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We reconsider the calculation of rovibrational transition frequencies in hydrogen molecular ions. Some previ-
ously neglected contributions, such as the deuteron polarizability, are included into consideration in comparison
with our previous work. In particular, one-loop and two-loop QED corrections at mα7 and mα8 orders are
recalculated in the framework of the adiabatic approximation, with systematic inclusion of corrections associated
with vibrational motion. Improved theoretical transition frequencies are obtained and found to be in very good
agreement with recent high-precision spectroscopy experiments in HD+. New values for the mp/me and md/mp

mass ratios are determined.
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I. INTRODUCTION

Considerable progress has been recently achieved in the
spectroscopy of hydrogen molecular ions. Several rovibra-
tional transitions in HD+ have been measured with relative
uncertainties in the 10−11–10−12 range through Doppler-free
spectroscopy of ultracold trapped ions in the Lamb-Dicke
regime [1–3], approaching or even exceeding the precision
of theoretical predictions [4]. This has allowed one to get
improved determinations of the proton-to-electron mass ra-
tio, and to perform tests of QED constraining hypothetical
“fifth forces” between hadrons [1,5]. These results, as well
as other ongoing projects [6,7], and perspectives of reaching
higher precision [8,9], e.g., using quantum-logic spectroscopy
schemes [10–12], provide strong motivation to improve the
theory further.

In our paper [4], we calculated the frequencies of fun-
damental vibrational transitions in the nonrelativistic QED
approach, including corrections up to the mα8 order. Since
then, several new advances in the theory of hydrogenlike
atoms have been achieved [13–15], which allows one to get
improved results for the corresponding correction terms in the
hydrogen molecular ions. In addition, we found that several
contributions that had been neglected in our previous con-
sideration were of comparable magnitude to the estimated
error bar, and thus should be included. Finally, changes in the
recommended values of fundamental constants, the nucleus-
to-electron mass ratios but also the Rydberg constant, proton
and deuteron radii, between the previous (2014) CODATA ad-
justment [16] and the most recent one (2018) [17] (see Table I)
also affect our theoretical predictions and their uncertainties.

The aim of this work is to reanalyze the theory, with
particular emphasis on the evaluation of QED corrections
at orders mα7 and mα8 in the framework of the adiabatic

approximation, where we systematically include “vibrational”
corrections, i.e., the second-order perturbation terms due
to perturbation of the vibrational wave function. Improved
theoretical rovibrational transition frequencies are given for
experimentally relevant transitions, and the impact of these
new results on the determination of the proton-to-electron
mass ratio is illustrated.

We use atomic units throughout this paper (h̄=me =e=
1). Other constants used in calculations are taken from the
CODATA18 adjustment [17] (see Table I), including the fine-
structure constant, α = 7.297 352 5693(11)×10−3.

II. NUCLEAR SIZE AND POLARIZABILITY
CORRECTIONS

In our previous calculations [4,18], we only included the
leading-order nuclear finite-size correction [see Eq. (6) in
[18]]. Some higher-order nuclear corrections are not negligi-
ble at the current level of theoretical accuracy, in particular
the deuteron polarizability [19]. Here, we follow the notations
used in [16]. According to Eq. (34) of [16], we write the mα5

deuteron polarizability contribution as

E (5)
pol (D) = [−21.37(8)]〈πδ(rd )〉 (kHz). (1)

For example, this results in a 0.33 kHz shift for the frequency
of the fundamental vibrational transition (L = 0, v = 0) →
(0, 1), which is comparable to the overall theoretical uncer-
tainty of 0.5 kHz for this transition (see Table II).

Nuclear finite-size corrections at the same order [20] are
written as [see Eq. (59) in [16]]

E (5)
fns (D) = −(2R∞c)

2π

3
Cη

(
Rd

a0

)3

〈πδ(rd )〉

= [−0.57(3)]〈πδ(rd )〉 (kHz), (2)
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TABLE I. Reevaluation of the fundamental constants of atomic physics by CODATA in 2018. CODATA14 (respectively, CODATA18)
values are given in the upper (respectively, lower) line.

Quantity Symbol Value Uncertainty

Proton charge radius rp 0.8751(61)×10−15 m 7.0 × 10−3

0.8414(19)×10−15 m 2.2 × 10−3

Rydberg constant R∞ = α2mec/2h 10 973 731.568 508(65) m−1 5.9 × 10−12

10 973 731.568 160(21) m−1 1.9 × 10−12

Proton-to-electron μp = mp/me 1836.152 673 89(17) 9.5 × 10−11

Mass ratio 1836.152 673 43(11) 6.0 × 10−11

Deuteron-to-electron μd = md/me 3670.482 967 85(13) 3.5 × 10−11

Mass ratio 3670.482 967 88(13) 3.5 × 10−11

where a0 is the Bohr radius, Rd = 2.127 99(74) the rms
charge radius of the deuteron, and Cη = 2.0(1).

The contribution at the next order (mα6), as it is written in
Ref. [16], Eq. (59), is “state-dependent” term proportional to
the squared value of the electron wave function at the nucleus,
and would require an independent calculation. However, this
term can be estimated from its value for the hydrogen atom
ground state by using the linear combination of atomic orbitals
(LCAO) approximation for the electronic wave function:

ψ
LCAO

(r) = 1√
2

[ψ1s(rp)+ψ1s(rd )],

where ψ1s is the hydrogen ground state wave function. Under
this approximation, one gets from Eq. (59) of [16]

E (6)
fns (D) =−(2R∞c)

2π

3

(Rd

a0

)2

(Zα)2
(
Cθ −ln

ZRd

a0

)
〈πδ(rd )〉

= [3.96(2)]〈πδ(rd )〉 (kHz), (3)

with Cθ = 0.38(4). Only the uncertainty from Cθ is indicated
in this equation. Due to the employed LCAO approximation,
one may estimate the uncertainty of E (6)

fns (D) as equal to the
nonlogarithmic term, which is still much smaller than the
overall theoretical uncertainty.

TABLE II. Fundamental transition frequency ν01 for the HD+

molecular ion (in kHz). CODATA14 recommended values of funda-
mental constants were used in [4], and the latest CODATA18 values
are used in the present work. Nuclear size and polarizability correc-
tions are included in να2 , and “other” corrections correspond to the
muonic and hadronic vacuum polarization. Theoretical uncertainties
of contributions at each order in α, if not negligible, are indicated
within parentheses. In the final value of the transition frequency, the
first error is the theoretical uncertainty, and the second one is due to
the uncertainty of fundamental constants.

[4] This work

νnr 57 349 439 952.4 57 349 439 955.1
να2 958 151.7 958 154.6
να3 −242 126.3 −242 126.3
να4 −1708.9(1) −1708.9(1)
να5 106.4(1) 105.9(1)
να6 −2.0(5) −0.8(5)
Other 0.25
νtot 57 350 154 373.4(0.5)(1.8) 57 350 154 379.8(0.5)(1.3)

In the proton case, all the corrections considered above are
negligibly small at the current level of accuracy.

III. mα7- AND mα8-ORDER CORRECTIONS IN THE
ADIABATIC APPROXIMATION

Relativistic and QED corrections at the orders mα4 to
mα6 have been evaluated in a full three-body approach us-
ing precise variational wave functions [18,21], except for the
mα6 relativistic correction [4,22]. For calculation of mα7 and
higher-order one- and two-loop corrections we use the Born-
Oppenheimer approach, where the states of the molecule are
taken in the form

	BO = φel(r; R)χBO(R). (4)

The electronic wave function obeys the clamped nuclei
Schrödinger equation for a bound electron

[Hel − Eel(R)]φel = 0, (5)

where

Hel = p2

2m
+ V + Z1Z2

R
, V = −Z1

r1
− Z2

r2
.

Here Hel is the electronic Hamiltonian, Z1 and Z2 are the
charges of the nuclei, and r1, r2 are the distances from the
electron to nuclei 1 and 2, respectively. The wave function
χBO(R) describes the relative nuclear motion, and is a solution
of

(Hvb−E0)χBO =
[
− ∇2

R

2μN
+Eel(R)−E0

]
χBO = 0, (6)

where μN = M1M2/(M1+M2) is the reduced mass of the
nuclei.

Instead of the Born-Oppenheimer solution χBO(R) we use
the adiabatic solution χad(R), which includes as well the adi-
abatic corrections

Ead(R) = Eel +
∫

dr〈φel| p2

8μN
+ P2

2μN
− κ

2μN
pP|φel〉, (7)

where p is the electron impulse in the center-of-mass frame,
P the relative impulse of the two nuclei, and κ = (M1−
M2)/(M1+M2) is the asymmetry parameter. See Ref. [23], or
a review by Carrington et al. [24] for more details.

The one-loop self-energy correction of order mα7 to the
energy of a bound electron in the two-center problem (non-
recoil limit) has been determined in [25–29]. The electronic
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part of the correction can be calculated using the effective
Hamiltonian of Eq. (6) from Ref. [29]:


E (7)
el-SE = 〈χad|E (7)

1 loop-SE(R)|χad〉, (8)

numerical data for the E (7)
1 loop-SE(R) effective potential may be

found in the Supplemental Material to [27].
The one-loop vacuum polarization (Uehling potential)

contribution has been considered in [30]. The adiabatic
approximation was also compared with full three-body calcu-
lations, confirming that it is accurate to O(m/M ) (where m/M
is the electron-to-nucleus mass ratio). The electronic part of
the correction can be written as


E (7+)
el-VP = 〈χad|E (7+)

1 loop-VP(R)|χad〉, (9)

where E (7+)
1 loop-VP(R) is given by Eq. (16) of [30].

As shown in [4,30], beyond the above electronic con-
tributions one also needs to include vibrational corrections.
The latter are second-order perturbation terms stemming from
perturbation of the vibrational wave function by the leading
relativistic and radiative corrections to the adiabatic potential
Ead(R), namely,

E (4)
BP (R) = α2

〈
− p4

8m3
+ πρ

2m3
+ Hso

〉
|R

,

E (5)
SE (R) = α3 4

3

[
ln

1

α2
− β(R) + 5

6

]
〈Z1δ(r1) + Z2δ(r2)〉|R,

E (5)
VP (R) = −α3 4

15
〈Z1δ(r1) + Z2δ(r2)〉|R. (10)

Here ρ = ∇2V/(4π ), Hso is the electron spin-orbit Hamil-
tonian (see [22] for details), and β(R) is the nonrelativistic
Bethe logarithm for the bound electron in the two-center
problem, whose values as a function of R may be found in
the Supplemental Material to Ref. [27] or in [31].

The mα7-order vibrational correction from one-loop self-
energy and vacuum polarization is then obtained via the
second-order perturbation formalism as


E (7)
vb = 2〈χad|E (4)

BP (R)Q′(E0 − Hvb)−1Q′

× [
E (5)

SE (R) + E (5)
VP (R)

]|χad〉; (11)

here Q′ is a projection operator onto a subspace orthogonal
to χad(R) from Eq. (5). The difference with respect to our
previous calculations is that E (5)

SE (R) in Eq. (10) includes the
contribution from the electron anomalous magnetic moment,
which was missed in Eq. (10) of [4].

We now turn to the mα8 order, starting with the one-loop
self-energy correction. The higher-order remainder (mα8 and
above) for this contribution can be estimated from the hydro-
gen 1S state results by using the LCAO approximation:


E (8+)
el-1 loop = α5〈χad|(GSE(1S) − A60)

× 〈
Z3

1 δ(r1) + Z3
2 δ(r2)

〉|χad〉, (12)

where GSE(1S) = −30.290 24(2) is the higher-order remain-
der and A60 = −30.924 149. Both numbers are taken from
Table II of [13]. This is more accurate than the treatment of
Ref. [4], where only the mα8-order term was estimated. The
theoretical uncertainty is estimated as equal to |
E (8+)

el-1 loop −


E (8 log)
el-1 loop|, where 
E (8 log)

el-1 loop is the known mα8-order logarith-
mic term [first term of Eq. (14) in [4]].

The second-order vibrational contribution is expressed as


E (8)
vb-1 loop = 2〈χad|E (4)

BP (R)Q′(E0 − Hvb)−1Q′

× [
E (6)

SE (R) + E (6)
VP (R)

]|χad〉, (13)

where

E (6)
SE (R) = α4

[
139

32
− 2 ln 2

]
π

〈
Z2

1 δ(r1) + Z2
2 δ(r2)

〉
|R,

E (6)
VP (R) = α4 5

48
π

〈
Z2

1 δ(r1) + Z2
2 δ(r2)

〉
|R.

Finally, we consider two-loop mα8-order corrections. For
hydrogenlike atoms, the two-loop correction at orders mα8

and higher is generally expressed in the form [13,17]

E (8+)
2 loop = (Zα)6

π2n3
[B63 ln3(Zα)−2+B62 ln2(Zα)−2

+ B61 ln(Zα)−2 + G2 loop(Zα)] (14)

where G2 loop(Zα) is the higher-order remainder calculated in
[32,33]. We adopt similar notations for hydrogen molecular
ions:

E (8+)
2 loop = α6

π
〈χad|B63(R) ln3(α−2) + B62(R) ln2(α−2)

+ B61(R) ln(α)−2+G2 loop(1S)
〈
Z3

1 δ(r1)

+ Z3
2 δ(r2)

〉|χad〉. (15)

Again, the higher-order remainder is estimated using the
LCAO approximation. In our calculations, we adopted the
value G2 loop(1S) = −94.5(6.6) from [15]. This is more accu-
rate than our previous treatment [4], where only the mα8-order
correction was estimated using B60(1S) instead of G2 loop(1S).
The theoretical uncertainty is estimated as equal to the term
proportional to G2 loop(1S), after subtraction of the known
term of order mα9 ln2(α) [Eq. (26) of [13]].

Calculation of the B6k (R) effective potentials for the
two-center problem is described in [4]. Since then, a new
contribution to the B61 coefficient in hydrogenlike atoms
from light-by-light (LbL) scattering diagrams has been found,
yielding a correction BLbL

61 = 0.830 309 for S states [14]. For
the two-center problem we thus add the following term to
B61(R):

BLbL
61 (R) = BLbL

61

〈
Z3

1 δ(r1) + Z3
2 δ(r2)

〉
|R. (16)

The second-order contribution due to vibrational motion is
expressed as


E (8)
vb-2 loop = 2〈χad|E (4)

BP (R)Q′(E0 − Hvb)−1Q′E (6)
2 loop(R)|χad〉

+ 〈χad|
[
E (5)

SE (R) + E (5)
VP (R)

]
Q′(E0 − Hvb)−1Q′

× [
E (5)

SE (R) + E (5)
VP (R)

]|χad〉, (17)

with

E (6)
2 loop(R) = α4

π2
[0.538 941]π〈Z1δ(r1) + Z2δ(r2)〉|R.

032806-3



VLADIMIR I. KOROBOV AND J.-PH. KARR PHYSICAL REVIEW A 104, 032806 (2021)

TABLE III. Theoretical and experimental spin-averaged transition frequencies (in kHz). CODATA18 values of fundamental constants were
used in the calculations. For theoretical values, the first uncertainty is due to yet uncalculated terms and used approximations in theory, while
the second uncertainty is due to inaccuracy in the CODATA18 recommended mass values.

(L, v) → (L′, v′) Theory Experiment

(0, 0) → (1, 0) 1 314 925 752.932(19)(61) 1 314 925 752.910(17)
(0, 0) → (1, 1) 58 605 052 163.9(0.5)(1.3) 58 605 052 164.24(86)
(3, 0) → (3, 9) 415 264 925 502.8(3.3)(6.7) 415 264 925 501.8(1.3)

Due to the presence of a logarithmic term in E (5)
SE (R), the

vibrational correction is enhanced by a factor of ln2(α−2)
and contributes to the B62, B61, and nonlogarithmic terms.
It results in a 1.14 kHz shift for the fundamental vibrational
transition, thus the neglect of this term in [4] was not justified.

The last corrections requiring new consideration are the
muonic and hadronic vacuum polarization corrections. The
muonic term is [see Eq. (14) of [13]]

EμVP(R) =
(

me

mμ

)2

E (5)
VP (R), (18)

and the hadronic term may be written as [Eq. (15) of [13]]

EhadVP(R) = 0.671(15) EμVP(R). (19)

The sum of these two contributions shifts the fundamental
transition frequency by 0.25 kHz.

IV. RESULTS

Our results for the frequency of the fundamental transition
(L = 0, v = 0) → (0, 1) in HD+ are presented in Table II and
compared with previous results from Ref. [4]. The change
in the nonrelativistic transition frequency νnr is mainly due
to those of the nucleus-to-electron mass ratios (mostly μp)
and Rydberg constant between the 2014 and 2018 CODATA
adjustments. The shift in να2 is due to the nuclear correc-
tions; it stems from the CODATA18 values of the proton
and deuteron radii, and from the inclusion of higher-order
finite-size and polarizability corrections described in Sec. II.
The change in να5 comes from the correction of the vibrational
contribution [Eq. (11)]. Finally, several improvements have
been made in the calculation of να6 as detailed in Sec. III:
inclusion of vibrational contributions, estimate of the all-order
remainder both in one-loop and too-loop corrections, as well
as the inclusion of light-by-light scattering diagrams in the
two-loop correction. The total shift of the transition frequency
is +6.4 kHz, of which +5.4 kHz is due to the shifts in the
fundamental constants (+2.7 kHz for νnr , and +2.7 kHz for
the leading-order finite-size correction in να2 ), and +1.0 kHz
comes from the new contributions discussed in Secs. II and
III.

The theoretical uncertainty is dominated by the one-loop
[Eq. (12)] and two-loop [term proportional to G2 loop(1S) in
Eq. (15)] higher-order remainders (see discussion in [4]). In
the uncertainty from fundamental constants, the largest con-
tribution by far is that of the proton-to-electron mass ratio μp

(1.7 kHz and 1.1 kHz using 2014 and 2018 CODATA values,
respectively).

Theoretical frequencies for the rovibrational transitions
measured in recent experiments are presented in Table III.
They are in very good agreement with experimental results
in all cases. For the (0, 0)→ (1, 1) transition the combined
uncertainty u = 0.86 kHz (uexpt. = 0.16 kHz and utheor,spin =
0.85 kHz) is given; for the v = (3, 0)→ (3, 9) transition, the
revised experimental value from [5] is used. Numerical results
of calculations for all the contributions considered in Sec. III
(with the mα6-order relativistic correction as well) for a wide
range of rovibrational states are given in the Supplemental
Material [34].

Using these improved theoretical predictions, we give
in Table IV some updated determinations of the proton-to-
electron mass ratio from HD+ spectroscopy. We follow the
least-squares fitting procedure used in the CODATA adjust-
ments and described in Appendix E of [35]. The dependence
of HD+ transition frequencies on fundamental constants is
linearized using a first-order Taylor expansion around their
starting (CODATA18) values; first-derivative coefficients are
obtained by the methods described in [36,37]. Following the
CODATA approach, we adjust the individual particle masses
rather than mass ratios. In more detail, we use CODATA18
values of md , R∞, rd , rp; include as an additional data point
the latest measurement of the electron mass [38]; and solve
for the electron and proton masses. mp/me and its uncer-
tainty are then deduced from the adjusted values of mp and
me, taking the correlation between them into account. The
covariance matrix of the HD+ input data (see [35] for defi-
nition) is built including the three (uncorrelated) sources of
uncertainties: experimental, theoretical, and parametric; the
latter stemming from uncertainties of fundamental constants
that are not directly involved in the adjustment (md , R∞,
rd , rp). When several HD+ measurements are combined,
the following assumptions are made regarding correlations:
(i) uncorrelated experimental uncertainties, (ii) fully corre-
lated theoretical uncertainties, and (iii) correlations between
parametric uncertainties are included taking into account the

TABLE IV. Determinations of mass ratios using HD+ spectroscopy.

Data mp/me md/mp

(0, 0) → (1, 0) 1836.152 673 480(63)
(0, 0) → (1, 1) 1836.152 673 40(10)
(3, 0) → (3, 9) 1836.152 673 457(73)

HD+ 1846.152 673 466(61)

HD+/Penning 1836.152 673 454(33) 1.999 007 501 243(31)
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correlation coefficients between fundamental constants avail-
able from [39].

Values obtained in this way from each single HD+ exper-
iment are given in the first three lines of Table IV, and the
combined result from the three measurements in the fourth
line. Note that its uncertainty is only slightly reduced with
respect to that of individual lines due to strong correlation be-
tween them. The latter value, although slightly higher (by 1.4
combined standard deviations), is in good agreement with that
obtained from recent high-precision mass spectroscopy mea-
surements of mp [40], md [41], m(HD+) [41], and md/mp [42]
in Penning traps: mp/me = 1836.152 673 343(60) [38,41].

Finally, the HD+ data can be combined with the mass
spectrometry measurements and the CODATA18 values of
R∞, rd , and rp to simultaneously determine the three particle
masses, me, mp, and md . The mass ratios mp/me and md/mp

deduced from this adjustment are shown in the last line of

Table IV. Relative uncertainties of 1.8 × 10−11 (for mp/me)
and 1.6 × 10−11 (for md/mp) are obtained, improved by fac-
tors of 3.3 and 3.5 with respect to CODATA18.

In conclusion, we have presented a revised and improved
theory of spin-averaged transition frequencies in hydrogen
molecular ions. Further progress in precision now requires
calculations of nonlogarithmic mα8-order one- and two-loop
corrections.
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