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Calculation of energy loss in antiproton collisions with many-electron
systems using Ehrenfest’s theorem
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Energy loss in collisions of charged projectiles with many-electron systems can be dealt with in time-
dependent density functional theory by invoking Ehrenfest’s theorem for the time evolution of expectation
values of observables. We derive an exact expression for the evaluation of energy loss for systems described in
a target reference frame, which is a functional of the electron density. Using an approximation scheme, we then
apply the expression to antiproton-atom collisions at intermediate and high energies within the framework of the
basis generator method. The calculations are performed within the semiclassical approximation for the nuclear
motion, and a straight-line trajectory is employed. The energy loss is evaluated from an expectation value of the
time derivative of the time-dependent projectile potential, and it avoids the problem of identifying the excited
and ionized many-electron contributions in the many-electron wave function. There is also no need to invoke the
independent-event model, since the calculations are performed within the framework of the independent-electron
mean-field model. Detailed comparisons are provided for net ionization and total energy loss of antiprotons
colliding with hydrogen, helium, neon, carbon, nitrogen, and oxygen. Reasonable agreement is found with the
results from one-electron and two-electron calculations for atomic hydrogen and helium, and with experiment in
the latter case. For the p̄-Ne system at intermediate collision energies, we find discrepancies with previous work
that included only single-electron transitions. The sequence of results for C, N, O, and Ne allows one to paint a
consistent picture that awaits experimental verification.
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I. INTRODUCTION

The description of ion-atom and ion-molecule collisions at
intermediate energies has reached a high level of maturity.
A number of methods have become available to deal with
electronic excitations and ionization even for cases in which
the target includes many electrons. In many instances, com-
parison with experiment validates theoretical approaches. We
will focus in this work on attempts to approximate the time-
dependent Schrödinger equation (TDSE) for a many-electron
system as it arises within the semiclassical approximation
(classical treatment of nuclear motion), but it should be noted
that there is also a large body of work based on perturbative
methods, including continuum distorted wave methods [1].

For biomedical applications, as well as those in materials
science, an important role is played by the problem of energy
deposition, namely how an impinging charged ion transfers
its initial kinetic energy to the matter. At the level of single
collisions, one refers to the notion of energy loss, which is
mostly caused by the above-mentioned electronic processes.
For positive ions the problem of capture complicates matters,
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since (partially or completely) neutralized projectiles are cre-
ated, and these interact with the medium in their own way in
subsequent collisions, e.g., projectile ionization occurs, and
ionization by neutral hydrogen can be as effective as by pro-
ton impact. This complicates the situation for simulations of
positive-ion passage through matter, which include secondary
(and higher) collisions of particles produced in a first collision
process. For this reason, we will restrict the discussion to
antiproton impact for which the only contributing processes to
energy loss are electronic excitations to bound and continuum
states of the target. For molecular targets, there are, of course,
additional mechanisms such as dissociation or fragmentation.
The physics of antiproton-atom and antiproton-molecule col-
lisions was reviewed, e.g., in Ref. [2].

One overview of the time-dependent density functional
theory (TDDFT) approach to collisions involving many-
electron targets that emphasizes projectile energy loss as a
directly accessible observable is Ref. [3]. The purpose of the
present work is to expand on this idea of applying Ehrenfest’s
theorem in order to gain direct access to energy loss via the
electron density. The usefulness of this theorem in TDDFT
was pointed out previously in Ref. [4].

The traditional method of extracting this variable from
ion-atom collision calculations relies on a projection of the
evolved TDSE solution onto bound and continuum states
for a set of impact parameters, and to extract the transfer
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of projectile energy to the electron cloud by summing over
electronic excitations. This is a difficult task which requires
an accurate propagation of continuum contributions. The ma-
turity of the field of extracting ionization information from
TDSE calculations for antiproton-hydrogen collisions can be
appreciated, e.g., from Fig. 10 in Ref. [5], where state-of-
the-art calculations for this single-electron atomic target are
compared with experiment for total ionization as a function
of collision energy. This model was referred to as the (semi-
classical) wave packet convergent close-coupling approach
(WP-CCC), as compared to the purely Laguerre-basis CCC
approach, which is termed time-dependent CCC, and which
was used for energy loss calculations [6]. A previous cal-
culation based on a coupled-channel Lippmann-Schwinger
scattering theory approach [7], labeled QM-CCC, provides
very similar total ionization cross sections to WP-CCC, as
demonstrated in Fig. 10 of Ref. [5]. Single ionization from
helium atoms at this level of theory was reported in Ref. [8],
and by a different method in Ref. [9], which also allowed for
the inclusion of double-ionization processes. Electron corre-
lation effects on stopping power were dealt with in Ref. [10].
A recent study using interesting methodology that can be
implemented for molecular targets on the one hand confirmed
the double-ionization cross sections for He targets [11], but it
also pointed out how difficult it is to get a handle on extracting
accurate double-ionization cross sections.

The problem of stopping antiprotons by atomic hydrogen
and the rare gases was recently discussed in Ref. [6]. The
time-dependent CCC method was applied to helium both in
a frozen-core (single active electron) and in a multiconfig-
uration (MC) Hartree-Fock version, and discrepancies were
found at low and intermediate energies. The two-electron
calculations are referred to as MC-CCC; for the single-
active electron calculations (hydrogen, neon), we will use
the single-configuration SC-CCC as a name for the time-
dependent CCC results. For atomic hydrogen and helium
atoms, comparison is made with previous calculations, point-
ing out some discrepancies with atomic-orbital expansions
and with distorted-wave results, but good overall agreement
with the calculations of Lühr and Saenz [12]. This work re-
ports on molecular hydrogen calculations as well, and these
were extended further in Ref. [13] with the use of two-electron
wave functions to obtain single-ionization data. Further dis-
cussion of molecular hydrogen, and a model treatment of
water molecule collisions, can be found in Refs. [14,15].

In the context of materials science, the stopping of an-
tiprotons by excited Al clusters has been discussed within
TDDFT in Ref. [16]. In this work the energy loss of the
antiproton is motivated by the acceleration experienced due to
the time-dependent density response, which can be justified
by an application of Ehrenfest’s theorem [3,4], but in the end
a straight-line trajectory is used. We also note that there is
literature on the slowing of atoms in metals and insulators
treated by DFT approaches, and also more sophisticated meth-
ods with full correlation treatment [17,18].

We would like to point out that within TDDFT one com-
putes the projectile energy loss which is associated with a
weighted sum over all n-fold electronic excitations, and is
therefore a process based on net probabilities. For a discus-
sion of energy loss and stopping power, we refer the reader

also to Ref. [12]. The distinction between loss based on
single-electron processes and total energy loss (based on net
ionization and excitation) may be of lesser importance for a
system with singly charged projectiles and tightly bound elec-
trons, such as helium, but one should be careful already with
neon and more so the heavier rare gases: for Ar, in particular,
multiple ionization has been thoroughly investigated [19]. For
molecular targets with multiple weakly bound electrons, the
importance of multielectron excitation is evident at lower and
intermediate energies. This has been discussed in the context
of ionization of water molecules [20], as well as molecules of
biological interest [21–23]. For positively charged projectiles,
the problem is amplified by the competition of capture and
ionization [24].

The paper is structured as follows: In Sec. II we derive the
density functional for energy loss from the Ehrenfest expres-
sion for the time evolution of expectation values. In Sec. III
we test the expression by comparing our results for atomic
hydrogen against other calculations in the literature. This is
followed by the helium target for which detailed two-electron
calculations were carried out by others, and we demonstrate
how the independent electron model fares in this case. For
the targets involving 2s and 2p orbitals (the atoms neon, car-
bon, nitrogen, and oxygen), we demonstrate how the present
approach is capable of taking into account many-electron
contributions to the energy loss. Atomic units, characterized
by h̄ = me = e = 4πε0 = 1, are used unless stated otherwise.

II. THEORY

A. Definition of energy loss

As outlined in the Introduction, most of the focus in the lit-
erature has been on single-electron or effective single-electron
target descriptions, except for some two-electron systems such
as He [6] and molecular hydrogen [25], for which one- and
two-electron contributions were dealt with explicitly.

Here we would first like to address the problem of en-
ergy loss in the context of N-electron systems, which can
be obtained directly from the electronic density. To be more
specific, we concentrate on the electronic energy loss Se,
which is associated with the electronic excitations of the
target system. Momentum-transfer related contributions from
projectile-nucleus target-nucleus scattering can play a role at
low collision energies, and they are ignored in the present
work. For a discussion of how one could deal with the nuclear
contributions, we refer the reader to the Appendix in Ref. [6],
but we caution that it is unclear whether these contributions
should be simply treated in an additive way [18]. Figure 3
in Ref. [6] shows the relative contribution for the antiproton-
helium system, and we conclude that for the intermediate
and high energies treated in the present work (we assume
collision energies greater than 10 keV/amu), nuclear con-
tributions to energy loss can be safely ignored [26]. As an
aside, we mention that the correlation between nuclear motion
and ionization was the object of experimental and theoretical
studies in ion-atom collisions, and that these correlations can
be investigated using classical trajectory methods [27–29].
Nevertheless, for the purpose of obtaining the energy-loss
cross section, we can make the approximation S ≈ Se, and

032813-2



CALCULATION OF ENERGY LOSS IN ANTIPROTON … PHYSICAL REVIEW A 104, 032813 (2021)

ignore the motion of the target atom(s) during the collision.
Therefore, we assume that a straight-line trajectory approach
within the semiclassical approximation is sufficient, and that
the only explicit time dependence in the electron-nucleus in-
teractions is associated with the projectile motion.

The energy loss of the projectile during the collision with
a many-electron target characterized by the electronic density
n(�r, t ) (the diagonal part of the single-particle density matrix)
can be extracted from the total electronic energy given as a
function of time, i.e., from

E (t ) = 〈�(t )|H (t )|�(t )〉. (1)

Here �(t ) satisfies the many-electron TDSE, and the Hamil-
tonian is composed of kinetic energy, electron-nucleus
attractions, as well as the electron-electron repulsion (in the
case of more than one electron present in the system), i.e.,

H (t ) = T̂e + Vt + Vee + Vp(t ). (2)

While working in the target reference frame and a system with
N electrons, the explicitly time-dependent interactions can be
expressed as

Vp(t ) =
N∑

i=1

(
− Qp

r (i)
p (t )

)
=

N∑
i=1

V (i)
p (t ), (3)

where V (i)
p (t ) ≡ Vp(rp

(i)(t )), and Qp is the projectile charge.
The idea is to track the energy gain of the electrons during

the collision, i.e.,

E (t ) − E (ti ) =
∫ t

ti

Ė (t ′)dt ′. (4)

One needs to evaluate E (t f ) for a final time t f when the
collision is over, and the transfer of energy has stopped. For
a given nuclear trajectory, the quantity of interest is then
the change in total electronic energy, i.e., E (t f ) − E (ti ). This
electronic energy gain can be equated with projectile energy
loss assuming negligible contributions to the latter from direct
transfer of energy between projectile and target nuclei. Thus,
we will refer to energy loss EL instead of electronic energy
gain.

Our interest is to treat the problem at the level of TDDFT,
and express EL(t ) in terms of the density n(�r, t ) [17]. This
approach avoids the need to solve the many-electron TDSE,
while the time-dependent Kohn-Sham (KS) equations provide
orbitals to represent the time evolution of the density. Explic-
itly, we can write

ĖL(t ) = 〈�(t )|∂t H (t )|�(t )〉 = 〈�(t )|
N∑

i=1

∂tV (i)
p |�(t )〉

=
∫

n(�r, t )V̇p(�r, t )d�r, (5)

where in the final expression the explicit time derivative of the
single-particle operator Vp(t ) appears. This potential energy
and its time derivative are written explicitly as

Vp(�r, t ) = − Qp

rp(t )
= − Qp

|�r − �R(t )| ,

V̇p(�r, t ) = �̇R · ∇RVp(�r, t ), (6)

where �R(t ) is the position vector of the projectile as viewed
from the target.

The time evolution of the projectile energy loss for a single
collision then follows as

EL(t ) = E (t ) − E (ti ) =
∫ t

ti

∫
n(�r, t ′)V̇p(�r, t ′)d�rdt ′

≡
∫ t

ti

〈V̇p(t ′)〉dt ′, (7)

and obviously before the collision we have EL(ti ) = 0. The
electronic contribution to the projectile energy loss, Se, is
one of a few observables that can be represented as an exact
functional of n(�r, t ).

The main idea is now to solve for the energy-loss function
in parallel with the Kohn-Sham equations based on a time-
stepping scheme for the expectation value 〈V̇p(t )〉:

EL(t + �t ) = EL(t ) + �t
∫

n(�r, t )V̇p(�r, t )d�r. (8)

Some remarks for the evaluation of the required expec-
tation value are in order. For a straight-line trajectory of
the projectile, while working in an inertial reference frame
of the target system, one can always specify the explicitly
time-dependent potential contribution as indicated in Eq. (6).
Assuming the motion of the projectile to be parallel to the z-
axis, we can express the nuclear trajectory specified by impact
parameter b and impact velocity v as �R(t ) = (b, 0, vt ), and we
thus obtain for the time derivative of the potential

V̇p(�r, t ) = −Qp

�̇R · �rp(t )

rp(t )3
= −Qpv

zp(t )

rp(t )3
. (9)

It is at this point, namely the assumption of a straight-line
trajectory, that we neglect nuclear contributions to energy loss.

We observe that the energy-loss functional vanishes for
a constant density n(�r) which is symmetric in z, due to a
symmetry property of V̇p under t → −t , and we find∫ t f

ti

∫
n(�r, ti )V̇p(�r, t ′)d�rdt ′

=
∫

n(�r, ti )
∫ t f

ti

V̇p(�r, t ′)dt ′d�r = 0, (10)

provided the boundaries ti, t f are chosen symmetrically
around the time of closest approach (chosen to be t = 0). The
symmetry constraint for the initial-state density is only neces-
sary for the vicinity of the closest approach. If one chooses the
boundaries ti, t f such that the internuclear separation is much
larger than the distance scale where the initial-state density
is nonzero, the subtraction scheme is practically valid for all
initial-state densities n(�r).

This can be used for a computationally convenient subtrac-
tion scheme, and it results in the alternative evaluation of loss
according to

ẼL(t f ) =
∫ t f

ti

∫
[n(�r, t ) − n(�r, ti )] V̇p(�r, t )d�rdt

≡
∫ t f

ti

〈 ˙̃V p(t )〉dt . (11)
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While it is true that ẼL(t f ) ≡ EL(t f ) in the limit of t f = −ti
being large, the time evolution of the two quantities is very
different, as will be shown in Sec. III A for some examples.

The usual summation over impact parameters is required in
order to calculate the projectile energy loss at a given impact
velocity. Using the impact energy E = mpv

2/2, where mp is
the projectile mass, one integrates EL(b, E ) ≡ EL(t f ) over b to
arrive at the energy loss for a given projectile energy E , viz.,

Se(E ) = 2π

∫ ∞

0
EL(b, E )b db. (12)

This quantity is called the energy-loss cross section, or the
stopping cross section, and it is usually given in units of
(eV cm2) or (Å2 eV). The so-called electronic stopping power
is defined as

−dE

dx
= nASe(E ), (13)

where nA is the number density of the medium, and small
fluctuations (straggling) are assumed [6,30].

B. Calculation of energy loss in a subspace of Hilbert space

We now proceed with comments on how to implement pro-
jectile energy loss in the framework of a projector formalism
as it appears, e.g., in a finite-basis representation of the TDSE,
and in the basis generator method (BGM) in particular. A
review of the BGM can be found in Ref. [31], while detailed
results for ionization of atoms which are the building blocks
of many biological molecules can be found in Refs. [21,32].

Let P be a subspace of Hilbert space, P̂ is the appropriate
projector, and |�P〉 is a solution of the TDSE within the
subspace P:

P̂i∂t |�P〉 = P̂Ĥ |�P〉 = P̂Ĥ P̂|�P〉 ≡ ĤPP|�P〉. (14)

Note that |�P(t )〉 is not the exact TDSE solution |�(t )〉
projected onto P , but it represents an approximate TDSE
solution. The time derivative of the energy expectation value
can be evaluated as

ĖP ≡ d

dt
〈�P(t )|Ĥ (t )|�P(t )〉

= 〈�P(t )|∂t ĤPP(t ) − i[Ĥ (t ), ĤPP(t )]|�P(t )〉
= 〈�P(t )|∂t ĤPP(t )|�P(t )〉. (15)

Here we used the property that the expectation value of the
commutator vanishes within the subspace P .

We should distinguish two possible scenarios, namely
whether the projector P̂ is explicitly time-dependent or not.
Explicit time dependence will certainly occur within the two-
center BGM approach for positive ion impact collisions on
account of evolving projectile states, as well as the application
of the projectile hierarchy associated with the Wp operator
[cf. Eqs. (6) and (7) in Ref. [31]]. This case is complicated
and requires further thought. The other case, for which there
is no explicit time dependence in the projector (∂t P̂ = 0), is
more straightforward, and it can be realized, e.g., within the
target (Wt ) hierarchy in one-center BGM [33,34], which is
suitable for antiproton impact. This case also applies to TDSE
calculations using spatial discretization (whether using a grid,
finite elements, or a pseudospectral representation).

We may write in this case

〈�P(t )|∂t ĤPP(t )|�P(t )〉 = 〈�P(t )|∂t [P̂Ĥ (t )P̂]|�P(t )〉
= 〈�P(t )|∂t Ĥ (t )|�P(t )〉
= 〈�P(t )|∂t V̂p(t )|�P(t )〉, (16)

i.e., Ehrenfest’s theorem remains unchanged and we may pro-
ceed to consider a basis representation of Eq. (8) within a
stationary BGM basis [33]. A KS orbital ψγ (�r, t ) is repre-
sented as

ψγ (�r, t ) =
N∑

j=1

M∑
J=0

aγ
jJ (t )χ J

j (�r) (17)

with the following definitions: the basis function χ J
j (�r) ≡

〈�r| jJ〉 is obtained by J-fold application of the Yukawa reg-
ularized target interaction Wt on the generating atomic orbital
(AO) basis, i.e.,

| jJ〉 = W J
t | j0〉. (18)

The latter is specified by

ĥt | j0〉 = ε j | j0〉 (19)

with the single-particle target Hamiltonian

ĥt = − 1
2∇2 + vt (20)

in which vT is the ground-state potential at the level of
exchange-only density functional theory. The many-electron
system is thereby treated at the level of the independent-
particle model [35,36]. The single-particle density of the
system is represented by the KS orbitals and can now be
expressed as

n(�r, t ) =
∑

γ

〈�r|ψγ 〉〈ψγ |�r〉

=
∑

γ

∑
jJ

∑
kK

aγ

jJ (t )aγ ∗
kK (t )〈�r| jJ〉〈kK|�r〉. (21)

Insertion into Eq. (8) yields the expression

E (t + �t ) = E (t ) + �t
∑

γ

∑
jJ

∑
kK

aγ

jJ (t )aγ ∗
kK (t )MKJ

k j (22)

with

MKJ
k j = 〈kK| V̇p | jJ〉 = −Qpv 〈kK| zp(t )

rp(t )3
| jJ〉. (23)

III. RESULTS

A. Demonstration of convergence

We begin our discussion of results by demonstrating the
principle of how the calculation works within the one-center
BGM approach using a target Wt hierarchy for antiproton-
hydrogen collisions. The aim is to show the effectiveness of
the subtraction scheme Eq. (11) in comparison with the direct
evaluation of Eq. (7).

In Fig. 1, the time evolution of the relevant quantities is
shown for an impact velocity of v = 1 (Ep = 25 keV) and two
impact parameters, namely b = 1 which contributes signifi-
cantly to the total energy loss, and a distant impact parameter,
b = 5 to illustrate the usefulness of the subtracted energy loss
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Ionization

EL eq (7)

<dV/dt> eq (7)

EL eq (11)

<dV/dt> eq (11)

Ionization

EL eq (7)

<dV/dt> eq (7)

EL eq (11)

<dV/dt> eq (11)

FIG. 1. Time evolution of some variables during an antiproton-hydrogen collision at 25 keV/amu with impact parameters b = 1 in the left
panel and b = 5 in the right panel. The BGM ionization probability is shown as a dotted blue line. The expectation values of the rate of change

of the projectile potential energy 〈V̇P(t )〉 or 〈 ˙̃VP(t )〉, as they appear in Eqs. (7) and (11), respectively, are shown as dashed and solid purple
lines. The time integrals themselves, from Eqs. (7) and (11), which both yield the projectile energy loss for the given value of b when t f = −ti

is sufficiently large, are shown as green dashed and solid lines. The time evolution is expressed through the nuclear coordinate Z (t ) = vt given
on the horizontal axis, where t = 0 corresponds to closest approach, and t f = −ti = 80. While the probabilities are dimensionless, the other
variables are given in atomic units.

evaluation according to Eq. (11). We notice an overshoot in
the time evolution of EL(t ) according to Eq. (7) in the vicinity
of the closest approach for b = 1, and over a large range
for b = 5. The primary reason is the Stark shifting of the
initial state as the projectile approaches; while the projectile
recedes after the collision the Stark shifting changes due to
the depopulation of the initial state. This is responsible for the
asymmetry in the time evolution of EL(t ) calculated according
to Eq. (7) (dashed green lines).

The energy loss EL(t ) is caused by population of discrete
excitations, as well as transfer of population to the continuum.
Some of these excitations are temporary, i.e., some population
is transferred back to the ground state, and this causes some
oscillations. The trace of ẼL(t ) displays a small dip before
closest approach: this is caused by the depopulation of the
initial state, and thus the subtraction leads to a swing towards
negative values. Obviously, the time evolution of EL(t ) [or of
ẼL(t )] is not an observable, and only the value for sufficiently
large t f matters. The same is true for the ionization probability
as a function of time.

Two advantages can be observed for the evaluation of loss
according to Eq. (11) versus Eq. (7): The overshoot feature
at the closest approach disappears, but more importantly, the
time variation is limited to a smaller time interval around the
closest approach. Evaluation according to Eq. (11) is abso-
lutely necessary to reach the required accuracy at large impact
parameter values. The calculation of ẼL(t f ) can be obtained
with a substantially reduced time interval as compared to that
of EL(t f ). The comparison of evaluating ẼL(t f ) versus EL(t f )
is reflected also in the traces of the expectation value of the
rate of change of the projectile potential energy, i.e., 〈 ˙̃V p(t )〉
(solid line), showing rapid convergence as opposed to 〈V̇p(t )〉
(dashed line).

Another interesting comparison can be made for the eval-
uation of energy loss. In Fig. 2 we compare the Ehrenfest
theorem based evaluation of ẼL(t ) with the traditional way of

FIG. 2. Comparison of energy loss for b = 1, v = 1 calcula-
tions according to Eq. (11) (shown as a solid green line) with the
time evolution of the expectation value of the target Hamiltonian
〈ψ (t )|ĥt |ψ (t )〉 − εi (dotted red line), where εi is the eigenvalue of
the initial state, and with the expectation value of the full Hamilto-
nian 〈ψ (t )|ĥt + VP(t )|ψ (t )〉 − [εi + Qp/R(ti )] (dashed red line). The
energy loss is given in atomic units.
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E = 30 keV

QM-CCC

ionization

excitation

excitation x 0.375

energy loss E = 100 keV E = 1000 keV

FIG. 3. Impact parameter dependence of ionization and discrete excitation probabilities, as well as energy loss for antiproton collisions with
atomic hydrogen at collision energies of 30, 100, and 1000 keV are shown in the left, middle, and right panels, respectively. The probabilities
are weighted with b to show how they contribute to the total cross sections. The blue solid line shows the BGM ionization probability, the blue
dashed lines for 30 and 100 keV are the QM-CCC results [7]. The red solid lines show the BGM probabilities for total discrete excitations
(summing over shells n = 2, 3, 4), while the red dashed lines show this excitation probability times 0.375 = 1/8 − 1/2. Assuming dominant
excitation to n = 2, this corresponds to energy loss at large b. The b-weighted energy loss (in atomic units) is represented by green solid lines.

extracting loss via the expectation value of the target Hamil-
tonian, i.e., 〈ψ (t )|ĥt |ψ (t )〉 − εi, where εi is the eigenenergy
of the initial state. The point we are making here is that the
density functional based evaluation of ẼL(t f ) is competitive
with the traditional calculation. While this may not be essen-
tial for a single-electron system, using ẼL(t ) does represent a
definite advantage for many-electron targets. The result shown
as the dashed red line is based on the expectation value of
the full Hamiltonian (which includes the Stark perturbation)
〈ψ (t )|ĥt + VP(t )|ψ (t )〉 − [εi + Qp/R(ti )], and it results in a
curve completely equivalent to EL(t f ) (shown as the dashed
green line in the left panel of Fig. 1).

In Fig. 3 we compare b-weighted probabilities for ioniza-
tion with the QM-CCC results of Ref. [7]. We notice overall
good agreement between the calculations, and we find that the
present BGM results are higher by less than 10% starting in
the vicinity of the maximum, which occurs somewhat to the
right of b = 1 for impact energies of 30 and 100 keV. Ion-
ization provides the main contribution to energy loss, which
can be seen to peak in a similar b-range. The energy loss
probability initially follows the ionization curve, except for
the larger impact parameters where discrete excitations make
a sizable contribution to loss.

The red dashed curve shows the discrete excitation proba-
bility (summed over n = 2, 3, 4) multiplied by the energy for
excitation to n = 2. This probability merges with the energy
loss probability at large impact parameters. Excitation to an
n = 2 Stark state (linear combination of 2s and 2p) occurs
during the collision. For very high energies (right panel) the
merging occurs at b > 15, i.e., outside the shown range.

Note that the logarithmic presentation may be deceiving
in the following regard: the energy loss is in fact dominated
by ionization in the sense that the area under the green curve
comes mostly from small and intermediate values of b where
ionization dominates. For distant collisions, ionization is less
effective than discrete excitation, but the probabilities are
small, and the weighting with the excitation energy further

suppresses the contribution to energy loss. Nevertheless, it is
interesting to observe the turnover in the energy loss traces
for 100 and 1000 keV, where the slope changes at large values
of b.

The present calculations for hydrogen targets were tested
against basis set convergence within the method. From these
tests we derive confidence of obtaining ionization cross sec-
tions with an uncertainty of about 5%.

B. Collisions of antiprotons with atoms

In this section, we present calculations of projectile en-
ergy loss for antiproton collisions with a number of atomic
targets which are relevant for independent atom model cal-
culations for molecules of biological interest. The selected
atomic targets are hydrogen (H), then the rare gases He and
Ne, and finally some atoms that are constituents of many
molecules, such as carbon (C), nitrogen (N), and oxygen (O).
For the target atoms with more than one electron, calculations
were carried out with frozen atomic target potential during the
collision (called no-response), and also within a model where
the mean-field potential is motivated by TDDFT (called the
dynamic response model) [36].

1. Hydrogen

We begin with total cross sections for atomic hydrogen
targets. The energy dependence of the total ionization cross
section is compared in the left panel of Fig. 4 with exper-
iment [37], and with two previous calculations reported in
Refs. [7,12]. At impact energies E > 100 keV they all agree
very well. At lower energies the BGM results are higher than
the results of Lühr and Saenz [12], as well as the QM-CCC
results of Abdurakhmanov et al. [7]. The experimental data
of Ref. [37] are in good overall agreement with the three
theoretical results, but they indicate that the BGM ioniza-
tion cross sections are probably too high. From this we can
conclude that the present BGM calculations have the total
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Ionization

BGM

QM-CCC

Knudsen 95

Energy loss

BGM

SC-CCC

FIG. 4. Energy dependence of the ionization cross section (left panel), and the energy loss cross section (right panel) for antiproton
collisions with atomic hydrogen. The BGM ionization cross section is shown as a blue solid line. The dotted green line is from Ref. [12], while
the dashed red line is the QM-CCC result of Ref. [7]. The experimental ionization data are from Ref. [37]. The right panel shows the BGM
energy loss (solid blue line), the SC-CCC result [6] as a dashed red line, and the result from Ref. [12] as a dotted green line.

ionization probability under control at the level of 10% at low
energies and better at energies above 100 keV. The discrete
excitation cross sections include populations of the n = 2, 3, 4
shells, and for n = 2, 3 were checked for agreement with the
QM-CCC results (not shown).

For the energy loss cross sections (shown in the right panel
of Fig. 4), BGM yields lower results than the SC-CCC ap-
proach [6] and the spline-basis TDSE solution of Ref. [12]
at the level of 5–10 % and displays perhaps a slightly dif-
ferent shape. This appears to be puzzling, given that we do
not observe a shortfall in ionization, but rather the opposite.
The only logical conclusion we can offer is that the average
energy in the BGM results is lower than the result from the
close-coupling approach supplemented by a discrete wave-
packet basis to provide an improved coverage of the electronic
continuum. This seems to imply that the average electron
energy in the continuum is lower in the present work than in
the TDSE solutions of Refs. [6,12].

2. Helium

The helium target has received considerable attention
from both the experimental and theoretical communities.
For the two-electron system it is possible to go beyond the
independent-electron model advocated in the present work.
One approach to capture correlation effects, i.e., to take into
account the large difference between the first and second ion-
ization energies of helium (24.59 and 54.42 eV, respectively),
is the independent event model, where separate calculations
are performed for the “outer” and “inner” 1s electrons of
helium, and to combine the results.

Therefore, it is of interest to find out how the independent-
particle model (IPM) fares in this regard. Its main problem is
to extract a reliable double-ionization probability, since the
single-electron (IPM) ionization probability gives a decent
estimate for onefold ionization, but it overestimates double
ionization when binomial statistics are applied. Another point

of view is that the ionized single-particle density yields an
accurate net probability, but the separation into single- and
double-ionization contributions is problematic. Our results
for antiproton-He collisions are therefore provided more for
completeness than as a serious competitor to true two-electron
calculations.

The ionization cross sections are shown in the left panel
of Fig. 5. The experimental data for single ionization were
described reasonably well by the correlated finite element
calculations of Borbély et al. [9], which make use of a discrete
variable representation for coupled-channel equations repre-
senting the two-electron wave function. The experimental data
from different runs do not form an entirely consistent picture
to determine location and height of the maximum in the cross
section precisely. In Fig. 1 of Ref. [9], comparison is made
of the single-ionization cross section with many theoretical
and experimental results over a wider collision energy range,
and it is found that the overestimation of experiment between
impact energies of 10 and 40 keV is probably an experimental
problem. Good agreement of this observable is found there
both with the QM-CCC calculations [7] and with full TDDFT
calculations [38]. For double ionization (cf. Fig. 2 of Ref. [9]),
reasonable agreement is found with the CCC theoretical as
well as the experimental data with a maximum cross section
on the order of 0.02 Å2 at an impact energy of 30–40 keV.
This results in a difference between net and single ionization
of less than 10%.

For the energy loss (shown in the right panel of Fig. 5) we
can make the following observations: While comparing the
experimental data for antiproton impact [26,42] to the older
μ− impact data [43] (given without uncertainties, cf. also
comments made in Ref. [12] about potential normalization
issues), one finds that they agree at intermediate and high
energies at the 10–20 % level. At high energies, the sophis-
ticated two-electron calculations as well as the single-electron
calculations agree well with the muon scattering results. The

032813-7



LÜDDE, HORBATSCH, AND KIRCHNER PHYSICAL REVIEW A 104, 032813 (2021)

Ionization

BGM; net

BGM response; net

TDCC Borbely 14

CERN 90; single

CERN 94; single

CERN 08; single

FIG. 5. Energy dependence of ionization cross sections (left panel), and the energy loss cross sections (right panel) for antiproton collisions
with helium. The BGM results for net ionization are shown as a blue solid line (model with dynamical response) and as a dashed blue line
(static potential). The black chain curves are from Ref. [9]: The lower curve shows single ionization, the upper curve net ionization. The
experimental data with error bars are for single ionization and were obtained during different runs at CERN [39–41]. In the right panel, the
BGM energy loss cross sections (the green solid line is with dynamical response, the green dashed line is with static potential) are compared
with the experimental data from Refs. [26,42] (black line with gray-shaded uncertainty estimate), and with the experimental results for μ−

scattering [43] translated to the antiproton-equivalent collision energies. Other theoretical results: The black chain curve is from Ref. [10], the
purple short-dashed line from Ref. [12], the red dashed line is the MC-CCC result from Ref. [6], and the blue dotted line is the result from
Ref. [44].

present BGM calculations, on the other hand, fall short by a
few percent in this range, even though the ionization cross
sections do coincide with the other theories. This would imply
that in this energy regime single ionization dominates, and that
the BGM ionization is probably missing out on higher-energy
electron contributions.

At intermediate energies, most calculations seem to agree
with a maximum at around 100 keV impact energy and a value
of about 45 Å2 eV. Somewhat higher results were reported in
the single-active electron work of Ref. [12], which includes
both single and double ionization. In Ref. [6], a detailed
analysis of two-electron effects was carried out at the level of
multiconfiguration HF by comparing MC-CCC to frozen-core
calculations. It was shown that an increase in stopping power
at low to intermediate collision energies was obtained from
the MC treatment. The more recent correlated two-electron
work of Ref. [10], which is shown in Fig. 5, is very close to
the MC-CCC data, and thus confirms the inadequacy of the
single-active electron approach.

The present BGM data for energy loss show little differ-
ence whether dynamic response is included (solid green line)
or not (dashed line). It seems remarkable that the independent-
electron model through the evaluation of loss by the method
introduced in this work is quite close to the sophisticated
calculations of Refs. [6,10] in the 40–100 keV energy range.
The density-dependent evaluation method of energy loss can
be used as an alternative to the methods employed in the
two-electron work of Refs. [6,10], which is of interest given
the concerns raised of how true two-electron processes such
as double ionization and excitation-ionization are treated as
sequential processes [10].

3. Neon

The neon atom represents a strong test for the independent-
particle model approach combined with the BGM for orbital
propagation. The observation of multiple ionization of rare
gases such as Ne, Ar, Kr, and Xe by ion impact led to
the discovery that atomic physics was not all about single-
electron transitions. A number of collision systems were
investigated theoretically: Initially the field was dominated by
classical-trajectory approaches, but eventually the quantum
treatment of the time-dependent many-electron problem that
arises when using a classical approach for the nuclear motion
resulted in an understanding of at what level one can under-
stand the dynamics of these collisions.

For antiproton-neon collisions, multiple ionization was
observed experimentally by Paludan et al. [45] in the
30–1000 keV energy regime, and single-, double-, and triple-
ionization cross sections σi were reported. A theoretical
explanation of these data was provided in Ref. [35] using the
approach advocated in the present work: Screening effects are
taken into account via a mean-field effective potential, which
can be treated either as a static (no-response) model, or one
can use the calculated net ionization probability as a function
of time during the collision to adjust the effective potential
so that it acquires ionic character with fractional charge (dy-
namic response). The energy dependence of the experimental
data [45] is reproduced reasonably well for the three observed
channels i = 1, 2, 3 in Fig. 7 of Ref. [35]. Dynamical screen-
ing was found to be more important to describe the energy
dependence of the multiple ionization cross sections than for
the net ionization cross section.
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QM-CCC; single

CDW-EIS

Paludan 97; single

Paludan 97; net

Energy loss

BGM
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SC-CCC Bailey 15

FIG. 6. Energy dependence of ionization cross sections (left panel) and energy loss cross sections (right panel) for antiproton collisions
with neon. The present Wt hierarchy BGM results for ionization are shown as blue dashed and solid lines for static and dynamic response
models, respectively, and the lower blue solid line shows the single-ionization result from a binomial analysis. The experimental net ionization
cross sections are shown by solid circles with error bars and are derived from the single-, double-, and triple-ionization data given in Ref. [45]
using Eq. (24), while the open circles are the single-ionization cross sections σ1 from Ref. [45]. The green dotted lines show the CDW-EIS
results from Ref. [46] (upper vs lower is net vs single ionization), while the red dashed line is the QM-CCC single-ionization cross section from
Ref. [7]. Right panel: The green dashed and solid lines represent the energy loss calculated with static and dynamic response. The red-dashed
energy loss curve is from the SC-CCC calculation of Ref. [6].

Compared to Ref. [35], we overestimate the net ionization
cross section at energies below 100 keV by about 8%. The
reason for this is that in Ref. [35] solutions were obtained from
a dynamic BGM (Wp hierarchy), whereas in the current work
we are restricted to a stationary BGM basis (Wt hierarchy) in
order to be able to calculate the energy loss using the Ehren-
fest method. We also note that the present dynamic response
results are based on the approach introduced in Ref. [36],
while a simpler model was used in Ref. [35].

While looking at the experimental data for ionization
shown in the left panel of Fig. 6, we can clearly see the
importance of multiple ionization contributions. The exper-
imental net ionization cross section shown in Fig. 6 is based
on the observed ionization cross sections σi for i = 1, 2, 3 and
calculated as

σnet =
3∑

i=1

iσi. (24)

In principle, this is a low estimate, but we may assume that
i = 4 and higher ionization contributions were too small to be
observed. The theoretical cross section for σ4 was discussed in
the context of continuum distorted wave with eikonal initial
state (CDW-EIS) calculations in Ref. [46], and compared to
electron impact ionization data.

The experimental single-ionization cross section (open cir-
cles) is below the CDW-EIS results from Ref. [46], and also
below the BGM results of Ref. [35], as well as the present
BGM calculations. The QM-CCC calculation of Ref. [7]
ignores multielectron contributions and is based on the prop-
agation of the 2p shell only. It apparently agrees best with the
experimental values of σ1(E ).

When considering projectile energy loss, it seems unrea-
sonable to focus only on single-electron events, especially
given the large discrepancy between the experimental single
and net ionization cross sections shown in the left panel of
Fig. 6. Our results for energy loss (right panel of Fig. 6)
demonstrate this clearly: the DFT-BGM calculations with or
without dynamic response agree on the energy loss for ener-
gies above 100 keV; they may overestimate the net ionization
cross section at energies below 200 keV if the data of Paludan
et al. [45] are taken at face value, but for higher energies they
do agree. Thus we find a large discrepancy with the QM-CCC
results [7] which we attribute to the contributions from the 2s
shell of Ne, and many-electron processes in general, such as
ionization-excitation. Therefore, we conclude that for many-
electron targets, much has to be learned about energy loss,
and measurements for neon (and heavier rare gases) would be
most welcome to settle the issue.

4. Carbon, nitrogen, and oxygen

In Fig. 7 we present results for second-row atoms of inter-
est for independent-atom model calculations with molecular
targets. The three atoms represent building blocks for bio-
logically relevant molecules, and they have been investigated
before to determine the strength of ionization [21] and capture
processes [24] in collisions with positively charged ions. In
analogy to helium and neon, their atomic structure is de-
scribed at the level of the optimized potential method, which
represents the optimal Hartree-Fock equivalent treatment of
DFT with the constraint of a local potential. For antiproton im-
pact, the main ionization contributions come from 2p and 2s
orbitals. The atoms are treated by using a spherically symmet-
ric potential, and the 2pm magnetic sublevels are populated to
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FIG. 7. Energy dependence of cross sections for net ionization (shown in blue, lower curve pairs) and energy loss (shown in green using
the scale on the right, upper curve pairs) for carbon (left panel), nitrogen (middle panel), and oxygen atoms (right panel). Solid lines show
results from BGM calculations with response, dashed lines without dynamical response.

equal fractions in order to obtain a spherically symmetric den-
sity for each neutral atom. The ionization energies obtained
by the method (as inferred from the 2p orbital energies via
Koopmans’ theorem) are 11.72 eV for C, 15.33 eV for N, and
16.70 eV for O. Except for oxygen, these correspond closely
to the experimental values of 11.26, 14.53, and 13.62 eV,
respectively.

In the dynamical response model, the potential adjusts
itself as a function of the time-dependent net ionization proba-
bility, which makes further ionization less probable (to a small
degree for antiproton impact). The effect is clearly visible for
all three targets at impact energies below 100 keV: The blue
solid lines fall below the dashed ones, and the gap widens as
one lowers the impact energy. The energy loss (green curves)
shows a reversed pattern for carbon and nitrogen, but a negli-
gible difference is found for oxygen between the two potential
models. Apparently, discrete excitations are increased by the
inclusion of dynamic response while ionization is reduced,
and energy loss follows somewhat the trend observed for
excitation cross sections (which are not shown).

The absolute values of net ionization decrease as one
moves from carbon to oxygen targets, which is remarkable
since more electrons are available as one moves from left to
right in the figure. This is likely related to the fact that the 2p
(and 2s) orbital is bound more deeply as one moves through
the sequence C, N, O, and therefore contributes less.

Comparing the energy loss results, which overall are very
similar for both models (with and without dynamic response),
we find that maxima occur between 30 and 80 keV collision
energy with a shift towards higher values within this range
as one moves from carbon to oxygen. While comparing the
three atoms, we note a slight decrease in the maximum heights
of the cross sections, starting with 170 Å2 eV for carbon,
150 Å2 eV for nitrogen, and 135 Å2 eV for oxygen. This pat-
tern is consistent with the behavior found for the net ionization
cross sections.

One can add to this sequence the results for neon (cf.
Fig. 6), which in the BGM-OPM approach has an ioniza-
tion energy of 23.15 eV, i.e., higher than the accepted value
of 21.655 eV. The trend in the shift of the maximum to
higher collision energies, and lowering of the maximum value,

continues as observed in the sequence C, N, O, with the
maximum occurring at 100 keV, and a maximum value of less
than 110 Å2 eV in the case of neon, and a slightly reduced
value for the model with response.

IV. CONCLUSIONS

In Fig. 8 we provide a summary of the presented BGM
results within the dynamical response model for all atoms
considered in the present work. One can distinguish the in-
termediate energy regime (below 100 keV) from the higher
energies. The net ionization cross sections below an impact
energy of 100 keV indicate that helium is hardest to ionize,
followed by hydrogen and neon, while oxygen, nitrogen, and
carbon have larger cross sections. This order is also found for
the energy loss cross section shown in the right panel with the
exception of neon, which rises higher towards the values for
O, N, C.

At higher collision energies, the ionization cross sections
group themselves together into H and He with lower values,
and the data for Ne, O, N, and C merge into almost a single
curve. The energy loss, on the other hand, looks different at
high energies. A well-defined sequence emerges, in which Ne
rises to the top, and the trend in the sequence is with the num-
ber of electrons in the target, and with the (theoretical) ioniza-
tion energies in the atomic sequence. The high-energy results
are consistent with expectations based on the Bethe-Born
limit; cf. discussions in Refs. [31,32]. An interesting question
for comparison with experiment would be to find out whether
the large value of the theoretical ionization energy of oxygen
is responsible for placing the O result between N and Ne.

In addition to the energy loss Se(E ) defined in (13), one
can also consider the mass stopping power which is obtained
by dividing dE/dx by the mass density, i.e., Se(E )/M, where
M is the atomic mass. This macroscopic quantity is known
for gas targets to become independent of pressure, and neigh-
boring atoms in the Periodic Table have comparable values.
Since we are showing results per atom in this work, following
Bethe’s work [47] we prefer to display a related quantity,
namely Se(E )/Z , where Z is the nuclear charge and is equal to
the number of target electrons. This quantity is shown in the
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FIG. 8. Comparison of cross sections for net ionization (left panel), and energy loss (middle panel) for the atoms H (dotted black), He
(dashed purple, close to H at high energies), C (solid blue), N (solid green), O (solid red), and Ne (dashed magenta). The right panel shows the
results for the energy loss divided by the target electron number (or nuclear charge Z); see the text. The curves for C, N, O, and Ne for energies
E < 100 keV are in this order from top to bottom.

right panel of Fig. 8, and we find that the results for the atoms
C, N, O, and Ne fall on a common curve at high energies at
about one-third of the value for hydrogen. At impact energies
below 500 keV, however, the curves deviate and display a
pattern similar to what is seen in the left panel of Fig. 8 for
the ionization cross sections.

The present work demonstrates that an evaluation of energy
loss based on Ehrenfest’s theorem which makes use of the
density rather than complicated analysis of wave functions
represents a powerful tool. Using this tool, we have ob-
tained reasonable results for the one- and two-electron targets
hydrogen and helium under antiproton impact. A previous
prediction for neon targets carried out over single-electron
processes only within the CCC approach was shown to poten-
tially underestimate projectile energy loss by almost a factor

of 2 at collision energies below 100 keV. BGM calculations
of net ionization provide results for a series of small atoms
which are found in the second row of the Periodic Table for
which definite predictions of energy loss are made. In future
work, we plan to implement calculations for small molecules
at the level of independent atom models [21,24].
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