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We use optimal control in order to find the optimal shapes of pulses maximizing the population transfer
between two bound states which are coupled via a continuum of states. We find that the optimal bounded controls
acquire the bang-interior and interior-bang form, with the bang part corresponding to the maximum allowed
control value and the interior part to values between zero and the maximum. Then we use numerical optimal
control to obtain the switching times and the interior control values. We compare our results with those obtained
using Gaussian stimulated Raman adiabatic passage pulses and find that the optimal method performs better, with
the extent of improvement depending on the effective two-photon detuning and the size of incoherent losses.
When we consider effective two-photon resonance, the improvement is more dramatic for larger incoherent
losses, while when we take into account the effective two-photon detuning, the improvement is better for smaller
incoherent losses. We also obtain how the transfer efficiency increases with increasing absolute value of the
Fano factor. The present work is expected to find application in areas where the population transfer between
two bound states through a continuum structure plays an important role, for example coherence effects, like
population trapping and electromagnetically induced transparency, optical analogs for light waves propagating
in waveguide-based photonic structures, and qubits coupled via a continuum of bosonic or waveguide modes.
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I. INTRODUCTION

The problem of efficient population transfer between two
bound states through a laser induced continuum structure [1]
has attracted considerable attention over the years [2–14]. In
these works, the population transfer is accomplished using
a counterintuitive stimulated Raman adiabatic passage (STI-
RAP) pulse sequence [15–18], which in most cases consists
of two delayed Gaussian pulses. The method has been exper-
imentally demonstrated in helium atoms [19,20], while other
interesting applications include coherence effects [21,22], like
population trapping and electromagnetically induced trans-
parency, photonics [23], specifically optical analogs for light
waves propagating in waveguide-based photonic structures
[24,25], and qubits coupled through a bosonic structural con-
tinuum [26] or the quasicontinuous spectrum of modes in a
waveguide [27]. There is actually a plethora of systems where
the population transfer between two bound states coupled via
a continuum could be useful [28]. Recently, the method has
been extended to the case where multilevel degenerate states
interact through a common continuum structure [29].

In the present work, we first evaluate the performance of
a simple sin-cos protocol, where the mixing angle of the
applied fields varies linearly with time, and find that it per-
forms worse than the Gaussian STIRAP protocol. We then use
optimal control [30] to find the optimal shapes of pulses which
maximize the population transfer between two bound states
coupled through a continuum structure. We consider bounded
controls and, using an elementary theoretical analysis,

*dionisis@post.harvard.edu

we explain that the optimal pulses have the bang-interior
and interior-bang form, where the bang part corresponds to
the maximum allowed control value, while the interior part
corresponds to control values between zero and this maximum
bound. The analytic determination of the switching times as
well as of the interior control values is a formidable task,
thus we recourse to numerical optimal control [31]. We are
benchmarking our method by applying it to the system used
in Ref. [5] and compare our results with those obtained there
using Gaussian STIRAP pulses. We find that the optimal
method outperforms STIRAP pulses. The extent of improve-
ment depends on the effective two-photon detuning and the
size of incoherent losses. Specifically, in the case of effective
two-photon resonance, the improvement is more dramatic for
larger incoherent losses, while when the effective two-photon
detuning is taken into account, the improvement is better for
smaller incoherent losses. We also demonstrate the increase
in transfer efficiency with the increase in the absolute value of
the Fano factor. Note that numerical optimal control has been
previously used to increase the population transfer between
two bound states coupled via a continuum [10]. The main
difference of the present approach is that we use as control
variables only the envelopes of ionization pulses, while in
Ref. [10] the effective two-photon detuning was also used as
an extra control variable.

The structure of the paper is as follows: In the next section
we formulate the problem and summarize the findings of
Ref. [5] with Gaussian pulses, while in Sec. III we evaluate
the performance of the simple sin-cos protocol. In Sec. IV
we analyze the optimal control problem, while in Sec. V we
present the results of numerical optimization and compare
them with those of Ref. [5]. Section VI concludes this work.
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II. POPULATION TRANSFER THROUGH
CONTINUUM STATES

The dynamics of two bound states coupled by two laser
pulses through a continuum of intermediate states is governed
by the following equation [5]:
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where cg(t ), ce(t ) are the probability amplitudes of the initial
(ground) state |g〉 and the target (excited) state |e〉, respec-
tively. In this equation, q is the constant Fano parameter and
D is the two-photon detuning,
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e, (2)

are the total ionization widths, and
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e (3)

are the corresponding dynamic Stark shifts of states |g〉 and
|e〉, respectively. Note that the individual ionization widths
and Stark shifts are proportional to the intensities of the pump
and Stokes pulses

�β
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αIβ (t ), �β
α (t ) = Sβ

α Iβ (t ) (α = g, e; β = p, s),
(4)

where the coefficients Gβ
α, Sβ

α depend on the particular atomic
states and the laser frequencies.

Using the modified probability amplitudes defined by the
following population-preserving phase transformation [5]:
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where α = g, e, we end up with the equation
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δ = D + �e − �g − 1
2 q

(
�p

g − �s
e

)
(7)

is the effective two-photon detuning, which is in general time
dependent. Note that the validity of the two-level approxima-
tion is confirmed in Refs. [32,33].

As explained in detail in Ref. [5], the terms �
p
g (pump

pulse applied on the |g〉-continuum transition) and �s
e (Stokes

pulse applied on the |e〉-continuum transition) lead to the for-
mation of a STIRAP system, where population is transferred
from the ground to the excited state through the continuum.
On the other hand, the terms �

p
e (pump pulse applied on

the |e〉-continuum transition) and �s
g (pump pulse applied on

the |g〉-continuum transition) lead to irreversible ionization.
At least one of these incoherent channels is always present,
resulting in incomplete transfer of population between the
bound states.

In Ref. [5] the authors use Gaussian pump and Stokes
pulses of the same width 2T separated by a delay 2τ :

fp(t ) = e−( t−τ
T )2

, fs(t ) = e−( t+τ
T )2

, (8)

and test the performance using the following ionization widths
and Stark shifts:

�p
g (t ) = A fp(t ), �s

g(t ) = 0, (9a)

�p
e (t ) = RA fp(t ), �s

e(t ) = A fs(t ), (9b)

�p
g (t ) = A fp(t ), �s

g(t ) = −A fs(t ), (9c)

�p
e (t ) = A fp(t ), �s

e(t ) = 3A fs(t ), (9d)

while the Fano parameter is set to q = −6. Note that this is
close to the value q = −5.87, corresponding to the hydrogen
atom [6]. Parameter A is proportional to the intensity of the
lasers, while R quantifies the strength of incoherent ionization.
Four values of parameter R are used (R = 0, 1/16, 1/4, 1),
covering the range from weak to strong incoherent ionization,
for both zero (δ = 0) and nonzero (δ �= 0) effective two-
photon detuning, given from Eq. (7) with D = 0. Note that
effective two-photon resonance can be achieved with addi-
tional laser pulses [6] or frequency chirping [8]. For each of
these 4 × 2 = 8 cases, the authors of Ref. [5] simulate Eq. (6)
for various widths and delays of the Gaussian pulses and find
the maximum excited-state population achieved. These results
are summarized in the second column of Table I.

III. A SIMPLE SIN-COS CONTROL PROTOCOL

Let us for a moment consider the idealized situation with-
out incoherent ionization and with zero effective two-photon
detuning, R = 0 and δ = 0, and set

�p
g (t ) = A sin2 θ (t ), �s

e(t ) = A cos2 θ (t ), (10)

so the mixing angle θ (t ) is defined as tan θ (t ) =
[�p

g (t )/�s
e(t )]1/2. In this case, the adiabatic eigenstates of

Eq. (6) are

|ψ0〉 =
[

cos θ

− sin θ

]
, |ψ1〉 =

[
sin θ

cos θ

]
, (11)

with corresponding eigenvalues ω0 = 0 and ω1/A = −(q +
i)/2. It can be easily shown that the probability amplitudes
in the adiabatic basis,[
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]
=
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][
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]
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obey the following equation:
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Observe that, if the mixing angle is slowly varied from θ (0) =
0 to θ (T ) = π/2 at the final time t = T , then the system
remains in the eigenstate |ψ0〉, which is gradually transformed
from |ψ0(0)〉 = |g〉 to |ψ0(T )〉 = |e〉, thus a perfect popula-
tion transfer is accomplished. This is the reason behind the
success of the Gaussian STIRAP pulses used in Ref. [5]. The
adiabaticity condition is satisfied when θ̇/A � q/2, where we
observe from Eq. (13) that A|q|/2 is the frequency separation
between the adiabatic eigenstates, thus larger Fano factors
facilitate the adiabatic process. Of course, deviations from
the adiabaticity and/or the ideal conditions R = 0, δ = 0 lead
to incomplete population transfer, see the second column of
Table I.
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TABLE I. Maximum excited-state population obtained with Gaussian STIRAP pulses (second column), the simple sin-cos protocol (third
column), and optimal pulses (fourth column), for different values of parameter R (first column), expressing the strength of incoherent ionization.
The top part of the table corresponds to zero effective detuning δ = 0, while the bottom part corresponds to nonzero δ �= 0, given from Eq. (7)
with D = 0.

R Gaussian Sin-cos Optimal R Gaussian Sin-cos Optimal

0 1 1 1 0 0.53 0.5134 0.6280
1/16 0.84 0.8332 0.8702 1/16 0.51 0.4975 0.5948
1/4 0.71 0.6945 0.7528 1/4 0.48 0.4545 0.5373
1 0.53 0.4347 0.5691 1 0.40 0.3228 0.4207

The form of Eq. (13) motivates us to consider the situation
where the mixing angle increases with constant rate [2]

θ̇ = π

2T
(constant), (14)

thus the ionization widths of Eq. (10) follow a simple sin-cos
control protocol

�p
g (t ) = A sin2

(
πt

2T

)
, �s

e(t ) = A cos2

(
πt

2T

)
. (15)

The use of this protocol is also motivated by our recent work
[34] in a different context, involving the double-� atom-light
coupling scheme. We show there that the performance of the
aforementioned protocol, when applied to the dynamical sys-
tem (6) with R = q = δ = 0, approaches that of the optimal
protocol, where the mixing angle is varied linearly too, but
also includes some initial and final δ kicks changing θ instan-
taneously at the beginning and end. For the sin-cos protocol,
Eq. (13) can be easily integrated and we obtain in the idealized
situation the following analytic expression for the population
of the excited state at the final time t = T :

|ce(T )|2 = e−ηAT
[
cosh (κAT ) + η

2κ
sinh (κAT )

]2
, (16)

where

η = 1

2
(1 − iq), κ = 1

2

√
η2 −

(
π

AT

)2

. (17)

The transfer efficiency of the sin-cos protocol for the ide-
alized case R = 0, δ = 0, given in Eq. (16), is displayed in
Fig. 1(a) (red solid line) as a function of the normalized
duration AT , a quantity which is also proportional to the
area (AT/2) of the pulses (15). Observe that the efficiency
increases with the pulse area and approaches unity in the
limit AT → ∞. We also display the efficiency for the nonzero
values of R previously used, and observe that in this case the
efficiency is maximized at a finite pulse area. Both charac-
teristics are also observed with Gaussian pulses in Ref. [5].
The maximum efficiencies corresponding to different R are
shown with markers in Fig. 1(a), and are also listed in the
third column of the upper part of Table I. For comparison, we
also display with markers the maximum efficiencies obtained
for the same values of R in Ref. [5] using Gaussian pulses,
listed in the second column of the upper part of Table I. From
Fig. 1(a) or Table I we note that the two methods achieve the
same maximum efficiency for R = 0, similar maximum effi-
ciencies for R = 1/16 and R = 1/4 (blue squares and green
triangles, respectively), while for R = 1 (cyan diamonds), the
maximum obtained with Gaussian pulses is larger. In Fig. 1(b)

we display similar results but for the case where δ �= 0, ob-
tained from Eq. (7) with D = 0. In this case, the maximum
efficiencies obtained with the sin-cos protocol are smaller
than those obtained with Gaussian pulses for all values of
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FIG. 1. Excited-state population obtained with the simple sin-cos
protocol as a function of the normalized pulse duration AT , for
q = −6 and four different values of parameter R, which essentially
determines the strength of incoherent ionization, R = 0 (red solid
line), R = 1/16 (blue dashed line), R = 1/4 (green dashed-dotted
line), R = 1 (cyan dotted line). (a) Case with effective two-photon
resonance δ = 0. (b) Case with nonzero δ obtained from Eq. (7). On
each curve is highlighted the maximum efficiency achieved, except
for the case δ = 0, R = 0, where complete population transfer is
obtained in the limit of large AT . The isolated points with the same
abscissas indicate the best efficiencies obtained in Ref. [5] with
Gaussian STIRAP pulses for the same values of R.
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FIG. 2. (a) Ionization pulses �p
g (t ) (red solid line) and �s

e(t ) (blue dashed line) obtained with the simple sin-cos protocol for normalized
duration AT = 1.9, in the case of effective two-photon resonance δ = 0 and R = 1/4. (b) Corresponding evolution of populations of the ground
(blue dashed line) and excited states (red solid line). (c) Ionization pulses obtained with the sin-cos protocol for normalized duration AT = 1.3,
δ �= 0, and R = 1/16. (d) Corresponding evolution of populations.

R, with the difference becoming more distinct for larger R.
The maximum efficiencies obtained with the two protocols
for different R are also listed in the second and third columns
of the lower part of Table I. The better performance of the
Gaussian pulses can be attributed to the fact that, in this
case, there are two parameters over which the optimization is
performed, the pulse width 2T and the delay 2τ , while for
the sin-cos pulses the only parameter is the pulse duration
T . In Fig. 2 we show the sin-cos ionization widths (15) and
the corresponding evolution of populations for two specific
examples, δ = 0, R = 1/4, AT = 1.9 (first row) and δ �= 0,
R = 1/16, AT = 1.3 (second row).

IV. OPTIMAL CONTROL ANALYSIS OF THE PROBLEM

To find pulse shapes which outperform the Gaussian
pulses, we employ in this section optimal control theory [30].
We use as state variables xi, i = 1, 2, 3, 4, the real and imagi-
nary parts of the probability amplitudes bg, be,

bg = x1 + ix2, be = x3 + ix4, (18)

and as control variables the square roots of the ionization
widths, √

�
p
g (t ) = u1(t ),

√
�s

e(t ) = u2(t ). (19)

With the above definitions, we find from Eq. (6), using also
Eq. (9), the state equations

ẋ1 = −1

2
u2

1x1 − q

2
u2

1x2 − 1

2
u1u2x3 − q

2
u1u2x4, (20a)

ẋ2 = q

2
u2

1x1 − 1

2
u2

1x2 + q

2
u1u2x3 − 1

2
u1u2x4, (20b)
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2
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2

)
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+
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2
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)
x4, (20c)

ẋ4 = q

2
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2
u1u2x2 +

(q

2
u2

2 − δ
)

x3

− 1

2

(
Ru2

1 + u2
2

)
x4, (20d)

where for the effective two-photon detuning we distinguish
two cases as before, one with δ = 0 and one with δ �= 0
obtained from Eq. (7) for D = 0 which, using Eqs. (9) and
(19), becomes

δ = −q

2
u2

1 +
(

4 + q

2

)
u2

2. (21)
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We would like to find the controls u1(t ), u2(t ) which maxi-
mize the final population of the excited state

|ce(T )|2 = |be(T )|2 = x3(T )2 + x4(T )2 (22)

when starting from the ground state bg(0) = 1, corresponding
to the initial conditions

x1(0) = 1, x2(0) = x3(0) = x4(0) = 0, (23)

while satisfying the constraints

0 � ui(t )/
√

A � 1, i = 1, 2. (24)

An important observation can be immediately made by
inspecting the system equations. If π1, π2 denote the optimal
policies in the time intervals [0, T1] and [0, T2], respectively,
with T1 � T2, then |ce(T2)|2 � |ce(T1)|2, i.e., a better transfer
efficiency can be obtained in a longer duration. This can be
easily shown as follows: Consider the longer time interval
and suppose that for 0 � t � T1 we apply policy π1, while
for T1 < t � T2 we set u1(t ) = u2(t ) = 0. But with this latter
control choice, the left-hand sides of system equations (20)
become zero for both δ = 0 and δ given from Eq. (21), thus
the system remains in the state reached at t = T1 and the effi-
ciency at the final time t = T2 equals |ce(T1)|2, the efficiency
of policy π1. Obviously, this should be lower or equal to
the efficiency obtained with policy π2, which is by definition
optimal over the whole time interval [0, T2]. Note that there
is no contradiction with the sin-cos protocol and the Gaussian
pulses, where the maximum efficiency is obtained for finite
duration (pulse area), since for the optimal pulses there is no
association between the pulse duration and area.

To obtain an idea about the form of the optimal ui(t ), we
use some simple elements from optimal control theory. The
control Hamiltonian of the problem is defined as [30]

Hc = λ1ẋ1 + λ2ẋ2 + λ3ẋ3 + λ4ẋ4 = Hc(λ, x, u), (25)

which becomes a function of the state variables x =
[x1, x2, x3, x4]T and the controls u = [u1, u2]T by replacing
the state derivatives in the above definition using Eq. (20). The
Lagrange multipliers λ = [λ1, λ2, λ3, λ4]T satisfy the adjoint
equations

λ̇ = −∂Hc

∂x
. (26)

and the terminal conditions [30]

λ1(T ) = ∂|ce(T )|2
∂x1(T )

= 0, (27a)

λ2(T ) = ∂|ce(T )|2
∂x2(T )

= 0, (27b)

λ3(T ) = ∂|ce(T )|2
∂x3(T )

= 2x3(T ), (27c)

λ4(T ) = ∂|ce(T )|2
∂x4(T )

= 2x4(T ). (27d)

According to Pontryagin’s maximum principle [30], the
optimal controls are chosen to maximize Hc. But from Eq. (6)
it turns out that Hc is a quadratic function of the control
variables u1, u2, which are restricted in the square (24) on
the u1u2 plane. If for some finite time interval the optimal ui

is one of the bounds of the constraint (24) then it is called a
bang control, otherwise it lies in the interior and is determined
from the relation ∂Hc/∂ui = 0. From our previous experience
with systems where Hc is quadratic in the controls [35], in
the context of nuclear magnetic resonance spectroscopy, we
know that for short durations T the optimal ui have the bang
form (both obtain the maximum value), since in this case
the major limitation is the short available time and not the
incoherent losses. Of course, the transfer efficiencies obtained
are also limited. For the more interesting case with longer
durations, where larger efficiencies can be achieved, the op-
timal ui assume the bang-interior and interior-bang form in
order to engineer a path along which the ionization losses
are minimized (note that the bang segments correspond to
maxima). The analytical determination of the switching times,
from bang to interior and vice versa, is a formidable task,
as is the solution of the optimal control problem which is
a two-point boundary-value problem, since we are given the
initial conditions (23) for the state variables and the terminal
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FIG. 3. Excited-state population obtained with the optimal
pulses as a function of the normalized pulse duration AT , with step
δT = 0.1/A, for q = −6 and four different values of parameter R,
which essentially determines the strength of incoherent ionization.
The isolated points on the right vertical axes indicate the best ef-
ficiencies obtained in Ref. [5] with Gaussian STIRAP pulses for
the same values of R. (a) Case with effective two-photon resonance
δ = 0. (b) Case with nonzero δ obtained from Eq. (21).
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conditions (27) for the Lagrange multipliers. For example,
we mention that, even in Ref. [35], where we indeed solve a
(simpler) problem of this type, the switching times are deter-
mined by solving a system of transcendental equations, which
eventually needs to be done numerically. For these reasons,
we will not pursue further the analytical investigation of the
problem, but continue using numerical optimal control in the
next section.

V. NUMERICAL RESULTS AND DISCUSSION

To solve numerically the control problem defined in the
previous section, we use the optimal control solver BOCOP

[31]. In Fig. 3(a) we plot for the case δ = 0 the final pop-
ulation of the excited state |ce(T )|2 obtained with optimal
pulses, as a function of the normalized duration AT with step
δT = 0.1/A, using q = −6 and the four values of parameter
R previously utilized. Observe that in all cases the efficiency
increases with increasing duration, as it was proved in the
previous section. For R = 0 the efficiency approaches unity
for large T , as is the case for the Gaussian pulses and the
sin-cos protocol. For R > 0, the efficiency saturates to a value
lower than one, which decreases with increasing R. Note that
efficiencies close to these saturation limits can be obtained
at finite durations, which become smaller for increasing R.
We list the saturation limits (maximum efficiencies) in the
fourth column of the upper part of Table I. For comparison, in
Fig. 3(a) we display with isolated points on the right vertical
axes the best efficiencies obtained in Ref. [5] with Gaussian
pulses, for the same values of R. Although for R = 0 both
methods have the same maximum efficiency (unity), the op-
timal method performs better for increasing R > 0. Similar
results are obtained for the case δ �= 0, shown in Fig. 3(b),
but now the saturation efficiencies are smaller than before, for
the same values of R, and are obtained in shorter durations.
As before, these maximum efficiencies are listed in the fourth
column of the lower part of Table I. Observe that, even for

0 0.2 0.4 0.6 0.8 1
R

0

0.2

0.4

0.6

0.8

1

|c
e
|2

Optimal =0
Gaussian =0
Optimal 0
Gaussian 0

FIG. 4. Maximum excited-state population obtained with the op-
timal pulses (in the limit of large AT ) as a function of parameter R,
with step δR = 0.05, for the case of effective two-photon resonance
δ = 0 (red circles) and nonzero δ from Eq. (21) (red squares). The
isolated points at the specific values R = 0, 1/16, 1/4, 1 indicate the
best efficiencies obtained in Ref. [5] using Gaussian STIRAP pulses.

R = 0, the saturation efficiency is less than unity. The optimal
method performs better for all R, but now the improvement is
reduced for increasing R.

The different behavior of improvement for increasing R,
when δ = 0 and δ �= 0, is better demonstrated in Fig. 4. There,
we display the maximum excited-state population obtained
with the optimal pulses (in the limit of large AT ) as a function
of parameter R, with step δR = 0.05, for the case of effective
two-photon resonance δ = 0 (red circles) and nonzero δ from
Eq. (21) (red squares). The isolated points at the specific
values R = 0, 1/16, 1/4, 1 indicate again the best efficiencies
obtained in Ref. [5] using Gaussian STIRAP pulses. Now it
is clear that for δ = 0 the improvement becomes better with
increasing R, while for δ �= 0 becomes worse. This behavior
can be explained if we recall that in general a larger parameter
R corresponds to a shorter effective duration available for the
transfer. In the absence of two-photon detuning, the Gaussian
STIRAP pulses can exploit the longer times which are avail-
able for smaller R and obtain a transfer efficiency close to the
optimal. But the presence of two-photon detuning deteriorates
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FIG. 5. Maximum excited-state population obtained with the op-
timal pulses (in the limit of large AT ) as a function of Fano parameter
q, with step δq = 0.5, for four different values of R. The isolated
points at q = −6 indicate the best efficiencies obtained in Ref. [5]
with Gaussian STIRAP pulses for the same values of R. (a) Case
with effective two-photon resonance δ = 0. (b) Case with nonzero δ

obtained from Eq. (21).
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FIG. 6. (a) Optimal ionization pulses �p
g (t ) (red solid line) and �s

e(t ) (blue dashed line) for normalized duration AT = 3, in the case of
effective two-photon resonance δ = 0 and R = 1/4. (b) Corresponding evolution of populations of the ground (blue dashed line) and excited
states (red solid line). (c) Optimal ionization pulses obtained for normalized duration AT = 0.9, δ �= 0, and R = 1/16. (d) Corresponding
evolution of populations. (e) Smoothed version of the pulses of panel (c). (f) Corresponding evolution of populations.

STIRAP, which cannot exploit the longer available durations
for smaller R, to the same extent as the optimal method does.

In Fig. 5 we plot the maximum excited-state population
obtained with the optimal pulses (in the limit of large AT ) as a
function of Fano parameter q, with step δq = 0.5, for the four
different values of R used throughout this paper. The isolated
points at q = −6 indicate the best efficiencies obtained in
Ref. [5] with Gaussian STIRAP pulses for the same values
of R. Observe that the maximum efficiency increases with
increasing |q|, except of course the case δ = 0, R = 0, where
equals unity for all q (obtained in the limit of large AT ). The
improvement is more dramatic for the case with δ �= 0, shown

in Fig. 5(b). This can be understood if we recall that in Sec. III
we identified |q|/2 as the frequency separation between the
adiabatic eigenstates, thus its increase reduces drastically the
deteriorative influence of the effective two-photon detuning.

In Fig. 6 we display the optimal ionization widths and
the corresponding evolution of populations for the two pairs
of δ, R also used in Fig. 2. Specifically, we use the values
δ = 0, R = 1/4, AT = 3 (first row) and δ �= 0, R = 1/16,
AT = 0.9 (second row). The (finite) normalized durations for
each case are selected such that the obtained efficiency closely
approaches the maximum listed in the last row of Table I.
Observe that the optimal pulses have the bang-interior and
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interior-bang form described in Sec. IV. And, although both
pulses have nonzero values at the initial and final times, they
follow in general the counterintuitive pulse order of STIRAP,
since �

p
g (t ) (red solid line) corresponds to the pump pulse and

�s
e(t ) (blue dashed line) to the Stokes pulse. Note that the

use of optimized pulses with nonzero Rabi frequency at the
boundary times is not unusual in quantum control, and as a
characteristic example we mention the Vitanov type optimized
STIRAP pulses, see Ref. [36] which describes their so-called
“superadiabatic” version. Another interesting observation is
that, in the second example, the control �

p
g (t ) maintains its

maximum value for a longer portion of the available time
interval than in the first example; compare the red solid lines
in Figs. 6(c) and 6(a). The reason is that the incoherent terms
(those involving R) in system Eqs. (20) are proportional to
u2

1 ∼ �
p
g (t ), thus for smaller values of R, as in the second

example, larger values of �
p
g (t ) can improve the overall ef-

ficiency despite the small increase of the incoherent losses.
Additionally, from Eq. (21) we see that larger values of �

p
g (t )

and thus of u1 reduce the effective two-photon detuning,
which is taken into account in the second example.

One of the striking differences between the optimal pulses
and the Gaussian pulses is that they are not smooth but they
have a kink, at the point where they change form from interior
to bang or vice versa. To evaluate the implications of this fea-
ture, we find the transfer efficiency using a smoothed version
of the pulses of Fig. 6(c), displayed in Fig. 6(e), which might
be more suitable for practical implementation. The smoothed
pulses are obtained by undersampling the original pulses by a
factor of 20 and then using cubic interpolation for the sampled
points. In Fig. 6(f) we display the evolution of populations
for the smoothed pulses, which looks identical to Fig. 6(d),
obtained with the original optimal pulses. Actually, there is a
very slight decrease in the transfer efficiency.

We close by investigating the robustness of the proposed
method. We consider the distorted pulses α�

p,s
g,e (t ), where α is

the distortion parameter. Note that, since α eventually multi-
plies the right-hand sides of system equations, see Eqs. (20)
and (21), it can also be used to rescale time as t ′ = αt , thus
α > 1 corresponds also to pulse dilation, while α < 1 to pulse
contraction. In Figs. 7(a) and 7(b) we display with red solid
lines the transfer efficiency obtained when the distorted pulses
are applied to the system, corresponding to the examples
shown in the first and second rows of Fig. 6, respectively. The
horizontal blue lines indicate the best efficiency obtained with
Gaussian pulses, without taking into account any error. Ob-
serve that the advantage of our method over the undisturbed
Gaussian pulses is maintained for an appreciable range of
the distortion parameter. The noticed asymmetry, where the
performance is better for α > 1, is because these α values
correspond to larger pulse areas.
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FIG. 7. Excited-state population obtained with the distorted
pulses α�p,s

g,e (t ), using as reference pulses (α = 1) (a) the pulses
shown in Fig. 6(a), (b) the pulses shown in Fig. 6(c).

VI. CONCLUSION

We used optimal control theory to find pulses which
maximize the population transfer between two bound states
coupled via a continuum of states. We obtained better ef-
ficiencies than with the standard Gaussian STIRAP pulses,
while the degree of improvement depends on whether we
take into account the effective two-photon detuning, as well
as the size of incoherent ionization. The present work is
expected to be useful for applications involving popula-
tion transfer between bound states through a continuum,
for example coherence effects, like population trapping and
electromagnetically induced transparency, optical analogs for
light waves propagating in waveguide-based photonic struc-
tures, and qubits coupled via a continuum of bosonic or
waveguide modes.
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