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Optimal control for suppressing wave-packet spreading with strong nonresonant laser pulses
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We use nonlinear optimal control simulation to systematically examine how to suppress wave-packet spread-
ing with strong nonresonant near-infrared (NIR) laser pulses through a case study of a vibrational wave packet in
the B state of I2. As the degree of spreading of the vibrational wave packet is controllable by adjusting the pump
pulse shape, the vibrational wave packet may be regarded as a prototype system to study spreading suppression
by using nonresonant laser pulses. We quantitatively define spreading suppression in terms of the probability
of finding the wave packet in the analytically defined, initially excited state at every vibrational period. From
optimal control simulation and simulation by using model Gaussian pulse trains that mimic optimal pulses, we
conclude that a simple periodic NIR pulse train without highly tuned temporal widths, amplitudes, or irradiation
timings can almost perfectly stop the wave-packet spreading over a long control period, provided that the degree
of spreading is not too large.
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I. INTRODUCTION

An isolated quantum wave packet spreads with time even
if it is bounded in a potential, except for a harmonic potential.
The wave-packet spreading often referred to as dephasing is
attributed to the anharmonicity of the potential that causes dif-
ferent time evolution of the relative phases of the eigenstates
involved in the wave packet. Contrary to an open quantum
system, in which the system coherence leaks to its environ-
ment due to the quantum entanglement between them [1,2],
the isolated wave packet is free from the leak of coherence.
Even so, controlling the relative phases to suppress the wave-
packet spreading is not an easy task. Much effort has been
devoted to realizing nondispersive wave packets in various
systems such as electronic wave packets in Rydberg states
[3–5], Bose-Einstein condensates [6,7], and so on [8].

Recently, we experimentally observed that a nonresonant
near-infrared (NIR) laser pulse (hereinafter, NIR pulse) with
a specific irradiation timing can selectively induce the phase
shift of a vibrational wave packet in the B state of I2 [9]. We
also adopted a minimal model that consists of three states
with an equally distributed initial condition and showed an-
alytically that a NIR pulse train with a specified intensity at
the right timing can stop the wave-packet spreading [9]. The
use of the NIR pulse is advantageous as there is virtually no
restriction on the choice of the central frequency [10,11]. In
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addition, we can freely adjust the spreading behavior of the
vibrational wave packet by shaping the pump pulse. The rel-
ative phases of the eigenstates in the controlled wave-packet
dynamics can be precisely measured by ultrafast molecular
spectroscopy [12–14]. These features make the vibrational
wave packet suitable to systematic studies of dephasing sup-
pression control by using NIR pulses.

The purpose of the present study is to extend the dephas-
ing suppression method to more general cases than those
elaborated upon in our previous study [9,15]. For the sake
of systematic study, we adopt the nonlinear optimal control
simulation developed in our group [16,17] to design optimal
NIR pulses to suppress the dephasing of various B state wave
packets. The optimal-control approach [18–20] is useful be-
cause it provides a general and flexible way to design control
pulses not only in molecular systems [21] but also in a wide
range of systems such as spins in nitrogen-vacancy (NV) color
centers in diamond [22,23], atom interferometry [24], Bose-
Einstein condensates [25], and so on. It is also worth noting
that, in addition to the present simulation method [16,17],
there are several effective methods to solve optimal control
problems [26–34]. The examples include the Krotov variant
of monotonic convergent algorithms [29,30] and the first- and
second-order gradient ascent pulse engineering (GRAPE) al-
gorithms [31,32], some of which are provided by the software
packages, e.g., SPINACH library [33].

In the present simulation, the wave packets are initially
generated by pump pulses with systematically varied temporal
widths. It is, however, not trivial to formulate the dephas-
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FIG. 1. Potential energy curves [35,36] and illustration of present
scheme of dephasing-suppression control. Inset shows pulse se-
quence together with times that specify pump and control periods,
[ti, t0] and [t0, tN = tf ], respectively (see text).

ing suppression as an optimal control problem. For example,
we have to quantitatively represent the degree of dephasing
suppression that is suitable for our control objective, appropri-
ately choose a final time, and so on. In Sec. II, we introduce
the Hamiltonian and examine the role of the NIR pulse. In
Sec. III, we outline the optimal control simulation together
with numerical details (Appendix A). In Sec. IV, after defin-
ing the present target states, we show the results with a single
target, those with multiple targets, and those derived by model
Gaussian pulse trains that mimic the optimal NIR pulses. We
summarize the present study in Sec. V.

II. NONRESONANT LASER PULSES AND
WAVE-PACKET SPREADING

Figure 1 shows the two-electronic-state model that rep-
resents the X and B states of I2 molecules. The molecules
interact with the pump pulse, Epump(t ), which induces the res-
onant electronic transitions between the X and B states. They
are assumed to interact with the nonresonant near-infrared
laser pulse (NIR pulse) ENIR(t ) through the polarizability, i.e.,
the lowest-order induced-dipole moment within each elec-
tronic state. The dynamics is described by the Schrödinger
equation:

ih̄
∂

∂t

[|ψB(t )〉
|ψX (t )〉

]
=

[
HB(t ) −μBX (r)Epump(t )

−μXB(r)Epump(t ) HX (t )

]

×
[|ψB(t )〉
|ψX (t )〉

]
, (1)

where |ψB(t )〉 and |ψX (t )〉 are the vibrational wave packets in
the B and X electronic states, respectively. If we assume that
the molecule is in the lowest state at the initial time ti, the
initial condition is given by |ψB(ti )〉 = 0 and |ψX (ti )〉 = |0X 〉
with |0X 〉 being the lowest vibrational state in the X state. The
transition moment as a function of the internuclear distance, r,
is given by μBX (r) = [μXB(r)]†. Because we assume the non-

resonant NIR pulse, we take a cycle average over the central
frequency of the NIR pulse in the polarizability interaction.
We then have the B state Hamiltonian,

HB(t ) = H0
B − 1

4
αB(r)[ε(t )]2, (2)

where H0
B , αB(r), and ε(t ) are the field-free part of the Hamil-

tonian, a polarizability function, and an envelope function of
the NIR pulse, respectively. The Hamiltonian H0

B is composed
of the nuclear kinetic energy operator and the B state potential
VB(r). Exchanging the suffix B for X in Eq. (2) gives the
expression of the X state Hamiltonian HX (t ). In the present
study, we assume the pulse sequence in the inset of Fig. 1 so
that there is no temporal overlap between the pump pulse and
the NIR pulse. That is, we set ε(t ) = 0 during t ∈ [ti, t0], and
Epump(t ) = 0 during t ∈ [t0, tf ] in Eqs. (1) and (2).

During the pump period specified with [ti, t0], the vibra-
tional wave packet in the B state, |ψB(t )〉, is generated by
a pump pulse. The wave packet propagates on the B state
potential, VB(r), and quickly spreads because the energy dif-
ferences between the adjacent vibrational eigenstates in the
wave packet depend on the vibrational quantum number due
to the anharmonicity of VB(r). We then apply the NIR pulse
to the B state wave packet to suppress its spreading, i.e.,
dephasing during the control period [t0, tf ] motivated by what
is described in the next paragraph.

When the NIR pulse is applied to the B state wave packet,
the NIR pulse induces the Rayleigh and Raman scattering
through the polarizability interaction. As all the eigenstates
involved in the wave packet contribute to the scattering pro-
cesses, the processes coherently interfere with each other
depending on the relative phases among the eigenstates, i.e.,
the wave packet motion. In addition, the Stokes and anti-
Stokes Raman scattering processes are shown to introduce
extra phases into the eigenstates but with opposite phases
[15]. The mixture of these quantum interferences charac-
terizes the NIR-pulse-induced quantum interference, which
leads to unique modification of the probability amplitude of
each eigenstate, as we demonstrated in our previous study
[37]. When we applied the NIR pulse to the wave packet in
the B state of I2, which was generated by a pump pulse, and
measured the population of each eigenstate as a function of the
time delay of the NIR pulse, we observed unusual quantum
beats, i.e., “vibrational-state-resolved” quantum beats [37].
The quantum beats mean that the population of each eigen-
state periodically changes as a function of time delay of the
NIR pulse, suggesting that the NIR pulse delay can be used as
a control knob of the populations. As a next step, it would be
natural to expect that the phases of those eigenstates can also
be controlled by the NIR pulse delay, and that phase control
could lead to the suppression of the wave-packet spreading.
The control for suppressing the wave-packet spreading re-
quires that the NIR pulse should solely adjust the relative
phases among the eigenstates, while avoiding the population
redistribution to keep the original shape of the wave packet.
We thus need to find the right irradiation timing, intensity,
etc., in order for the NIR pulse to effectively cooperate with
the wave-packet motion to suppress its spreading. Because
we deal with various wave packets characterized by various
degrees of dephasing, there are many factors to be consid-
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ered to find such optimally designed NIR pulses, so that we
employ the optimal control simulation [16–20], i.e., the full
optimization approach, whose mathematical framework will
be described in the next section.

III. OPTIMAL CONTROL SIMULATION

The optimal control simulation designs an external field to
maximize a so-called objective functional that quantitatively
measures the performance of our control. Mathematically, the
objective functional is expressed as a function of the expec-
tation value of a suitably chosen operator, which is often
called a target operator, and specifies the control objective.
The optimal control simulation is thus formulated as the maxi-
mization problem of the objective functional in the framework
of calculus of variations, whose procedure will be described
below in terms of the present case study for convenience.

The first step is to introduce a target operator W to spec-
ify the control objective. In the present study, we aim at
periodically recovering the initially excited wave packet |χ〉
so that the natural choice of the target operator would be
W = |χ〉〈χ |. This is because the expectation value of W has
the maximum value when the wave packet exactly recovers
the original shape, which mathematically specifies the control
objective. We will examine how to determine |χ〉 in Sec. IV.

The second step is to define the objective functional. As we
typically adopt gradient-based iteration methods to obtain the
external field that maximizes the objective functional, we may
expect that the objective functional with the steeper gradient
around the optimal solution would lead to better convergence
behavior. In the present case, the steeper gradient could be
realized by expressing the objective functional as a higher
power of the expectation value of W = |χ〉〈χ |. On the other
hand, the complicated objective functional would increase
computational cost. We thus need to find the balance between
the fast convergence behavior and the computational cost. In
the present study, we find that the objective functional in the
form of the square of the expectation value shows reason-
ably good convergence behavior while introducing minimal
extra computational cost. We thus adopt the following (uncon-

strained) objective functional expressed in terms of the density
operator, ρ(t ) = |ψ (t )〉〈ψ (t )|,

J̄ = 〈〈ρ(tf )|W⊗ |ρ(tf )〉〉 +
∫ tf

t0

dt〈〈ρ(t )|Y⊗(t ) |ρ(t )〉〉

− 2Re
∫ tf

t0

dt〈〈�(t )|
[

∂

∂t
+ i

h̄
LB(t )

]
|ρ(t )〉〉, (3)

in the Liouville-space notation [27,28,38]. In Eq. (3),
we have used a normalized wave packet, |ψ (t )〉 =
|ψB(t )〉/√〈ψB(t0) | ψB(t0)〉, instead of |ψB(t )〉 because we
neglect the radiative relaxation and the electronic transitions
induced by the NIR pulse. On the right-hand side of Eq. (3),
the first term represents the square of the target expectation
value at the final time, tf . The Liouville-space operator W⊗ =
Ŵ W̃ consists of the right-hand-acting operator Ŵ and the
left-hand-acting operator W̃ . In the second term, the interme-
diate target operator Y⊗(t ) [28] specifies the control objective
during the control period. To be specific, this operator is
introduced to suppress the dephasing over the control period,
which will be defined below. The third term represents the
constraint due to the equation of motion for |ρ(t )〉〉 by us-
ing the Lagrange multiplier density, |�(t )〉〉. The Liouvillian
LB(t ) corresponds to the commutator [HB(t ), · · · ].

Next, we consider how to specify the intermediate tar-
get operator Y⊗(t ) by using the present target operator W =
|χ〉〈χ |. Because the B state wave packet periodically oscil-
lates with time while collapsing, we require that it recovers its
“original” shape |χ〉 at specified intermediate control times
{tn : n = 1, 2, . . . , N−1}. We will treat { tn} in a general
framework in this section although we could expect that { tn}
should be close to the integral multiples of the vibrational
period. We will examine how to choose { tn} in Sec. IV. The
requirement leads to the intermediate target operator

Y⊗(t ) = W⊗
N−1∑
n=1

δ(t − tn). (4)

Because of Eq. (4), Eq. (3) is reduced to the sum of the
functionals,

J̄ =
N∑

n=1

{
〈〈ρ(tn)|W⊗ |ρ(tn)〉〉 − 2Re

∫ tn

tn−1

dt〈〈�(t )|
[

∂

∂t
+ i

h̄
LB(t )

]
|ρ(t )〉〉

}
=

N∑
n=1

J̄n, (5)

with tN = tf . In the present study, we approximately regard
Eq. (5) as the sum of independent objective functionals,
{J̄n (n = 1, 2, . . . , N )}.

The third step is to derive the coupled pulse-design equa-
tions. By applying the calculus of variations to each functional
J̄n, we obtain the maximal condition that is expressed as an
implicit function of the optimal envelope ε(t ),

Im〈〈�(t )|AB(r) |ρ(t )〉〉ε(t ) = 0, (6)

where AB(r) ↔ [αB(r), · · · ] and the initial condition is given
by |ρ(tn−1)〉〉. As we restrict ourselves to a pure state and
assume the target operator W = |χ〉〈χ |, the Lagrange mul-
tiplier density is expressed as �(t ) = |ξ (t )〉〈ξ (t )|, where the

wave function |ξ (t )〉, obeys the equation of motion,

ih̄
∂

∂t
|ξ (t )〉 =

{
H0

B − 1

4
αB(r)[ε(t )]2

}†

|ξ (t )〉. (7)

The final condition is given by |ξ (tn)〉 = |χ〉〈χ |ψ (tn)〉.
Then, we express Eq. (6) in terms of |ψ (t )〉 and |ξ (t )〉, to
obtain the maximal condition in the wave-function form:

Im〈ψ (t )|ξ (t )〉〈ξ (t )|αB(r)|ψ (t )〉ε(t ) = 0. (8)

We solve the pulse-design equations iteratively by using
the monotonically convergent algorithm developed in our pre-
vious study [16,17] to deal with the induced-dipole interaction
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FIG. 2. Initially excited wave packets |χ〉, [Eq. (10)] generated by Gaussian pump pulses with temporal widths of (a) 120, (b) 100, (c) 80,
(d) 60, and (e) 40 fs.

[16,17,39–41]. The details of the present numerical solution
are summarized in Appendix A.

IV. OPTIMAL CONTROL TO SUPPRESS WAVE-PACKET
SPREADING

A. Target state preparation

We apply the general procedure described in Sec. III to the
design of the optimal NIR pulses for suppressing wave-packet
spreading. For this purpose, we need to explicitly define the
target state, i.e., the initially excited state |χ〉. If we assume
that the pump pulse is sufficiently weak to be approximately
treated by the lowest-order perturbation, then the first-order
solution after the pump pulse is

∣∣ψ1st
B (t )

〉 = i

h̄

∫ ∞

−∞
dt1e−i(t−t1 )H0

B/h̄μBX (r)Epump(t1)

× e−i(t1−ti )H0
X /h̄|0X 〉. (9)

Because of |ψ1st
B (t )〉 ∝ e−iH0

Bt/h̄|χ〉, it would be natural to
define

|χ〉 = Nχ Ẽpump
(
H0

B

/
h̄ − ωX0

)
μBX (r)|0X 〉 (10)

with a normalization constant Nχ [42]. The Fourier transform
of the pump pulse is given by

Ẽpump
(
H0

B/h̄ − ωX0
) =

∫ ∞

−∞
dt1ei(H0

B/h̄−ωX0 )t1 Epump(t1), (11)

where h̄ωX0 is an energy eigenvalue of |0X 〉 defined by the
eigenvalue equation, H0

X |0X 〉 = h̄ωX0|0X 〉.
To more clearly illustrate the present target state |χ〉 in

Eq. (10), we show some of the examples that are used
in the numerical applications in Sec. IV. We adopt the
same molecular parameters as those used in our previous
study [15,35,36,43–45]. We consider Gaussian pump pulses
with temporal peaks at t = 0 fs and temporal widths [full
width at half maximum (FWHM)] in the range of �τpump ∈
[40 fs, 120 fs] so that we choose ti = −300 fs and t0 = 300 fs
(Fig. 1). The central wavelength and the peak amplitude of the
pump pulse are set to 535 nm and 3 × 106 V/m, respectively.
We introduce the rotating-wave approximation and the so-
called field interaction representation [46], which remove the
rapidly oscillating components associated with the excitation

by the pump pulse. The temporal grid size is set to 0.1 fs.
The time evolution of the wave packets is solved by a stan-
dard method, i.e., the combination of a split-operator method
and fast Fourier transform (FFT), in which the spatial range
[2.1 Å, 6.0 Å] is equally divided into 512 grid points.

Figure 2 shows some examples of |χ〉 generated by the
Gaussian pump pulses with several temporal widths. As ex-
pected, we see that the initial wave packets approach the
so-called Franck-Condon wave packets as the temporal width
of the pump pulses decreases. Using |χ〉 in Fig. 2, we calculate
|〈χ |ψ (t )〉|2 in Fig. 3. The time evolution of |〈χ |ψ (t )〉|2 in
Fig. 3(a) slowly collapses, which can be classified into a
weak dephasing case, while that in Fig. 3(c) corresponds to
an intermediate dephasing case. In Fig. 3(e), the first maximal
value is already reduced to ca. 0.75, which means that the 40-
fs Gaussian pump pulse corresponds to an extremely strong
dephasing case. The considerably different collapse patterns
are realized by adjusting the pump pulse width, which makes
the present system suitable for systematically examining de-
phasing suppression.

B. Results and discussion

Here we show the results of optimal control simulation for
suppressing the wave-packet spreading. For convenience, we
introduce a dimensionless envelope function f (t ), defined by
αB(r)[ε(t )]2 = Vα (r)[ f (t )]2. Here, Vα (r) is the magnitude of
the polarizability interaction taken from Ref. [15], and has a
value of Vα (re) = 1.3 × 10−3 a.u. at the equilibrium nuclear
distance in the B state, re. In Secs. IV B 1 and IV B 2, we
consider the optimal control simulation with a single target
[N = 1 in Eq. (5)] and that with multiple targets, respectively.
In Sec. IV B 3, we discuss the dephasing suppression control
by using the model Gaussian NIR pulses that mimic the fully
optimized NIR pulses.

1. Optimal control simulation with a single target (N = 1) in a
short control time case

We consider the simplest case of a single target with
a “short” control time, tf = 2850 fs, which corresponds
to approximately six vibrational periods. The target value
|〈χ | ψ (tf )〉|2 is affected not only by the dephasing but also
by the periodic motion of the wave packet. Here, we choose
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FIG. 3. Time evolution of |〈χ |ψ (t )〉|2 when the B state wave packets are generated by Gaussian pump pulses with the temporal peak
position t = 0. Temporal widths (FWHM) of the Gaussian pulses are set to (a) 120, (b) 100, (c) 80, (d) 60, and (e) 40 fs.

tf = 2850 fs to reduce the latter effects. Note that we have
numerically checked that |〈χ | ψ (tf )〉|2 is not extremely sen-
sitive to the choice of tf in preliminary simulations (not shown
here). Assuming an 80-fs Gaussian pump pulse, we iteratively
solve the pulse-design equations until |〈χ | ψ (tf )〉|2 reaches
the value of 0.99.

The results are shown in Fig. 4, the features of which can
be summarized as follows. The optimal envelope, i.e., the
optimal pulse in Fig. 4(a), periodically appears with almost the
same shape. We see from Figs. 4(a) and 4(b) that the temporal

FIG. 4. Results of optimal control simulation are plotted as a
function of time when a single target with a fixed control time
tf = 2850 fs is assumed. (a) Optimal envelope function f (t ), (b)
|〈χ |ψ (t )〉|2 with (blue line) and without (black line) the optimal
pulse, and (c) time evolution of populations of five major vibrational
eigenstates in |ψ (t )〉.

peak positions of the optimal pulse nearly coincide with those
of |〈χ |ψ (t )〉|2. The optimal pulse starts controlling the wave
packet way before the dephasing of the wave packet becomes
pronounced. Each peak intensity in Fig. 4(a) is almost the
same as that used in our previous study to reproduce the
experimentally observed NIR-induced effects on the quan-
tum beats [9]. In spite of the high intensity, we see from
Fig. 4(c) that the population of each vibrational eigenstate
does not change so much. This feature is favorable because the
population redistribution must change the shape of the wave
packet, leading to the decrease in value of |〈χ |ψ (tf )〉|2. From
these features, we suggest that there exist irradiation timings
for the NIR pulse to adjust the relative phases among the
vibrational eigenstates while minimizing the population tran-
sitions, which effectively suppresses the dephasing. As shown
in Appendix B, this control mechanism could be explained
by the interference between the original wave packet and the
NIR-induced component. For reference, we show the results
of more rigorous control that almost perfectly suppresses the
dephasing in Appendix C.

Next, we systematically change the temporal widths of the
pump pulses, i.e., the degrees of dephasing as shown in Fig. 3,
and design the optimal pulses that achieve |〈χ |ψ (tf )〉|2 =
0.99 at tf = 2850 fs. The results are summarized in Fig. 5
(optimal envelope functions) and Fig. 6 (time evolution of
|〈χ |ψ (t )〉|2). We see from Figs. 5 and 6 that when �τpump �
60 fs, the optimal pulses have simple periodic structures and
the wave packets tend to keep localized structures over the
control period. On the other hand, the optimal pulse in the
case of �τpump = 40 fs has a highly shaped structure. We
thus conclude that a simple periodic NIR pulse can effec-
tively suppress the dephasing, provided that the wave packet
is not severely deformed by the anharmonicity within one
vibrational period. It is also worth noting that the discussion
based on the controlled dephasing in Figs. 5 and 6 confirms
the advantages of using the vibrational wave packet to study
the dephasing suppression.

2. Optimal control simulation with multiple targets (N = 12) in a
long control time case

We consider the optimal control simulation with a long
control time of around 5700 fs. Here, we focus on two pump

033107-5



OHTSUKI, NAMBA, KATSUKI, AND OHMORI PHYSICAL REVIEW A 104, 033107 (2021)

FIG. 5. Optimal envelope functions f (t ) when the temporal
widths of the pump pulses are set to (a) 40, (b) 60, (c) 80 [same
as that in Fig. 4(a)], (d) 100, and (e) 120 fs. Here, we assume a single
target (N = 1) with a fixed control time tf = 2850 fs.

pulses with the temporal widths of 80 and 60 fs. In these
cases, the wave packet considerably collapses around 5700 fs
due to the anharmonicity in the absence of a NIR pulse
(Fig. 3). We assume the intermediate and final control times at
tn = nTho (n = 1, 2, . . . , N = 12) as the initial guesses with
a vibrational period Tho. At every iteration step, we search
the local maximum values of |〈χ |ψ (tn)〉|2 in the ranges of
[tn − 40 fs, tn + 40 fs] (n = 1, 2, . . . , 12) and redefine the
new control times, {tn}. The iteration continues until the
averaged maximum value (1/12)

∑
n |〈χ |ψ (tn)〉|2 becomes

greater than 0.99 and 0.95 for the 80- and 60-fs pump pulses,
respectively. The difference in convergence criteria originates
from the different degrees of difficulty of the suppression
control. Note that in both cases, the newly defined control
times after the convergence are close to the initial guess times,
{tn = nTho}.

The results in the cases of the 80- and 60-fs pump pulses
are shown in Figs. 7 and 8, respectively. We see that the
results in Fig. 7 are similar to those in Fig. 4 in the sense
that the optimal envelope, i.e., the optimal pulse, appears
periodically with an almost regular time interval to almost
completely suppress the dephasing [Fig. 7(b)]. On the other
hand, some components of the optimal envelope in Fig. 8(a)

FIG. 6. Time evolution of |〈χ |ψ (t )〉|2 under the control of the
optimal pulses in Fig. 5, i.e., when the temporal widths of the pump
pulses are set to (a) 40, (b) 60, (c) 80 [same as that in Fig. 4(b)], (d)
100, and (e) 120 fs. For reference, time evolution of |〈χ |ψ (t )〉|2 in
the absence of the optimal pulses is shown by black solid lines.

have double-peak structures that are due to the difficulty in
suppressing the dephasing [Fig. 8(b)]. The difference between
the temporal structures of the optimal envelopes in Figs. 7(a)
and 8(a) also leads to the different time-dependent behaviors
of the populations in Figs. 7(c) and 8(c). Although there are
some differences, the results in Figs. 7 and 8 would lead to the
same conclusion as that derived in the previous subsection.
That is, a NIR pulse with a simple periodic structure can
suppress the dephasing with high probability, provided that
the degree of dephasing is not too large during one vibrational
period. To confirm this conclusion, we calculate |〈χ |ψ (t )〉|2
by using a model pulse train in the next subsection.

3. Long control time with a Gaussian pulse train

The model pulse train considered here is composed of
identical Gaussian pulses. For the sake of comparison, we
assume almost the same final time as those used in Figs. 7
and 8 while fixing the temporal peak of each Gaussian control
pulse at tn = nTho (n = 1, 2, . . . , 11). We consider the three
pump pulses with the temporal widths of 80, 60, and 40 fs.
We calculate |〈χ |ψ (t )〉|2 until ∼5700 fs corresponding to
the 12 vibrational periods (t12 = tf ). We thus search the 12
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FIG. 7. Results of optimal control simulation when the temporal
width (FWHM) of the pump pulse is set to 80 fs. Multiple targets
(N = 12) with control time tf ∼ 5700 fs are assumed. (a) Optimal
envelope function f (t ), (b) |〈χ |ψ (t )〉|2 with (blue line) and without
(black line) the optimal pulse, and (c) time evolution of populations
of five major vibrational eigenstates in |ψ (t )〉.

local maximum values around each “vibrational period” in
the range of [tn − 50 fs, tn + 50 fs] (n = 1, 2, . . . , N = 12).
From each set of the 12 local maximum values, we calculate
the averaged maximum value. In Fig. 9, we plot the averaged
maximum values as a function of the dimensionless ampli-
tude and the temporal width (FWHM) of f (t ) (a Gaussian
envelope in this subsection). We see from Fig. 9(a) that the
averaged maximum values greater than 0.98 are distributed
in the wide range of the parameter space although the pulse
fluence is slightly larger than that of the optimal pulse in
Fig. 7(a). In Fig. 9(b), reasonably large, averaged maximum
values appear in some regions, which, however, correspond
to the large fluence. On the other hand, we cannot see such
large averaged maximum values in Fig. 9(c); i.e., the values
are always smaller than 0.75. Here, we emphasize that in
most situations, we are interested in dealing with mildly large
dephasing such as that in the case of the 80-fs pump pulse;
that is, the examples in Figs. 9(b) and 9(c) do not mean the
lack of usefulness of the present suppression control because
the dephasing induced by the 60- and 40-fs pump pulses is
extremely large, as shown in Fig. 3. In the following, we thus
focus on the case of the 80-fs pump pulse.

In Fig. 10(a), we show the same results as those in Fig. 9(a)
but assuming a longer final time, ∼8000 fs. This final time
corresponds to approximately 17 vibrational periods, meaning
that the pulse train is composed of 16 Gaussian control pulses.
Because the results in Fig. 10(a) are almost the same as those
in Fig. 9(a), we can say that the simple pulse train suppresses

FIG. 8. Results of optimal control simulation when the temporal
width (FWHM) of the pump pulse is set to 60 fs. Multiple targets
(N = 12) with control time tf ∼ 5700 fs are assumed. (a) Optimal
envelope function f (t ), (b) |〈χ |ψ (t )〉|2 with (blue line) and without
(black line) the optimal pulse, and (c) time evolution of populations
of five major vibrational eigenstates in |ψ (t )〉.

the dephasing for a long period. In addition, as the averaged
maximum values, (1/12)

∑
n |〈χ | ψ (tn)〉|2, greater than 0.98

are widely distributed [Fig. 10(a)], we do not need to highly
tune the control pulse with respect to the temporal width or
the amplitude of each Gaussian pulse. [We have virtually the
same results as those in Fig. 10(a) even if we adopt an even
longer final time, ∼10 000 fs (not shown here).] So far, we
have assumed a fixed irradiation timing at every “vibrational
period,” Tho. We next relax this restriction.

In Figs. 10(b) and 10(c), the averaged maximum values
(1/12)

∑
n |〈χ |ψ (tn)〉|2, as a function of the dimensionless

amplitude, are shown when the temporal widths of the Gaus-
sian control pulses in the pulse train are set to 70 and 50 fs,
respectively. That is, we show the cuts of Fig. 10(a) along the
temporal width of each Gaussian pulse, (b) 70 fs and (c) 50 fs,
by using the black solid lines. Then, each temporal peak
position of the Gaussian control pulse is randomly distributed
in the ranges of [tn − 10 fs, tn + 10 fs] (n = 1, 2, . . . , 16) by
using random numbers. We prepare 20 sets of the 16 random
numbers and calculate the averaged maximum values for each
set in the same manner as we did in Fig. 9. We further take the
average of the 20 sets of these averaged maximum values to
obtain the values plotted by the blue solid lines in Figs. 10(b)
and 10(c). Here, we use the notation 〈· · · 〉 in the titles of
the vertical axes to emphasize the statistical average. We do
the same calculations assuming the wider fluctuation range
of [tn − 20 fs, tn + 20 fs], and show the results by the purple
solid lines in Figs. 10(b) and 10(c). These results suggest
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FIG. 9. Contour plots of averaged maximum values as a function of the dimensionless amplitude and the temporal width of each Gaussian
pulse in the pulse train. The final time is set to ∼5700 fs. The temporal widths of the pump pulses are set to (a) 80, (b) 60, and (c) 40 fs. In
(a), the parameters that give the same pulse fluence as that of the optimal pulse in Fig. 7(a) are specified by the dashed line. Note that we adopt
different color scales to clearly show the distribution patterns. The pulse train is composed of 11 Gaussian pulses that periodically appear at
fixed timings, tn = nTho (n = 1, 2, . . . , 11). We thus search the 12 local maximum values to calculate the averaged maximum values for each
set of parameters. See text for details.

that we do not need to apply the Gaussian control pulses at
rigorously predetermined timings; that is, if we adjust the
irradiation timing of each pulse with ca. ±10 fs accuracy,
the pulse train effectively suppresses the dephasing for a long
control period with high probability.

V. SUMMARY

By using the nonlinear optimal control simulation, we have
discussed a dephasing suppression method by using mildly
intense NIR pulses through a case study of vibrational wave
packets in the B state of I2. As the wave packet is initially
prepared by a pump pulse, the degree of dephasing of the
wave packet due to the anharmonicity can be adjusted by the
pump pulse. Thus, we may regard the vibrational wave packet
as a prototype system to study the dephasing suppression. In
the present study, we define the dephasing suppression such
that the wave packet recovers the shape of the initially ex-
cited wave packet at every vibrational period. The dephasing
suppression control is quantitatively evaluated by the square
of the absolute value of the overlap between the wave packet
and the analytically defined, initially excited state. Based on
the present simulation, we have proposed a control method
for suppressing the wave-packet spreading. That is, we have

shown that a NIR pulse train composed of periodic pulses
at every vibrational period can suppress the dephasing with
high probability for the wave packets characterized by various
degrees of dephasing, provided that the wave packet is not
severely deformed within one vibrational period. It should
be emphasized that the present suppression control does not
require highly tuned pulse widths, amplitudes, or irradiation
timings. Because of the robustness, we expect that the present
dephasing suppression control would be a powerful tool to
suppress the wave-packet spreading in a wide range of anhar-
monic systems.
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FIG. 10. (a) Contour plot of averaged maximum values as a function of the dimensionless amplitude and the temporal width of each
Gaussian pulse in the pulse train. The final time is set to ∼8000 fs, corresponding to a model pulse train composed of 16 Gaussian pulses. The
temporal width of the pump pulses is set to 80 fs. The cuts along the temporal width of each Gaussian pulse, (b) 70 and (c) 50 fs, are shown by
the black lines. In (b), (c), the blue and purple lines show the averaged maximum values that are calculated by assuming fluctuated irradiation
timings, within the ranges of [tn − 10 fs, tn + 10 fs] and [tn − 20 fs, tn + 20 fs] (n = 1, 2, . . . , 16), respectively. See text for details.

APPENDIX A: MONOTONICALLY CONVERGENT
ALGORITHM AND NUMERICAL DETAILS

We consider the coupled pulse-design equations derived
from J̄n and examine how to solve them using the monotoni-
cally convergent algorithm developed in our study. According
to our previous study [16,17], the square of the envelope
[ε(t )]2 is expressed as the product of two artificial compo-
nents such that ε1(t )ε2(t ). The pulse-design equations during
[tn−1, tn] (n = 1, 2, . . . , N) at the kth step are summarized
as follows:

ih̄
∂

∂t

∣∣ξ (k)(t )
〉 =

{
H0

B − 1

4
αB(r)ε(k)

1 (t )ε(k−1)
2 (t )

}†∣∣ξ (k)(t )
〉
,

(A1)
with the final condition, |ξ (k)(tn)〉 = |χ〉〈χ |ψ (k)(tn)〉, and

ih̄
∂

∂t

∣∣ψ (k)(t )
〉 =

{
H0

B − 1

4
αB(r)ε(k)

1 (t )ε(k)
2 (t )

}∣∣ψ (k)(t )
〉
,

(A2)
with the initial condition, |ψ (k)(tn−1)〉. The envelope functions
in Eqs. (A1) and (A2) are given by

ε
(k)
1 (t ) = ε

(k−1)
1 (t ) − η(k)(t )Im

〈
ψ (k−1)(t )|ξ (k)(t )

〉
× 〈

ξ (k)(t )
∣∣αB(r)

∣∣ψ (k−1)(t )
〉
ε

(k−1)
2 (t ) (A3)

and

ε
(k)
2 (t ) = ε

(k−1)
2 (t ) − ς (k)(t )Im

〈
ψ (k)(t )

∣∣ξ (k)(t )
〉〈
ξ (k)(t )

∣∣αB(r)

× ∣∣ψ (k)(t )
〉
ε

(k)
1 (t ), (A4)

where the step-dependent positive functions η(k)(t ) and
ς (k)(t ) determine the convergence behavior. Here, we assume
η(k)(t ) = η

(k)
0 y(t ) and ς (k)(t ) = ς

(k)
0 y(t ). The function y(t ),

defined by

y(t ) =

⎧⎪⎨
⎪⎩

sin
(

t
2τ

π
)

0 � t < τ

1 τ � t � tf − τ

sin
( tf −t

2τ
π

)
tf − τ < t � tf

, (A5)

with τ = 100 fs, is introduced to avoid the rapid rise and
decay of the optimal envelope function at both ends of the
control period, t0 and tf . We thus adjust the two parameters,
η

(k)
0 and ς

(k)
0 , during the iteration. As the function y(t ) has a

flat structure, we also use it as an initial guess envelope to
avoid introducing any bias in the iteration.

In our simulation, we found that the fixed intermediate
control time tn associated with J̄n often imposes too strong
constraints to realize high degrees of control achievement.
Because of this, in every iteration step, we search the maximal
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value in the range of ±40 fs around the time tn associated with
the maximal value in the previous iteration step, and redefine
the new final time tn. In this way, we relax the restrictions due
to the fixed control times when dealing with the intermediate
targets.

Another numerical difficulty arises from ε
(k−1)
2 (t ) and

ε
(k)
1 (t ) on the right-hand sides of Eqs. (A3) and (A4), respec-

tively. When the iteration proceeds and the temporal peaks of
the envelope grow larger, the increase in the peak amplitude
will be fed back, resulting in the rapid increase in the peak
amplitude, which often makes the iterative solution numeri-
cally unstable. To avoid this unfavorable feature, we usually
need to adjust the magnitude of the step-dependent functions
η(k)(t ) and ς (k)(t ) in Eqs. (A3) and (A4).

In the present simulation, we adopt the following alternate
method. According to the degrees of overall convergence, we
divide the iteration steps into several “partially converged”
stages, which are specified by “threshold” values of the peak
amplitudes of the envelope. As an example, we consider the
case in which we assume the threshold value P(1) in the
first stage. If the value of ε

(k)
1 (t ) [ε(k)

2 (t )] exceeds P(1) at
some time t , then ε

(k)
1 (t ) [ε(k)

2 (t )] is replaced with the thresh-
old value such that ε

(k)
1 (t ) = P(1) [ε(k)

2 (t ) = P(1)]. Note that
this modification keeps the monotonic convergence behavior
of the iteration algorithm. We iteratively solve the coupled
pulse-design equations to obtain the “partially converged”
envelope, which would be composed of several rectangular-
like envelopes. We then replace each rectangularlike envelope
with a Gaussian envelope that has the same temporal width
and pulse fluence as the corresponding envelope. Using these
“partially converged” Gaussian envelopes, we restart the it-
eration by assuming the next threshold value. In the present
simulation, we introduce three to eight partially converged
stages to achieve the overall convergence, depending on the
difficulty of the control problem.

APPENDIX B: ANALYTICAL APPROACH FOR
EXAMINING CONTROL MECHANISMS IN FIG. 4

Because we do not see significant population transitions
within the short control period [Fig. 4(c)], we can expand
|ψ (t )〉 in the power series of U (t ) = −Vα (r)[ f (t )]2/4 such
that |ψ (t )〉 = |ψ0(t )〉 + |ψ1(t )〉 + · · · . We then have

W (t ) = |〈χ | ψ (t )〉|2 = W0(t ) + W1(t ) + W2(t ) + · · · ,

(B1)

where

W0(t ) = |〈χ |e−iH0
Bt/h̄|χ〉|2, (B2)

W1(t ) = 2Re〈ψ0(t )|χ〉〈χ |ψ1(t )〉

= 2

h̄
Im〈χ |eiH0

Bt/h̄|χ〉
∫ t

0
dt ′〈χ |e−iH0

Bt/h̄UI (t ′)|χ〉,
(B3)

with UI (t ′) = eiH0
Bt ′/h̄U (t ′)e−iH0

Bt ′/h̄. For convenience, we di-
vide H0

B into the harmonic oscillator part and the anharmonic
potential such that H0

B = Hho + δV . If the potential is har-
monic, i.e., δV = 0, the wave packet returns its original shape

TABLE I. Results of |〈χ |ψ (tf )〉|2 from tf = 2835 fs to tf =
2855 fs at every 5 fs.

tf 2835 fs 2840 fs 2845 fs 2850 fs 2855 fs
|〈χ |ψ (tf )〉|2 0.9994 0.9995 0.9996 0.9997 0.9998

at every vibrational period Tho, leading to W0(Tho) = 1 and
W1(Tho) = 0. On the other hand, W1(Tho) �= 0 when δV �= 0,
which means that W1(Tho) is the lowest-order, NIR-induced
term that is directly connected to the anharmonicity. We thus
examine W1(Tho) to understand the dephasing suppression
mechanisms. Because the effects of the population transitions
and the anharmonicity are not so large within the short control
period, we further approximate e±iH0

B t/h̄ in |ψ0(t )〉 and |ψ1(t )〉
up to first order and zeroth order with respect to δV , respec-
tively. Then, Eq. (B3) at t = Tho is approximated by

W1(Tho) 
 2

h̄

∫ Tho

0
dt ′′〈χ |δVI (t ′′)|χ〉

×
∫ Tho

0
dt ′〈χ |UI (t ′)|χ〉 > 0, (B4)

with δVI (t ′′) = eiHhot ′′/h̄δV e−iHhot ′′/h̄. The positive value of
Eq. (B4) comes from the fact that the operators δV and U (t )
are nonpositive in the present study. As the interference term

FIG. 11. Results of optimal control simulation when a single
target (N = 1) and a fixed control time tf = 2850 fs are assumed. The
temporal width of the pump pulse is set to 80 fs. The convergence
criterion in this example is that the target value is greater than 0.999.
(a) Optimal envelope function f (t ), (b) |〈χ |ψ (t )〉|2 with (blue line)
and without (black line) the optimal pulse, and (c) time evolution of
populations of five major vibrational eigenstates in |ψ (t )〉.
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W1(Tho) always contributes to the increase of the value of
W (Tho), we conclude that the primary mechanism of the de-
phasing suppression induced by the NIR pulse is attributed to
W1(t ), i.e., the interference between the original wave packet
and the NIR-induced component. A pulse train with a nearly
regular time interval, Tho, effectively suppresses the dephasing
at least within a short temporal period.

APPENDIX C: RIGOROUS CONTROL WITH SHORT
CONTROL TIME

If we consider the applications to quantum information, the
error due to the dephasing should be on the order of 10–4.
Motivated by this, we try to realize such an extremely precise
control regardless of experimental feasibility. Here, we design
optimal pulses with the aim of achieving |〈χ |ψ (tf )〉|2 � 0.999
when adopting the pump pulse with 80 fs FWHM and assum-
ing a single target around tf = 2850 fs. Table I summarizes
the results of |〈χ |ψ (tf )〉|2 from tf = 2835 fs to tf = 2855 fs
at every 5 fs. A longer control period tends to achieve a
slightly larger value of |〈χ |ψ (tf )〉|2 within the temporal range
considered here. As we find that the designed optimal pulses

have almost the same structures, we show one of the results
in Fig. 11 as a typical example. Contrary to the optimal pulse
in Fig. 4(a), the optimal pulse in Fig. 11(a) has a temporally
symmetric but highly structured shape. The first and final
pulse components have double-peak structures and induce
large “round-trip” population transitions, whereas the other
pulse components induce quite small population transitions.
If we scrutinize the population of the |vB = 30〉 state, i.e.,
the largest component of |ψ (t )〉, it is almost constant during
the control period. On the other hand, the populations of the
|vB = 31〉 and |vB = 32〉 states (the |vB = 28〉 and |vB = 29〉
states) are first deexcited (excited) and then excited (deex-
cited) at a short time interval. During the periods, the relative
phases associated with those vibrational states evolve faster
(slower) in time because of the larger (smaller) energy differ-
ence. The population transitions apparently adjust the relative
phases between the adjacent vibrational states. As shown, for
example, in Fig. 4, the control pulse that only induces small
population transitions can suppress the dephasing with high
probability. On the other hand, to suppress the dephasing with
extremely high precision, the control pulse further adjusts the
relative phases in the wave packet by utilizing “round-trip”
population transitions.
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