comparison of the bottom panels in Fig. 5 (�τA −
�τW ) and the bottom panel in Fig. 1 (τ int

A − τ int
W ) shows that

the structures close to the induced Cooper minima to some
extent can cancel. This is seen in Fig. 6, which displays
τA(θ ) − τW (θ ) for some selected angles. Here just a tiny rem-
nant of the variations at the Cooper minima can be seen. For
small to modest angles, all the curves fall on top of each
other, and they agree further with the analytical formula [36]
down to 10 eV electron kinetic energy. For larger angles, the

FIG. 3. The difference between the delay in a given angle and that from the integrated signal for ionization from the 3s-orbital in argon.
The upper left panel shows this difference for the atomic delay. The lower left panel shows the same difference for the Wigner delay, while
the upper right panel shows the difference between the previous two. The lower right panels show the real and imaginary parts of the β̃W

2

parameter, same as in Fig. 2 (right panel), but on magnified y-scales.
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FIG. 4. β̃ parameters for krypton (left column) and xenon (right column). The top panels show the real and imaginary parts of the complex
β̃2 and β̃4 parameters for two-photon ionization of the 4s subshell of krypton (top left panel) and the 5s subshell of xenon (top right panel),
respectively. The middle panels show the same results as in top panels, but on magnified y-scales. The bottom panels show the real and
imaginary parts of the complex β̃2 parameter for one-photon ionization of the 4s subshell of krypton (bottom left panel) and the 5s subshell of
xenon (bottom right panel), respectively.

curves show a different slope, but even then the two elements
tend to follow each other closely. Only for the largest an-
gles is there a real element-specific behavior. Experiments
that directly compare the delay at different angles for not
too low kinetic energies and not too large angles are thus
rather insensitive to the contribution from the second photon,
and this is true even in the region of an induced Cooper
minimum. This is demonstrated in Fig. 7, where the atomic
and Wigner delays of photoelectrons ejected at 30◦, 60◦,
and 70◦ relative to the delay in the direction of the polariza-
tion of the light are shown. For not too small energies and

not too large angles, the atomic and Wigner delays are very
similar.

More insight into the angular dependence can be gained
from Fig. 8, where the results from the left bottom panel
in Fig. 5 (krypton 4s) are displayed as a function of
angle. Figure 8 shows clearly the flat curve, essentially
angular-independent, for small to modest angles, and the
abrupt change after a certain critical angle. After that the
delays quickly reach large negative values. This turning
point is further moving outwards when the electron energy
increases.
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FIG. 5. The difference between the delay in a given angle and that from the integrated signal for ionization from krypton 4s (left column)
and xenon 5s (right column). The top panels show this difference for the atomic delay, the middle panels show it for the Wigner delay, and the
bottom panels show the difference between the two.

How can the large magnitudes of the delays at large an-
gles be understood? The photoelectron wave function after
absorption of the XUV photon has p-character, and thus a
node at 90◦. A soft IR-photon has further only a limited
ability to alter the direction of the photoelectron, an ability
that will decrease with increasing photoelectron energy. The
β-parameters governing the angular dependence of the cross
section, Eq. (1), will with increasing energy approach val-
ues such that 1 + β2P2(cos π/2) + β4P4(cos π/2) → 0. The
real part of each of the complex β̃-parameters is a kind of
average of the regular β’s for the cross section for the ab-
sorption and emission paths, respectively, as seen in particular

for the higher energies in Fig. 9, and thus the real part of
1 + β̃2P2(cos π/2) + β̃4P4(cos π/2) quickly approaches zero
for all but the lowest energies. For the imaginary part of the
expression, the situation is different. The imaginary parts for
each of the β̃’s do approach zero for higher energies but still
somewhat slower than the real parts approach the values that
cancel the cross section at 90◦, leading to a quickly growing
phase when this angle is approached. In Fig. 9 it is further seen
how the Cooper minimum modulations of the β-parameters
appear for higher electron energies in the absorption path
compared to the emission patch, resulting in a double-well
structure for β̃.
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FIG. 6. The difference between the atomic delay and the Wigner
delay for detection at a range of selected angles, for ionization from
Kr 4s and Xe 5s. The black line shows the analytical result from
Ref. [36].

IV. CONCLUSION

We have shown that the angular dependence of the pho-
toionization delay can be described by complex anisotropy
parameters. These parameters are closely related to the well-
known β-parameters used for many decades to characterize
the angular distribution of photoelectron spectra, but since the
delay-parameters depend on at least two quantum paths to
a specific final state, they are inherently complex. Equipped
with the parameters for one- and two-photon exchange, the
angle dependence of the photoionization delay in RABBIT
experiments can be efficiently analyzed.

We have further applied these anisotropy parameters to
photoionization from the outermost s-orbital in some rare-gas
atoms. Here the one-photon delay is angular-independent in
a nonrelativistic framework, but the measurable two-photon
delay does permit an angular dependence, as does the one-
photon delay when relativistic effects are taken into account.
This allows for an interesting interplay between two-photon
effects and relativistic contributions, where the relative impor-
tance varies strongly when different elements are considered.

This situation could be conveniently analyzed with the com-
plex anisotropy parameters.

Figure 7 indicates that, for energies close to an induced
Cooper minimum, it should be possible to measure the delay
at certain angles relative to a fixed angle and thereby be
directly sensitive to the Wigner delay, which is intriguing.
However, one should be aware that the large delays predicted
by theory [9,25–27] close to the induced Cooper minima in
many of the rare gases have not yet been seen in experiments.
With the recently achieved improved energy resolution, exper-
iments have instead highlighted the importance of shake-up
channels [14,23]: in rare-gas atoms, channels of the type
ns2np4n′�′ε�′′ can be populated by some teeth in the comb
of harmonics, used in RABBIT experiments, and the ionized
electrons might emerge with the same energy as the elec-
trons in the usually dominating nsnp6ε� channel, ionized by
another harmonic. In neon it was possible to disentangle the
different channels to obtain results for the true delay when
the photoelectron leaves the ion in the 2s2p6 state [14], and
in addition it was demonstrated that the delay of the photo-
electron in the different channels can be distinctly different.
When the cross section for the nsnp6ε� channel goes to zero at
an induced Cooper minimum, however, the shake-up channels
might dominate and such a disentanglement gets very hard. It
is an open question whether there is a way around this.
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APPENDIX: EFFECTIVE TWO-PHOTON OPERATORS

The interaction of an electromagnetic field within the
dipole approximation is described by a tensor operator, tk of
rank 1 (k = 1) and odd parity. The components give the polar-
ization, with q = 0 corresponding to linearly polarized light,
and q = ±1 corresponding to right-and left-handed circularly
polarized light, respectively. The two-photon interaction is

FIG. 7. The atomic and Wigner delays of photoelectrons ejected at angles 30◦, 60◦, and 70◦ relative to the delay in the direction of the
polarization of the light, i.e., for 0◦. For not too small energies and not too large angles, they are very similar.
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FIG. 8. The difference �τA − �τW (cf. the bottom panels in
Fig. 5) for krypton 4s plotted as a function of angle for a few selected
photoelectron energies.

due to two such operators and it is convenient to describe the
total interaction in terms of effective two-photon operators.
They will be of even parity and can have rank 0, 1, or 2.

We note first that interaction with components t k
q1

and t k
q2

can bring an electron from an orbital with angular momentum
jm to one with angular momentum j′m′, where m′ = m +
q1 + q2 via intermediate states with angular momentum j′′m′′,
and use standard angular momentum theory, detailed, e.g., in
[37], to obtain the effective operators of rank K . With k = 1
the possible values of K is K = 0, 1, 2, although K = 1 is not
possible for linearly polarized light, i.e., when q1 = q2 = 0.
We have thus∑
γ ′′, j′′, m′′=m+q1

〈γ ′ j′m′|t k
q2

|γ ′′ j′′m′′〉〈γ ′′ j′′m′′|t k
q1

|γ jm〉

=
∑
γ ′′, j′′

[
〈γ ′ j′||tk||γ ′′ j′′〉〈γ ′′ j′′||tk||γ j〉

×
∑

m′′=m+q1,m′=m′′+q2

(−1) j′+ j′′−m′−m′′
(

j′ k j′′
−m′ q2 m′′

)

×
(

j′′ k j
−m′′ q1 m

)]

=
∑

K,γ ′′, j′′, Q=q1+q2

(−1) j+ j′+K (2K + 1)

× 〈γ ′ j′||tk||γ ′′ j′′〉〈γ ′′ j′′||tk||γ j〉
{

k k K
j j′ j′′

}

× (−1) j′−m′
(

j′ K j
−m′ Q m

)
(−1)−Q

(
k k K
q2 q1 −Q

)
,

(A1)

where γ denotes all other quantum numbers of the orbital.
The first equality in Eq. (A1) is easily obtained through the
Wigner-Eckart theorem, and the second relies on the proper-
ties of the 3 j- and 6 j-symbols.

FIG. 9. The ordinary β parameters (i.e., the parameters that de-
termine the angle dependence of the cross section) for the RABBIT
absorption path (dashed line), and the emission path (dashed-dotted
line), compared to the real part of the complex β̃ parameters (solid
line) for argon 3s (top panel), krypton 4s (middle panel), and xenon
5s (bottom panel). The thick blue lines show the results for the β2

and β̃2 parameters, while the red thin lines show the results for the
β4 and β̃4 parameters.

The dipole operator is in length gauge erk = erC1, where
Ck denotes the tensor-operator form of the spherical harmon-
ics, as introduced by Racah [38]. For this particular case, we
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may then write the two-photon matrix, Eq. (A1), as

〈γ ′ j′m′|X K
Q |γ jm〉 = (−1) j′−m′

(
j′ K j

−m′ Q m

)
(−1) j+ j′+K−Q(2K + 1)

(
1 1 K
q2 q1 −Q

)

×
∑

j′′
〈 j′||C1|| j′′〉〈 j′′||C1|| j〉Rγ j→γ ′′ j′′→γ ′ j′

{
1 1 K
j j′ j′′

}

= (−1) j′−m′
(

j′ K j
−m′ Q m

)
〈γ ′ j′||X K ||γ j〉, (A2)

where R denotes the radial integrals. Equation (A2) is independent of the intermediate m-values and the last equality defines the
reduced matrix element, independent of all m-values, denoted by M above. In the relativistic coupling scheme, it is labeled by
the κ-quantum-number of the photoelectron and the rank of the operator as

Mκ,K = (−1) j+ j′+K−Q(2K + 1)

(
1 1 K
q2 q1 −Q

) ∑
j′′

〈 j′||C1|| j′′〉〈 j′′||C1|| j〉Rγ j→γ ′′ j′′→γ ′ j′

{
1 1 K
j j′ j′′

}
. (A3)

It is sometimes convenient to include the phase of the outgo-
ing electron in the matrix element:

M̄κ,K = Mκ,K ei�κ . (A4)

We will in the following treat linearly polarized light only,
implying that q1 = q2 = Q = 0, and m = m′. Further, if ion-
ized from an s-orbital the photoelectron will after interaction
with two photons be either of s or d character. With linearly
polarized light only K = 0 can contribute in the former case
and only K = 2 in the latter. This is true both for integer
j’s (the nonrelativistic coupling scheme) and for half-integer
j’s (the relativistic coupling scheme). In the nonrelativistic
coupling scheme we have thus, for the particular case studied
here, the angular contributions

M� f =K = (2K + 1)

(
1 1 K
0 0 0

)

× 〈K||C1||1〉〈1||C1||0〉
{

1 1 K
0 K 1

}
Rns→p→� f

=
1
3 Rns→p→s for K = 0
2
3 Rns→p→d for K = 2

(A5)

while the relativistic coupling scheme (with j0 = 1/2, �0 = 0,
and � f = K) gives

Mκ,K = (2K + 1)

(
1 1 K
0 0 0

)

×
∑

ji

(−1) j f +1/2〈 j f ||C1|| ji〉〈 ji||C1||1

2
〉

×
{

1 1 K
1
2 j f ji

}
Rns1/2→p ji →� j f

. (A6)
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