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Relativistic corrections of order α2 to the g factor of H2
+ are calculated with a high accuracy of nine

significant digits for a wide range of rovibrational states. The precision of previous calculations [R. A. Hegstrom,
Phys. Rev. A 19, 17 (1979) is improved by about five orders of magnitude by performing nonadiabatic variational
calculations and by including recoil corrections. These results allow for nondestructive identification of the
internal state through the measurement of spin-flip transition frequencies, which is a crucial requirement for
proposed spectroscopy experiments on H2

+ and its antimatter counterpart H̄2
− in Penning traps [E. G. Myers,

Phys. Rev. A 98, 010101(R) (2018)]. Further, they pave the way towards precision calculations of the g factor
through the calculation of higher-order QED corrections and hence to an alternative precision route to obtaining
the proton-electron mass ratio.

DOI: 10.1103/PhysRevA.104.032822

I. INTRODUCTION

Spectroscopic measurements of the antihydrogen molec-
ular ion H̄2

−, compared with its normal matter counterpart,
have been recently proposed as a new avenue towards im-
proved tests of the CPT symmetry [1]. This perspective relies
on the possibility to store a single H̄2

− or H2
+ ion in a Penning

trap and identify its rovibrational state in a nondestructive
way. The envisaged experiments use similar methods to those
developed for high-precision measurements of bound-electron
g factors (see, e.g., Ref. [2]). They would be performed in
a double Penning trap consisting of a “precision trap” with
a highly uniform magnetic field, where spectroscopic mea-
surements are carried out, and an “analysis trap” with an
inhomogeneous magnetic field allowing the positron or elec-
tron spin state to be determined via the so-called continuous
Stern-Gerlach technique. The ion’s internal state can then be
determined using the fact that the spin-flip frequencies depend
in a resolvable and calculable way on the rovibrational and
hyperfine state. This detection technique requires knowledge
of a large number of Zeeman transition frequencies in a
∼5 T magnetic field, at a precision level of ∼10−6–10−7.
Since the dominant contribution to the Zeeman shift stems
from the interaction of the magnetic field with the positron
or electron spin (through the term g s · B), this implies that
the bound positron or electron g factors should be determined
theoretically with similar precision for an extensive range of
rovibrational levels.

Beyond its importance for nondestructive internal state
detection, the g factor itself could be measured with high
precision from the ratio of the cyclotron and spin-flip frequen-
cies [2]. As discussed in Ref. [1], measuring this frequency
ratio in H̄2

− and H2
+ provides a way to compare m(e−)/m(p)

with m(e+)/m( p̄) at a competitive precision level, under the
assumptions that charges and g factors have opposite signs in

matter and antimatter. Further, if the theoretical g factor of
H2

+ is calculated with sufficiently high accuracy, the compar-
ison between theory and experiment would lead to a stringent
test of bound-state QED or to an independent determination
of m(e−)/m(p).

The theoretical g factors of hydrogen molecular ions have
been calculated by Hegstrom [3]. In that work, the author
derived an effective Hamiltonian describing leading-order rel-
ativistic (α2) and radiative (α3) corrections in the nonrecoil
limit, and performed numerical calculations of the α2-order
correction in the adiabatic approximation, for 43 rovibrational
levels of H2

+. The theoretical uncertainty of the g factor was
estimated to about 10−7 due to uncalculated α3-order correc-
tions. It is worth noting that the g factor of H2

+ has so far been
measured in only one experiment [4] for a mixture of three
(unresolved) vibrational levels, with a relative uncertainty of
0.9 ppm. The experimental result was found to be in good
agreement with the theoretical predictions of Ref. [3].

The present work pursues a double aim. First, in order to
enable state identification of (anti) hydrogen molecular ions
in Penning trap experiments, it is important to extend g-factor
calculations to a wider range of rovibrational states, covering
all possible states in which the ions may be found. H2

+ ions
are conveniently produced by electron-impact ionization of
H2, which creates ions predominantly in v = 0–12, L = 0–4
[5], or may be produced in a selected rovibrational state
using resonance-enhanced multiphoton ionization (REMPI)
[6,7]. The formation of H̄2

− ions through the reaction H̄+ +
p̄ → H̄2

− + e+, leading to production in v = 0–8, L = 0–27,
has been proposed in Ref. [1]. Assuming these production
schemes, and taking into account the possible use of the Stark
quenching induced by the ion’s motion in the trap’s magnetic
field to accelerate vibrational decay [8], 201 rovibrational lev-
els (out of 481 bound levels in total [9]) have been identified
as the most experimentally relevant. Other mechanisms to
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produce H̄2
−, using collisions between laser-excited H̄ atoms,

have been explored in Ref. [10], but the resulting rovibrational
distributions were not discussed in that work.

The second aim is to provide complete and accurate calcu-
lations of the α2-order relativistic correction, that may serve
as a reliable basis for future high-precision calculations of
the g factor through inclusion of higher-order corrections.
To this end, we improve the calculations of Ref. [3] by per-
forming extensive nonadiabatic (three-body) calculations, and
by including recoil corrections, which had been neglected in
Ref. [3]. This allows us to compute the α2 correction with an
(absolute) numerical uncertainty of about 10−13.

II. THEORY

In this section, we write the theoretical expressions of
corrections to the g factor in the general case of a one-

electron diatomic molecule. We thus consider a three-body
system made of two nuclei, with masses m1, m2 and charges
Z1e, Z2e, and one electron (mass m3 ≡ me, charge −e). Parti-
cle positions are denoted by R1, R2, R3 ≡ Re, and we use the
internal coordinates r1 = Re − R1, r2 = Re − R2, and r12 =
R1 − R2 = r2 − r1. The nuclear and electronic momenta are
denoted by P1, P2 and pe, respectively.

The α2-order relativistic correction to the g factor including
recoil terms can be described in an effective Hamiltonian
approach [3,11–16]. The first contribution at this order to the
interaction of the electron spin se with an external magnetic
field B is

H1 = −ge
e

2me
(se · B)

p2
e

2m2
e

, (1)

where ge is the free electron’s g factor. A second term comes
from the electronic spin-orbit Hamiltonian Hso in the external
field, which can be written in the center-of-mass frame as

Hso = ge − 1

2m2
e

(
Z1

r

3

1
(r1 × πe) + Z2

r3
2

(r2 × πe)

)
· se − ge

2me

(
Z1

m1r3
1

(r1 × �1) + Z2

m2r3
2

(r2 × �2)

)
· se, (2)

where [3]

πe = pe + eA(reC ) − e
me

M
[Z1A(r1C ) + Z2A(r2C ) − A(reC )],

�1 = P1 − Z1eA(r1C ) − e
m1

M
[Z1A(r1C ) + Z2A(r2C ) − A(reC )],

�2 = P2 − Z2eA(r2C ) − e
m2

M
[Z1A(r1C ) + Z2A(r2C ) − A(reC )], A(r) = 1

2
B × r. (3)

Here, M = m1 + m2 + me, and reC, r1C, r2C are the positions of the electron and nuclei with respect to the center of mass, which
are given by

r1C = −(m2 + me)r1 + m2r2

M
, r2C = m1r1 − (m1 + me)r2

M
, (4)

reC = m1r1 + m2r2

M
.

As shown in Ref. [3], the expressions of the momenta in Eq. (3) result from careful separation of the center-of-mass motion,
following a procedure that was first proposed in Refs. [11,12] in atomic systems. The latter results have been confirmed using
the nonrelativistic QED (NRQED) approach[14–16]. In the present work, we improve the treatment of Ref. [3] by keeping all
recoil terms in Eqs. (2)–(4). The full contribution from Hso to the g factor is then given by the following effective Hamiltonian
(taking ge = 2 in order to retain only the α2-order contribution):

H2 = e

2me
σ i j si

eB j,

σ i j = 1

2me

{
c1

(
r2

1δ
i j − ri

1r j
1

r3
1

)
+ c2

(
r2

2δ
i j − ri

2r j
2

r3
2

)
+ c(1)

12

(
r1 · r2δ

i j − ri
1r j

2

r3
1

)
+ c(2)

12

(
r1 · r2δ

i j − ri
1r j

2

r3
2

)}
,

c1 = 1

M2

(
(M − me)m1Z1 + m1meZ1Z2 − (2M + m1)(m2 + me)meZ2

1

m1

)
,

c2 = 1

M2

(
(M − me)m2Z2 + m2meZ1Z2 − (2M + m2)(m1 + me)meZ2

2

m2

)
,

c(1)
12 = 1

M2

(
(M − me)m2Z1 − (m1 + me)meZ1Z2 + (2M + m1)m2meZ2

1

m1

)
,

c(2)
12 = 1

M2

(
(M − me)m1Z2 − (m2 + me)meZ1Z2 + (2M + m2)m1meZ2

2

m2

)
. (5)
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The last contribution comes from the second-order energy
shift induced by the orbital Zeeman term HZ and the spin-orbit
coupling term:

�Eso−Z = 2〈ψ0|HsoQ(E0 − H0)−1QHZ |ψ0〉,
HZ =

( e

2me
LeC − Z1e

2m1
L1C − Z2e

2m2
L2C

)
· B. (6)

Here, H0 is the nonrelativistic (Schrödinger) Hamiltonian of
the three-body system, ψ0 the wave function for the rovi-
brational state under consideration, E0 the corresponding
nonrelativistic energy level, and Q is a projection operator on
a subspace orthogonal to ψ0. LeC, L1C, L2C are the angular
momenta of the electron and nuclei about the center of mass.
Again, in our calculations we take into account all the recoil
terms in Hso and HZ .

Corrections to the electronic g factor can be deduced from
Eqs. (1), (5), and (6). The H1 term [Eq. (1)] induces a correc-
tion for a rovibrational state (v, L),

�g1(v, L)

ge
= −〈v, L|p2

e |v, L〉
2me

. (7)

The other terms, H2 [Eq. (5] and �Eso−Z [Eq. (6)], are
anisotropic. This is linked to the departure from spherical
symmetry in a molecule, which led Hegstrom to introduce a g
tensor in Ref. [3]. Alternatively, the results can be expressed in
terms of a g factor similarly to the atomic case, the difference
being that in a molecule, the g factor acquires a dependence
on the magnetic quantum number M.

The term H2 may be decomposed into irreducible tensor
components as follows,

H2 = σ (0)(se · B) + σ (2) · (se ⊗ B)(2), (8)

σ (0) = 1

2me

2

3

(
c1

r1
+ c2

r2
+ c(1)

12 r1 · r2

r3
1

+ c(2)
12 r1 · r2

r3
2

)
, (9)

σ (2) = 1

2me

1

3

(
c1Q(2)

11

r3
1

+ c2Q(2)
22

r2
+ c(1)

12 Q(2)
12

r3
1

+ c(2)
12 Q(2)

12

r3
2

)
,

(10)

where Q(2)
ab (a, b = 1, 2) is the tensor having the Cartesian

components

Q(2)i j
ab = ra · rbδ

i j − 3ri
ar j

b . (11)

The second-order term �Eso−Z can also be decomposed
into irreducible tensor components following Appendix B of
Ref. [17]. One obtains

�Eso−Z = 〈vL‖T(0)‖vL〉√
2L + 1

〈se · B〉

+ 〈vL‖T(2)‖vL〉
〈L‖(L ⊗ L)(2)‖L〉

〈
(L ⊗ L)(2) · (se ⊗ B)(2)〉,

(12)

where the orbital reduced matrix elements are given by [17]

Ts = 〈vL‖T(0)‖vL〉√
2L + 1

= 1

3
(a− + a0 + a+), (13)

Tt = 〈vL‖T(2)‖vL〉√
2L + 1

=
√

L(L + 1)(2L − 1)(2L + 3)

3

(
− a−

L(2L − 1)
+ a0

L(L + 1)
− a+

(L + 1)(2L + 3)

)
. (14)

Here, a−, a0, and a+ are the contributions to the second-order perturbation term from the intermediate states of angular
momentum L − 1, L, and L + 1, respectively:

a− = − 1

2L + 1

∑
n 
=0

〈vL‖O(1)
Z ‖vnL − 1〉〈vnL − 1‖O(1)

so ‖vL〉
E0 − En

, (15)

a0 = 1

2L + 1

∑
n 
=0

〈vL‖O(1)
Z ‖vnL〉〈vnL‖O(1)

so ‖vL〉
E0 − En

, (16)

a+ = − 1

2L + 1

∑
n 
=0

〈vL‖O(1)
Z ‖vnL + 1〉〈vnL + 1‖O(1)

so ‖vL〉
E0 − En

, (17)

with

O(1)
Z = e

me
LeC − Z1e

m1
L1C − Z2e

m2
L2C, (18)

O(1)
so = 1

2m2
e

(
Z1

r3
1

(r1 × pe) + Z2

r3
2

(r2 × pe)

)
− 1

me

(
Z1

m1r3
1

(r1 × P1) + Z2

m2r3
2

(r2 × P2)

)
. (19)

Finally, the g factor including the complete α2-order relativistic correction is given by

g(v, L, M ) = gs(v, L) + 3M2 − L(L + 1)√
L(L + 1)(2L − 1)(2L + 3)

gt (v, L), (20)
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TABLE I. Relativistic corrections to the g factor for rovibrational states (v, L) of H2
+, and comparison with previous calculations. Columns

3–5 (columns 8 and 9) are the contributions to the scalar (tensor) part of the g factor [see Eqs. (21) and (22), respectively], in atomic units. The
values of 1 − gs/ge (−gt/ge) obtained in this work and in Ref. [3] are given in columns 6 and 7 (columns 10 and 11); they should be multiplied
by 10−6.

v L 〈p2
e〉 σs Ts 1 − gs/ge 1 − gs/ge σt Tt −gt/ge −gt/ge

(This work) [3] (This work) [3]

0 0 1.188584982 0.197953422 0.014090083 20.3552762 20.359 0.000000000 0.000000000 0.0000000 0.000
0 1 1.187531896 0.197777979 0.014101909 20.3359500 20.340 −0.032682214 0.008941067 0.5286804 0.526
0 2 1.185438336 0.197429194 0.014125424 20.2975286 20.302 −0.035634946 0.007569228 0.4455650 0.444
0 3 1.182329094 0.196911198 0.014160360 20.2404665 20.245 −0.040692364 0.007330723 0.4286492 0.427
0 4 1.178240299 0.196230013 0.014206324 20.1654259 20.169 −0.045474983 0.007258466 0.4206783 0.419
0 6 1.167317949 0.194410381 0.014329191 19.9649660 19.969 −0.053897721 0.007247903 0.4100693 0.408
0 8 1.153136628 0.192047838 0.014488785 19.7046887 19.709 −0.061075213 0.007301354 0.4000008 0.398
0 10 1.136248917 0.189234465 0.014678648 19.3947475 19.399 −0.067289815 0.007384038 0.3887244 0.387
0 12 1.117244006 0.186068437 0.014891527 19.0459880 19.051 −0.072714188 0.007484065 0.3758892 0.374
0 14 1.096705506 0.182647005 0.015119723 18.6691807 18.674 −0.077452803 0.007594643 0.3614692 0.360
0 16 1.075181550 0.179061504 0.015355330 18.2744772 18.280 −0.081569610 0.007710556 0.3455422 0.344
0 18 1.053167409 0.175394464 0.015590341 17.8710960 17.877 −0.085102995 0.007827188 0.3282231 0.327
0 20 1.031098644 0.171718462 0.015816634 17.4672018 17.473 −0.088073738 0.007940156 0.3096381 0.308
0 26 0.968081716 0.161222808 0.016356395 16.3194982 16.326 −0.093621519 0.008212290 0.2474918 0.247
1 0 1.159234438 0.193064762 0.014421001 19.8165041 19.821 0.000000000 0.000000000 0.0000000 0.000
1 1 1.158250614 0.192900862 0.014431537 19.7984759 19.803 −0.031894491 0.009149724 0.4933508 0.491
1 2 1.156294965 0.192575061 0.014452475 19.7626398 19.767 −0.034772716 0.007744201 0.4157136 0.414
1 3 1.153391076 0.192091290 0.014483546 19.7094287 19.714 −0.039702043 0.007497771 0.3998213 0.398
1 4 1.149573307 0.191455274 0.014524357 19.6394735 19.644 −0.044359752 0.007420710 0.3922428 0.390
2 0 1.132170502 0.188557196 0.014689251 19.3216577 19.327 0.000000000 0.000000000 0.0000000 0.000
2 1 1.131253178 0.188404379 0.014698386 19.3048846 19.310 −0.031058959 0.009318676 0.4586657 0.457
2 2 1.129429961 0.188100651 0.014716519 19.2715486 19.276 −0.033858126 0.007885496 0.3864088 0.385
2 3 1.126723309 0.187649753 0.014743382 19.2220626 19.227 −0.038651541 0.007632107 0.3715242 0.370
2 4 1.123165936 0.187057137 0.014778579 19.1570284 19.162 −0.043176666 0.007550435 0.3643344 0.363
3 0 1.107303081 0.184415723 0.014889282 18.8694330 18.875 0.000000000 0.000000000 0.0000000 0.000
3 1 1.106449987 0.184273612 0.014896877 18.8538819 18.859 −0.030170737 0.009444398 0.4246628 0.422
3 2 1.104754698 0.183991205 0.014911929 18.8229807 18.828 −0.032885813 0.007990107 0.3576827 0.356
3 3 1.102238625 0.183572071 0.014934166 18.7771239 18.782 −0.037534640 0.007730789 0.3437892 0.342
3 4 1.098932954 0.183021406 0.014963189 18.7168863 18.722 −0.041918645 0.007644688 0.3369849 0.335
4 0 1.084559830 0.180628298 0.015014469 18.4588976 18.465 0.000000000 0.000000000 0.0000000 0.000
4 1 1.083769176 0.180496594 0.015020357 18.4445458 18.450 −0.029223896 0.009522682 0.3913838 0.389
4 2 1.082198272 0.180234919 0.015031993 18.4160343 18.421 −0.031849229 0.008054448 0.3295705 0.328
4 3 1.079867562 0.179846681 0.015049100 18.3737409 18.379 −0.036343726 0.007790306 0.3166502 0.315
4 4 1.076806815 0.179336839 0.015071268 18.3182157 18.323 −0.040576987 0.007699943 0.3102274 0.309
6 0 1.045243047 0.174081855 0.015007517 17.7610388 17.767 0.000000000 0.000000000 0.0000000 0.000
8 0 1.013989580 0.168879593 0.014587468 17.2282898 17.236 0.000000000 0.000000000 0.0000000 0.000
10 0 0.990865938 0.165032806 0.013643118 16.8677417 16.878 0.000000000 0.000000000 0.0000000 0.000
12 0 0.976285366 0.162610698 0.012022406 16.6948098 16.705 0.000000000 0.000000000 0.0000000 0.000

where the scalar part of the g factor is

gs(v, L)

ge
= 1 − 〈vL|p2

e |vL〉
2m2

e

+ σs + Ts, (21)

and the tensor part is

gt (v, L)

ge
= σt + Tt , (22)

with the definitions

σs = 〈vL‖σ (0)‖vL〉√
2L + 1

, σt = 〈vL‖σ (2)‖vL〉√
2L + 1

. (23)

The expressions (21) and (22) are correct to order α2. The
approximation ge � 2 has been used in the last two terms

of Eq. (21) [which comes to neglecting terms of order
(α/π )(σs + Ts)], and in Eq. (22).

Now, we can relate the above expressions to those given in
Ref. [3]. In that work, the g tensor is defined by writing the
interaction of the electron spin with the magnetic field in the
form

Heff = e

2me

∑
i, j

gi js
i
eB j, (24)

and the components g⊥ = gxx = gyy and g‖ = gzz are calcu-
lated with the z axis taken to be along the internuclear axis
(let us recall that all calculations were done in the Born-
Oppenheimer approximation). The g factor of a (v, L, M ) state
can be obtained from these quantities through the relationship
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TABLE II. Values of 1 − gs/ge for selected rovibrational states of H2
+. All values should be multiplied by 10−6.

L/v 0 1 2 3 4 5 6 7 8 9 10 11 12

0 20.3552762 19.8165041 19.3216577 18.8694330 18.4588976 18.0894923 17.7610388 17.4737565 17.2282898 17.0257451 16.8677417 16.7564767 16.6948098

1 20.3359500 19.7984759 19.3048846 18.8538819 18.4445458 18.0763272 17.7490588 17.4629723 17.2187253 17.0174399 16.8607533 16.7508857 16.6907247

2 20.2975286 19.7626398 19.2715486 18.8229807 18.4160343 18.0501813 17.7252762 17.4415750 17.1997625 17.0009915 16.8469365 16.7398629 16.6827166

3 20.2404665 19.7094287 19.2220626 18.7771239 18.3737409 18.0114167 17.6900395 17.4099013 17.1717278 16.9767191 16.8266059 16.7237234

4 20.1654259 19.6394735 19.1570284 18.7168863 18.3182157 17.9605617 17.6438568 17.3684420 17.1350982 16.9450894 16.8002231 16.7029297

5 20.0732560 19.5535825 19.0772169 18.6430043 18.2501637 17.8982925 17.5873794 17.3178273 17.0904867 16.9067036 16.7683843

6 19.9649660 19.4527165 18.9835440 18.5563529 18.1704225 17.8254135 17.5213827 17.2588078 17.0386253 16.8622818 16.7318065

7 19.8416965 19.3379607 18.8770441 18.4579200 18.0799385 17.7428343 17.4467442 17.1922353 16.9803466 16.8126464

8 19.7046887 19.2104957 18.7588427 18.3487813 17.9797424 17.6515461 17.3644222 17.1190422 16.9165655 16.7587058

9 19.5552544 19.0715693 18.6301291 18.2300736 17.8709248 17.5525999 17.2754351 17.0402223 16.8482622

10 19.3947475 18.9224690 18.4921312 18.1029717 17.7546143 17.4470851 17.1808417 16.9568141 16.7764672

11 19.2245376 18.7644980 18.3460929 17.9686672 17.6319573 17.3361123 17.0817256 16.8698863

12 19.0459880 18.5989543 18.1932540 17.8283498 17.5041025 17.2207971 16.9791819 16.7805270

13 18.8604366 18.4271127 18.0348350 17.6831936 17.3721865 17.1022504 16.8743077

14 18.6691807 18.2502117 17.8720236 17.5343453 17.2373250 16.9815686 16.7681961

15 18.4734657 18.0694430 17.7059667 17.3829164 17.1006059 16.8598302

16 18.2744772 17.8859442 17.5377637 17.2299789 16.9630866 16.7380940

17 18.0733360 17.7007953 17.3684638 17.0765631 16.8257931 16.6174014

18 17.8710960 17.5150169 17.1990654 16.9236587 16.6897234

19 17.6687439 17.3295713 17.0305181 16.7722177 16.5558524

20 17.4672018 17.1453645 16.8637261 16.6231601

21 17.2673297 16.9632512 16.6995538 16.4773816

22 17.0699309 16.7840401 16.5388337

23 16.8757577 16.6085010 16.3823749

24 16.6855183 16.4373730

25 16.4998839 16.2713749

26 16.3194982

27 16.1449866

[18]

g(v, L, M ) = 2

3
g⊥ + 1

3
g‖ + 2

3

3M2 − L(L + 1)

(2L − 1)(2L + 3)
(g⊥ − g‖).

(25)
Comparing Eqs. (25) and (20) one gets

gs = 2

3
g⊥ + 1

3
g‖, (26)

gt = 2

3

√
L(L + 1)

(2L − 1)(2L + 3)
(g⊥ − g‖). (27)

III. NUMERICAL RESULTS

In order to calculate the scalar [Eq. (21)] and ten-
sor [Eq. (22)] corrections to the g factor, the three-body
Schrödinger equation is solved using a variational expansion
of the wave function involving exponentials of interparticle
distances [8,9,19],

�
(vL)
0 (R, r1) =

∑
l1+l2=L

Y l1l2
LM (R̂, r̂1)Gl1l2 (R, r1, r2),

Y l1l2
LM (R̂, r̂1) = Rl1 rl2

1 {Yl1 (R̂) ⊗ Yl2 (r̂1)}LM,

Gl1l2 (R, r1, r2) =
N/2∑
n=1

{Cn Re[e−αnR−βnr1−γnr2 ]

+ Dn Im[e−αnR−βnr1−γnr2 ]}, (28)

where R is the internuclear vector, and r1, r2 the electron’s
position with respect to both nuclei. The complex exponents
αn, βn, and γn are generated pseudorandomly in several in-
tervals. The interval bounds as well as the number of basis
functions Ni,l1 in each interval i and angular momentum subset
{l1, l2} (keeping the total basis length N constant), have been
optimized for a few tens of rovibrational states. This was suf-
ficient to have good convergence for all the states considered
in this work, because the wave functions (and therefore the
optimal values of the parameters) evolve only slowly with the
rotational quantum number.

The expectation values of p2
e , σ (0), and σ (2) [Eqs. (9) and

(10)] are obtained with nine to ten digits of accuracy, using
basis lengths N between 2000 and 5600, depending on the op-
erator and on the rovibrational state. The second-order terms
Ts and Tt [Eqs. (13) and (14)] are more challenging to calculate
with high accuracy. However, they are still simpler than the
singular second-order terms discussed in Ref. [17]. The basis
set used for intermediate states includes “regular” subsets
where the interval bounds for the exponents αn, βn, γn are the
same as those used for to obtain the zero-order wave function
�

(vL)
0 . In contradistinction with the singular terms evaluated

in Ref. [17], it is not strictly necessary to add “singular”
subsets containing higher exponents, but we found that the
inclusion of two additional subsets with exponents βn, γn up
to 10 improves the convergence. Overall, a nine-digit accuracy
is achieved for all rovibrational states using intermediate basis
sets of length N ′ ∼ 4000–12 000.
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TABLE III. Values of −gt/ge for selected rovibrational states of H2
+. All values should be multiplied by 10−6.

L/v 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0.5286804 0.4933508 0.4586657 0.4246628 0.3913838 0.3588750 0.3271877 0.2963777 0.2665050 0.2376304 0.2098133 0.1831034 0.1575306

2 0.4455650 0.4157136 0.3864088 0.3576827 0.3295705 0.3021114 0.2753488 0.2493301 0.2241055 0.1997269 0.1762437 0.1536973 0.1321115

3 0.4286492 0.3998213 0.3715242 0.3437892 0.3166502 0.2901453 0.2643165 0.2392095 0.2148732 0.1913570 0.1687085 0.1469666

4 0.4206783 0.3922428 0.3643344 0.3369849 0.3102274 0.2840996 0.2586433 0.2339035 0.2099286 0.1867673 0.1644649 0.1430589

5 0.4150504 0.3868176 0.3591138 0.3319683 0.3054166 0.2794952 0.2542461 0.2297144 0.2059474 0.1829939 0.1608970

6 0.4100693 0.3819643 0.3543914 0.3273812 0.3009670 0.2751856 0.2500811 0.2256979 0.2020812 0.1792812 0.1573383

7 0.4051363 0.3771253 0.3496511 0.3227443 0.2964386 0.2707701 0.2457841 0.2215249 0.1980380 0.1753692

8 0.4000008 0.3720682 0.3446783 0.3178614 0.2916517 0.2660872 0.2412098 0.2170644 0.1936976 0.1711542

9 0.3945480 0.3666876 0.3393763 0.3126447 0.2865271 0.2610618 0.2362908 0.2122591 0.1890127

10 0.3887244 0.3609349 0.3337016 0.3070552 0.2810305 0.2556658 0.2310035 0.2070884 0.1839655

11 0.3825070 0.3547903 0.3276373 0.3010791 0.2751506 0.2498907 0.2253419 0.2015482

12 0.3758892 0.3482490 0.3211806 0.2947153 0.2688882 0.2437388 0.2193092 0.1956433

13 0.3688738 0.3413154 0.3143371 0.2879704 0.2622509 0.2372185 0.2129148

14 0.3614692 0.3339987 0.3071167 0.2808551 0.2552503 0.2303416 0.2061709

15 0.3536873 0.3263113 0.2995324 0.2733831 0.2478997 0.2231220

16 0.3455422 0.3182675 0.2915987 0.2655686 0.2402141 0.2155743

17 0.3370488 0.3098826 0.2833311 0.2574275 0.2322085 0.2077131

18 0.3282231 0.3011725 0.2747452 0.2489747 0.2238980

19 0.3190809 0.2921527 0.2658563 0.2402257 0.2152970

20 0.3096381 0.2828389 0.2566800 0.2311950

21 0.2999100 0.2732463 0.2472305 0.2218961

22 0.2899119 0.2633891 0.2375216

23 0.2796579 0.2532811 0.2275659

24 0.2691617 0.2429350

25 0.2584359 0.2323621

26 0.2474918

27 0.2363399

Detailed numerical results for gs and gt are shown in Ta-
ble I and compared with those of [3] for 38 rovibrational
states. Differences with respect to Hegstrom’s values amount
to a few 10−8, or a few 10−3 in relative value, which is con-
sistent with the order of magnitude of nonadiabatic and recoil
corrections. Complete results for the 201 states identified as
the most experimentally relevant are given in Tables II and III.
All digits are converged, so that the uncertainty of the α2-order
relativistic correction to the g factor is smaller than 10−13.

IV. CONCLUSION

The complete relativistic corrections of order α2 to the g
factor have been calculated with high accuracy for a wide
range of rovibrational states. For the time being, the accu-
racy gain is not relevant for experiments since the theoretical
uncertainty due to uncalculated α3-order radiative corrections
is about 0.1 ppm [3]. However, these results are a first step
towards high-precision calculation of the g factor; in this
perspective, it was important to show that the numerically
challenging second-order contribution induced by the Zee-

man and spin-orbit Hamiltonians can be evaluated with high
precision, so that they do not represent a serious limitation
regarding the achievable accuracy level.

These results may now be readily used to calculate spin-flip
transition frequencies in the magnetic field of a Penning trap.
Precise knowledge of these frequencies is required for the
nondestructive identification of the molecule’s internal state
in future experiments with H2

+ and H̄2
− [1]. To achieve this,

one should diagonalize the Hamiltonian HZ + Hhfs, where HZ

and Hhfs are respectively the Zeeman and hyperfine struc-
ture Hamiltonians. The Zeeman effect has been studied in
Ref. [20], and the hyperfine structure has been investigated in
detail in Refs. [17,21,22]. Using the results of those works, the
spin-flip transition frequencies can be obtained with a relative
uncertainty of 0.1 ppm, limited by the uncertainty of the g
factor, which is expected to be sufficient for unambiguous
identification of the internal state.
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