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We discuss reduced-scaling strategies employing the recently introduced subsystem embedding subalgebra
(SES) coupled-cluster (CC) formalism to describe quantum many-body systems. These strategies utilize proper-
ties of the SES CC formulations where the equations describing certain classes of subsystems can be integrated
into computational flows composed of coupled eigenvalue problems of reduced dimensionality. Additionally,
these flows can be determined at the level of the CC ansatz by the inclusion of selected classes of cluster
amplitudes, which define the wave-function “memory” of possible partitioning of the many-body system into
constituent subsystems. One of the possible ways of solving these coupled problems is through implementing
procedures where the information is passed between the subsystems in a self-consistent manner. As a special
case we consider local flow formulations where the local character of correlation effects can be closely related to
the properties of subsystem embedding subalgebras employing a localized molecular basis. We also generalize
flow equations to the time domain and to downfolding methods utilizing a double-exponential unitary CC ansatz,
where the reduced dimensionality of constituent subproblems offers a possibility of efficient utilization of limited
quantum resources in modeling realistic systems.
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I. INTRODUCTION

Over the past few decades, the coupled-cluster (CC) the-
ory [1–12] has evolved into one of the most accurate and
dominant theories to describe various quantum systems across
spatial scales, hence addressing fundamental problems in
many-body physics [6,13–22] (for an excellent review of these
developments see Ref. [23]), quantum field theory [24–28],
quantum hydrodynamics [29,30], nuclear structure theory
[31–33], quantum chemistry [34–41], and material sciences
[42–52]. Many strengths of the single-reference (SR) CC
formalism or coupled-cluster methods originate in the expo-
nential parametrization of the ground-state wave function |�〉,

|�〉 = eT |�〉, (1)

where T and |�〉 correspond to the cluster operator and
reference function. For example, one can define a hierarchy
of CC approximations by increasing the rank of excitations
included in the cluster operator. Another important feature
of CC theory stems from the linked cluster theorem [53,54],
which allows one to build efficient noniterative algorithms
for higher-order excitations. When both approximation
techniques are combined, one can define efficient and accurate
methodologies that can deliver a high level of accuracy in
simulations of chemical systems [55–70]. More recently, CC
methodologies have been integrated with stochastic Monte
Carlo methods probing configurational space and leading
to near full-configuration-interaction accuracy of calculated
energies [41,71,72]. However, the applicability of canonical
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formulations of these theories (especially to large molecular
systems) may be limited by their steep (polynomial)
numerical scaling. Unfortunately, even with rapid progress in
computational technologies, problems with data locality, data
movement, and polynomial scaling of high-rank canonical
CC methods lead to insurmountable numerical problems in
modeling large systems. Although impressive progress has
been achieved in the development of local approaches for
CC pair theories [73–84], extension of these methods to
include higher-rank excitations may still requires significant
theoretical effort. Some of these problems may be addressed
by using the mature form of quantum computers; however,
due to the limited size of existing quantum registers, this can
only be achieved by developing flexible algorithms to reduce
the dimensionality of quantum problem. These problems have
been scrutinized only recently, including local and reduced-
dimensionality quantum computing formulations [85–93].

In the light of the above discussion, new high-accuracy
CC-based techniques for re-representing the quantum many-
body problem in reduced-dimensionality spaces are in high
demand. Especially interesting are approaches where the
original high-dimensionality problem can be recast in the
form of coupled low-dimensionality problems. Also, for
quantum computing algorithms, the dimensions of subprob-
lems coupled into a flow should be tunable to the available
quantum computing resources to provide, by controlling
the number of parameters processed at a given time, op-
timal utilization of computational tools such as variational
quantum eigensolvers (VQEs) [94–103]. Additionally, recent
strides made in the development of unitary CC formulations
[104–110], such as their disentangled [111] and adaptive
VQE variants [112], and qubit representations of unitary
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CC methods and exact quadratic truncation of the Baker-
Campbell-Hausdorff expansion [113,114] provide tools not
only for next-generation VQE-type solvers but also for un-
locking properties of unitary CC formulations needed in the
analysis of reduced-dimensionality methods [85,86].

In this paper we focus on the further extension of recently
introduced CC subsystem embedding subalgebra (SES) CC
[115] and double-unitary CC (DUCC) downfolding methods
[85,86]. In a natural way, these methods allow one to calculate
ground-state energies as eigenvalues of effective Hamiltoni-
ans in predefined active spaces describing subsystems of the
whole quantum system. Since in the construction of effective
Hamiltonians all out-of-active-space correlation effects are
integrated out, the CC downfolding procedures can be viewed
as natural renormalization techniques. The flow equations for
the single-reference SES CC case [115] utilize this property
for each active space involved in the flow and for this reason
can be considered as formulations that have “memory” of each
subsystem involved in the flow. Specifically, each subsystem
can be characterized by the corresponding effective Hamilto-
nian that includes interactions with other subsystems. We will
illustrate the ability of these approaches to capture the compli-
cated correlation effect and dynamics of the system, through
traversing large subspaces of the entire Hilbert space without
an unnecessary increase of the size of the numerical problem
to be solved at a given time in the flow algorithm. We will
also show that it is possible to define flows that decouple the
representation of the Schrödinger equation in large subspaces
of the Hilbert (often defined by net dimensions beyond classi-
cal or quantum computing capabilities) into smaller problems
that are numerically tractable.

This paper discusses extensions of the CC flow formalism.
Specifically, it includes the following.

(i) The arbitrary CC flow equations are explicitly proven to
be equivalent to standard CC equations with a specific form
of cluster operator.

(ii) The CC flow algorithms are extended to the time do-
main. In analogy to the previous point, we also show that
time-dependent CC flow equations are equivalent to the time-
dependent CC equations with a specific form of the cluster
operator.

(iii) The CC flow equations are extended to the localized
basis set. In this case, we demonstrate that the CC flow equa-
tions provide a rigorous definition (at the level of effective
Hamiltonians) of the so-called electron pair. This type of CC
flow in a natural way defines density matrices and higher-rank
excitations for local CC formulations. The introduction of
higher-rank excitations is a well-known problem faced by
local formulations of CC methods.

(iv) The CC flows are extended to DUCC formulations. We
discuss these flows from the point of view of quantum com-
puting applications, where DUCC flows can be used to probe
configurational spaces of the dimensions beyond dimensions
treated by existing quantum algorithms. Additionally, DUCC
flow for localized orbitals naturally addresses Hamiltonian
qubit encoding and controlling antisymmetry of the corre-
sponding wave function.

Since the operator algebra involved in the unitary CC
methods is noncommutative, extending canonical SES CC
flows to the DUCC case requires the utilization of certain

approximations. To this end, we will consider methods based
on the use of approximate Trotter formulas.

We will also discuss the difference between two computa-
tional strategies involving (a) standard approximations based
on the selection of cluster amplitudes and treating them simul-
taneously (or globally) in numerical implementations and (b)
flow equations where only a portion of selected amplitudes are
processed at the time. While the former computing approach
can take advantage of parallel classical architectures, the latter
is ideally suited for noisy intermediate-scale quantum devices,
where a small subset of fermionic degrees of freedom can be
effectively handled. The flow equation methods also provide a
conceptual foundation for introducing certain approximation
classes and eliminating possible problems with their postula-
tory character. We will illustrate these advantages using the
example of local CC methods. For simplicity, in this paper we
will focus on the CC and DUCC flow equations for closed-
shell systems.

II. SUBSYSTEM EMBEDDING SUBALGEBRA CC
FORMALISM: STATIONARY AND TIME-

DEPENDENT FORMULATIONS

The SES CC formalism is based on the observation that the
energy of CC formulations ECC, in addition to the well-known
formula 〈�|e−T HeT |�〉 (where H represents the many-body
Hamiltonian), can be obtained through diagonalization of the
whole family of effective Hamiltonians [115]. First, let us
discuss the basic tenets of the SES CC formalism. In the exact
wave-function limit, the maximum excitation level m included
in the cluster operator T is equal to the number of correlated
electrons (N) while in the approximate formulations m �
N . Several typical examples are the CC single- and double-
excitation (CCSD) (m = 2) [5], CC method with single,
double, and triple excitations (CCSDT) (m = 3) [116–118],
and CC with single, double, triple, and quadruple excitations
(CCSDTQ) (m = 4) [119,120] methods. Using second quan-
tization language, the Tk components of a cluster operator
producing k-tuple excitations when acting on the reference
function can be expressed as

Tk = 1

(k!)2

∑
i1,...,ik ;a1,...,ak

t i1...ik
a1...ak

Ea1...ak
i1...ik

, (2)

where indices i1, i2, . . . (a1, a2, . . .) refer to occupied (un-
occupied) spin orbitals in the reference function |�〉. The
excitation operators Ea1...ak

i1...ik
are defined through strings of stan-

dard creation (a†
p) and annihilation (ap) operators

Ea1...ak
i1...ik

= a†
a1

. . . a†
ak

aik . . . ai1 , (3)

where creation and annihilation operators satisfy the anticom-
mutation rules

[ap, aq]+ = [a†
p, a†

q]+ = 0, (4)

[ap, a†
q]+ = δpq. (5)

The SES CC approach is based on the particle-hole formalism
defined with respect to the reference function |�〉, where the
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quasioperators bp and b†
p are defined as

bp =
{

ap if p ∈ V

a†
p if p ∈ O

(6)

and

b†
p =

{
a†

p if p ∈ V

ap if p ∈ O,
(7)

where O and V designate sets of occupied and unoccupied
spin orbitals, respectively. Using the particle-hole formalism,
we have

bp|�〉 = 0 (8)

and

Ea1...ak
i1...ik

= b†
a1

. . . b†
ak

b†
ik

. . . b†
i1

(9)

(for applications of various quasiparticle representations and
the Bogoliubov transformation in coupled-cluster methods see
Refs. [22,121]). Additionally, the bp (b†

q) operators satisfy the
same anticommutation relations as ap (a†

q) operators, i.e.,

[bp, bq]+ = [b†
p, b†

q]+ = 0, (10)

[bp, b†
q]+ = δpq. (11)

The particle-hole formalism significantly simplifies the anal-
ysis of the CC equations. It is also easy to notice that all
excitation operators (3) commute, i.e., for

Ea1...ak
i1...ik

= a†
a1

. . . a†
ak

aik . . . ai1 = b†
a1

. . . b†
ak

b†
ik

. . . b†
i1
,

(12)

Ec1...cm
j1... jm

= a†
c1

. . . a†
cm

a jm . . . a j1

= b†
c1

. . . b†
cm

b†
jm

. . . b†
j1
, (13)

we have [
Ea1...ak

i1...ik
, Ec1...cm

j1... jm

] = 0. (14)

After substituting the ansatz (1) into the Schrödinger equa-
tion, one gets the energy-dependent form of the CC equations

(P + Q)HeT |�〉 = E (P + Q)eT |�〉, (15)

where P and Q are projection operators on the reference
function (P = |�〉〈�|) and on excited configurations (with
respect to |�〉) generated by the T operator when acting on
the reference function,

Q =
m∑

k=1

∑
i1<i2<···<ik ;a1<a2···<ak

∣∣�a1...ak
i1...ik

〉〈
�

a1...ak
i1...ik

∣∣, (16)

where ∣∣�a1...ak
i1...ik

〉 = Ea1...ak
i1...ik

|�〉. (17)

Diagrammatic analysis [10] leads to an equivalent (at the
solution) energy-independent form of the CC equations for
cluster amplitudes

Qe−T HeT |�〉 = Q(HeT )C |�〉 = 0 (18)

and an energy expression

E = 〈�|e−T HeT |�〉 = 〈�|(HeT )C |�〉, (19)

where C designates a connected part of a given operator ex-
pression. In the forthcoming discussion, we refer to e−T HeT

as a similarity transformed Hamiltonian H̄ .
The SES CC formalism hinges upon the notion of exci-

tation subalgebras of algebra g(N ) generated by Eal
il

= b†
al

bil
operators in the particle-hole representation defined with re-
spect to the reference |�〉. As a consequence, all generators
commute, i.e., [Eal

il
, Eak

ik
] = 0, and algebra g(N ) (along with

all subalgebras considered here) is commutative. The SES
CC formalism utilizes an important class of subalgebras of
commutative g(N ) algebra, which contains all possible exci-
tations Ea1...am

i1...im
that excite electrons from a subset of active

occupied orbitals (denoted by R) to a subset of active virtual
orbitals (denoted by S). These subalgebras will be designated
as g(N )(R, S). In the following discussion, we will use R and
S to denote subsets of occupied and virtual active orbitals
{Ri, i = 1, . . . , x} and {Si, i = 1, . . . , y}, respectively (some-
times it is convenient to use alternative denotation g(N )(xR, yS )
where the numbers of active orbitals in R and S orbital sets x
and y, respectively, are specified). Of special interest in build-
ing various approximations are subalgebras that include all nv

virtual orbitals (y = nv); these subalgebras will be denoted by
g(N )(xR). As discussed in Ref. [115], configurations generated
by elements of g(N )(xR, yS ) along with the reference function
span the complete active space (CAS) referred to as C (R, S)
[or equivalently C (g(N )(xR, yS ))].

Each subalgebra h = g(N )(xR, yS ) induces partitioning of
the cluster operator T into internal part [Tint (h), or Tint for
short] belonging to h and external part [Text (h), or Text for
short] not belonging to h, i.e.,

T = Tint (h) + Text (h). (20)

In Ref. [115] it was shown that if the two following criteria
are met, then h is called a subsystem embedding subalgebra
for the cluster operator T : (i) The |�(h)〉 = eTint (h)|�〉 is char-
acterized by the same symmetry properties as |�〉 and |�〉
vectors (for example, spin and spatial symmetries) and (ii) the
eTint (h)|�〉 ansatz generates full-configuration-interaction. ex-
pansion for the subsystem defined by the CAS corresponding
to the h subalgebra. For any SES h we proved the equivalence
of two representations of the CC equations at the solution: (i)
standard,

〈�|H̄ |�〉 = E , (21)

QintH̄�〉 = 0, (22)

QextH̄ |�〉 = 0, (23)

and (ii) hybrid,

(P + Qint )H̄exte
Tint |�〉 = E (P + Qint )e

Tint |�〉, (24)

QextH̄ |�〉 = 0. (25)

Here

H̄ext = e−Text HeText (26)
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and the two projection operators Qint (h) and Qext (h) (Qint

and Qext for short) are spanned by all excited configurations
generated by acting with Tint (h) and Text (h) on the reference
function |�〉, respectively. The Qint and Qext projections oper-
ators satisfy the condition

Q = Qint + Qext. (27)

The above equivalence shows that the CC energy can
be calculated by diagonalizing the non-Hermitian effective
Hamiltonian H eff defined as

H eff = (P + Qint )H̄ext (P + Qint ) (28)

in the complete active space corresponding to any SES of the
CC formulation defined by the cluster operator T , i.e.,

H eff (h)eTint (h)|�〉 = EeTint (h)|�〉 (29)

for all SESs h. Although the idea of effective Hamiltonians
has been intensively explored in the past in many areas of
physics and chemistry (see Refs. [122–153]), the SES CC
formalism enables one to build effective Hamiltonians us-
ing single-reference formulations. Moreover, it is an inherent
feature of the single-reference CC ansatz, which unlike the
multireference formulations does not assume that the wave
operator acts on the multidimensional model space and where
the corresponding effective Hamiltonian is diagonalized (as
an example see the Bloch wave operator formalism). We also
believe that Eq. (29) may be an interesting contribution from
the point of view of recently explored non-Hermitian exten-
sions of quantum mechanics [154–159].

In contrast to the energy-dependent representation of the
CC equation (15), Eq. (29) represents true eigenvalue prob-
lems corresponding to the same eigenvalue E and eTint (h)|�〉
as eigenvectors. One should also notice that (i) the non-CAS-
related CC wave-function components (here referred to as
external degrees of freedom) are integrated out and encap-
sulated in the form of H eff and (ii) the internal part of the
wave function eTint |�〉 is fully determined by diagonalization
of H eff in the corresponding CAS. Separation of external
degrees of freedom in the effective Hamiltonians is a desired
feature, especially for building its reduced-dimensionality
representation for quantum computing (QC). However, a fac-
tor that impedes the use of SES CC effective Hamiltonians
in quantum computing is their non-Hermitian character. It is
also worth mentioning that various CC approximations are
characterized by various SESs, which is a unique character-
istic of each standard CC approximation. For example, for
the restricted Hartree-Fock CC formulations g(N )(1R, yS ) and
g(N )(2R, yS ) are SESs for CCSD and CCSDTQ approxima-
tions [one should also notice that the SES for the lower-rank
CC approximation is also a SES of higher-rank CC approx-
imations, i.e., g(N )(1R, yS ) is also a SES for the CCSDTQ
approach].

Properties of SES-induced eigenvalue problems (29) can
also be utilized to design new CC approximations based on
various amplitude selection processes and recasting CC equa-
tions in a different form, which offer interesting advantages,
especially in the way corresponding equations are solved. This
fact can be illustrated using the example of the flow introduced
in Ref. [115] (see also Fig. 1). For now (without loss of

FIG. 1. Schematic representation of the CC flow. The entire
quantum system can be probed with various SES eigenvalue
problems (29) schematically represented here as B(hi ). These com-
putational blocks can be coupled into the flow, where information is
passed between various computational blocks B(hi ). Subject to the
choice of particular classes of SESs defining the flow, the CC flow
can probe or traverse a large subspace of the entire Hilbert space.

generality) we will focus on special flow involving computa-
tional blocks corresponding to g(N )(2R) subalgebras. While
the CCSD equations cannot be represented as a union of
equations corresponding to Eq. (29) for various CCSD’s SESs
g(N )(1R, yS ) (there are no SESs in the CCSD case that would
embrace doubly excited amplitudes t i j

ab where spin orbitals i
and j correspond to distinct orbitals), there exist formalisms
which can probe a significant portion of Hilbert space and are
defined by the set of equations that correspond to a union of
nonsymmetric eigenvalue problems of the type (29) for var-
ious SESs. For example, the self-consistent subalgebra flow
(SCSAF)–CCSD(2) approach (where 2 refers to the type of
SES) of Ref. [115] uses the cluster operator T defined as

T � T1 + T2 +
∑

I

Tint,3
(
g(N )

(
2RI

)) +
∑

I

Tint,4
(
g(N )

(
2RI

))
,

(30)

where T1 and T2 are singly and doubly excited cluster oper-
ators and Tint,3(g(N )(2RI )) and Tint,4(g(N )(2RI )) contain triple
and quadruple excitations corresponding to SES g(N )(2RI ).
Summation over I in (30) runs over all possible SESs g(N )(2R).
It can be shown (see Appendix A) that in this case, the global
set of CC equations

Q(e−T HeT )|�〉 = 0, (31)

where all equations are processed simultaneously in the iter-
ative process of finding the solution, can be recast (at the CC
solution) in the form of coupled equations (29) of the form

H eff (h)eTint (h)|�〉 = EeTint (h)|�〉 ∀ h = g(N )
(
2RI

)
. (32)

As shown in Fig. 2, the solution process of Eq. (31) can
be organized in the form of flow where the algebraic form of
each computational blocks B(g(N )(2RI )) represents an eigen-
value problem (29) for subalgebra g(N )(2RI ). In Fig. 2(a)
we represent flow where particular computational blocks
B(g(N )(2RI )) are communicating in series. For this purpose,
we first establish an ordering of active spaces defined by
g(N )(2RI ), in a way that reflects their importance (for ex-
ample, the first active space contains the most important
effects related to the sought electronic state). Then we de-
fine a protocol for passing information between B(g(N )(2RI ))
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FIG. 2. Two types of CC flow formulations for g(N )(2RI ) sub-
algebras: (a) serial executions and (b) parallel processing of
computational blocks (see the text for details).

including “shared” cluster amplitudes between various blocks.
This problem is caused by the fact that two distinct SESs
g(N )(2RI ) and g(N )(2RJ ) can share a single orbital and effec-
tively share all single excitations from this orbital and double
excitations exciting α and β electrons from the shared orbital.
This redundancy is very small compared to the total num-
ber of excitations defining distinct subalgebras g(N )(2RI ) and
g(N )(2RJ ). For example, there is no overlap with the largest
classes of excitations corresponding to triple and quadruple
excitations. At the solution, these redundancies are irrelevant
because the equations for shared amplitudes are the same
irrespective of the SESs eigenvalue problem (32) they are part
of. To control this effect, the common pool of amplitudes ob-
tained in the previous K steps of the ith iteration [denoted by
C(i, K )] is passed to the K + 1 computational block and exter-
nal amplitudes [needed to construct the g(N )(2RK+1 ) effective
Hamiltonian] as well as shared amplitudes that correspond
to excitations in g(N )(2RK+1 ) enter the computational block
B(g(N )(2RK+1 )) as known parameters. In this case, the algebraic
form of B(g(N )(2RK+1 )) still takes the form of an eigenvalue
problem of smaller size(

P + QX
int

)[
e−T CP

int (h)H eff (h)eT CP
int (h)

]
eT X

int (h)|�〉
= EeT X

int (h)|�〉,
h = g(N )

(
2RK+1

)
,

Tint (h) = T CP
int (h) + T X

int (h), h = g(N )
(
2RK+1

)
, (33)

where T CP
int (h) is a part of Tint (h) determined by shared am-

plitudes from the common pool of amplitudes and T X
int (h) is a

part of Tint (h) that is determined in the K + 1 computational

blocks. After Eq. (33) is solved, the C(i, K ) is updated for
the T X

int (h) amplitudes, defining in this way C(i, K + 1), and
the process is continued with the K + 2 block. After M steps,
C(i, M ) is used as a starting common pool of amplitudes
for the i + 1 iteration. In Eq. (33), the QX

int operator is the
projection operator on excited configurations generated by
T X

int (h) when acting on the reference function |�〉. In Fig. 2(b)
we see an alternative “parallel” flow where computational
blocks are independent and which corresponds to the original
eigenproblem (29) for SESs g(N )(2RI ). This step is followed by
a synchronization of all shared amplitudes by various SESs.
More details on the CC flows can be found in Appendixes A,
B, C, and D, where we discuss the equivalence of the global
representation and coupled computational blocks involved in
the flow, the time domain extension, approximate solvers for
computational blocks, and the general algorithmic structure of
the practical CC flow realization, respectively.

The CC flow equation (29) or (32) can also be viewed
as a configurational (or more aptly subspace) version of the
aufbau principle, which is a consequence of the fact that each
problem corresponding to some SES h provides a rigorous
mechanism for extending the subspace probed in a flow. In
other words, the spaces probed in each SES problem (29)
are additive. This fact is a unique feature, which should be
referred to as the subsystem memory of the CC wave func-
tion. Additionally, CC flow ensures size consistency of the
calculated ground-state energies. Similar flows cannot be eas-
ily constructed using configuration-interaction-type methods
or standard many-body perturbation techniques. We believe
that this is yet another argument in favor of nonperturbative
analysis of CC equations.

In general, flow-based CC formulations are very flexible
and allow one to use subalgebras g(N )(xR, yS ) defined by
various x and y parameters. This property may be used to in-
troduce selective groups of higher excitations and tune the cost
of flow equations to available computing resources. Although
the numerical implementation of a flow-based formalism may
be numerically less efficient than the implementation based
on the global representation, its advantage lies in the fact
that computational blocks contributing to flow are physi-
cally interpretable in terms of Schrödinger-type equations
for subsystems described by relevant SESs. This fact has
profound consequences and allows one to construct more jus-
tified (or, equivalently, less postulated) and better-controlled
approximations based on the flow equations. An interesting
illustration of this fact will be CC flow equations for localized
orbitals (see Sec. II B).

Summarizing, the flow equations as shown in Fig. 3 can
be represented in the form of the globally connected CC
equations with the cluster operator T defined as a union
of unique internal excitations of all subsystems included in
the flow. The inverse statement is also true: For specific
choices of the excitation domain included in the cluster op-
erator, the CC equations can be represented in the form
of coupled eigenvalue problems corresponding to various
subsystem embedding algebras. This statement is the foun-
dation for the reduced-scaling formulations discussed in this
paper.
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FIG. 3. Schematic representation of the equivalence between the
global representation of the CC equations and coupled SES eigen-
value problems for properly defined cluster operators (see the text
for details).

A. Time-dependent CC flows

The extension of the CC methods to the time domain
keeps attracting much attention in various fields of chemistry
and physics. Several developments in this area, including
Arponen’s seminal papers on this subject [6] (see also
Refs. [13–16,160–164]), paved the way for mature appli-
cations of these formulations to describe time-dependent
physical and chemical processes.

In Ref. [86] we demonstrated that the SES-based down-
folding techniques could be extended to the time-dependent
Schrödinger equation when all orbitals and the reference
functions |�〉 are assumed to be time independent. As in
the stationary case, we will assume a general partitioning
of the time-dependent cluster operator T (t ) into its internal
[Tint (h, t )] and external [Text (h, t )] parts, i.e.,

|�(t )〉 = eText (h,t )eTint (h,t )|�〉 (34)

for all h in the SES. For generality, we also include a phase
factor T0(h, t ) in the definition of the Tint (h, t ) operator. After
substituting (34) into time-dependent Schrödinger equation
and utilizing properties of SESs, we demonstrated that the
ket dynamics of the subsystem wave function eTint (h,t )|�〉,
corresponding to the arbitrary SES h, is given by the equation

ih̄
∂

∂t
eTint (h,t )|�〉 = H eff (h, t )eTint (h,t )|�〉, (35)

where

H eff (h, t ) = [P + Qint (h)]H̄ext (h, t )[P + Qint (h)], (36)

with

H̄ext (h, t ) = e−Text (h,t )HeText (h,t ). (37)

In analogy to the stationary cases, various subsystem compu-
tational blocks can be integrated into a flow enabling sampling
of large subspaces of Hilbert space through a number of
coupled reduced-dimensionality problems. For example, the
time-dependent variant of the SCSAF-CCSD(2) approach

uses the time-dependent cluster operator T (t ) in the form

T (t ) � T1(t ) + T2(t ) +
∑

I

Tint,3
(
g(N )

(
2RI

)
, t

)

+
∑

I

Tint,4
(
g(N )

(
2RI

)
, t

))
, (38)

which can be equivalently represented as coupled time-
evolution problems for subsystems

ih̄
∂

∂t
eTint (h,t )|�〉 = H eff (h, t )eTint (h,t )|�〉 ∀ h = g(N )

(
2RI

)
(39)

(for details see Appendix B). These equations can be solved
using flows similar to those shown in Fig. 2, with the differ-
ence that now the iterative cycles for converging amplitudes
or energy correspond to elementary time steps with increment
corresponding to �t . As in the stationary case, the time-
dependent CC flow equations represent an extension of the
subspace aufbau principle mentioned earlier, where each SES
problem (39) extends the space probed in time-dependent CC
formalism. In view of the deep analogies between stationary
CC flow equations based on the localized orbitals and local
CC formulations developed in the past few decades in quan-
tum chemistry (see the following section), the flow described
by Eq. (39) can be considered as a reduced-scaling variant of
the time-dependent CC formulations.

B. CC flows for localized orbital basis and localized subsystems

The SES CC flow formalism also systematizes and
further extends the notion of a subsystem composed of
orbital pairs. This problem has been studied intensively
in early nonorthogonal pseudonatural-orbital-based formu-
lations of configuration-interaction (CI) methods [165], the
coupled-electron-pair approximation (CEPA) [166], and their
extensions to local CEPA CC methods based on the local
pair natural orbitals (LPNOs) and their domain-based LPNO
(DLPNO) variant [77,167]. To analyze SES CC approxima-
tions, let us, in analogy to the DLPNO CC formulations,
assume that the set of selected orbital pairs (for simplicity,
we focus on the closed-shell formulations) P = {(i, j)} that
significantly contribute to the correlation energy is known.
These pairs are also employed to define pair natural orbital
(PNO) spaces and corresponding CCSD cluster amplitudes.
In the standard pair-driven DLPNO CCSD approximation
orbital pairs (i, j) [including pairs where i = j, i.e., (i, i)]
along with (i, j)-specific natural virtual orbitals are used to
select PNO spaces and relevant single and double excitations.
The (i, j)-specific density matrix defined as a second-order
Møller-Plesset-type density matrix Di j (see Ref. [40]) is used
to determine virtual PNOs in a way that only natural or-
bitals characterized by occupation numbers greater than the
user-defined threshold are retained. This leads to a signifi-
cant reduction in the size of pair-specific PNO spaces and
consequently to a significant reduction in the number of pair-
specific singly (t i

aii
) and doubly (t i j

ai j bi j
) excited amplitudes,

where virtual indices aii, ai j , and bi j are defined by reduced-
size PNOs. It should be noted that each pair (i, j) introduces
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its own set of PNO virtual orbitals, which may not be orthog-
onal to PNOs corresponding to distinct pairs.

The CC g(N )(2R) flow employing localized occupied or-
bitals in a natural way introduces several elements underlying
standard DLPNO CCSD design. Our analysis is based on the
observation that there is a natural correspondence between
orbital pairs from P (along with all virtual orbitals) with
g(N )(2R) subalgebras, where

R ≡ (i, j), (i, j) ∈ P. (40)

For brevity we will refer to these SESs as g(N )(2i j ) [(i, j) ∈
P]. Additionally, each Schrödinger-type equation in (29) or
(32),

H eff (h)eTint (h)|�〉 = EeTint (h)|�〉,
h = g(N )(2i j ), (i, j) ∈ P. (41)

naturally defines the corresponding one-body density matrix
ρ(g(N )(2i j )) and its PNOs (or DLPNOs) without any addi-
tional assumptions regarding the form and the origin of the
pair density matrix. One can readily notice that the Di j density
matrices used in original DLPNO CC papers are its low-order
approximation. This feature of SES equations (41) can be
viewed as a CC-derived systematization of the subsystem
(or pair) concepts discussed in original works of Sinanoğlu
[168,169] and Meyer and Rosmus [165,166,170].

It is worth mentioning that in contrast to the DLPNO
CCSD formalism, the g(N )(2i j ) include specific classes of
triple and quadruple excitations. This feature may be a pos-
sible way to define the balanced inclusion of higher-rank
excitations in the local CC formulations. For this purpose one
can also envision CC flows based on g(N )(xR) subalgebras with
x > 2 that employ localized orbitals.

Since each SES [g(N )(2i j )] computational block contribut-
ing to flow (41) defines its own set of PNOs, in analogy
to DLPNO CC approaches, it can be reexpressed through
its own set of PNOs and set of preselected internal ampli-
tudes (utilizing predefined thresholds). However, introducing
a threshold in the CC flow equations can be performed less
abruptly than in the existing DLPNO CC methods. In fact,
the amplitude selection process is equivalent to selecting a
subalgebra g(N )(2i j, yS ) of g(N )(2i j ) in a way that S is the
set of PNOs corresponding to occupation numbers greater
than the predefined threshold and y is the total number of
virtual PNOs selected this way. This selection induces a nat-
ural partitioning of the Tint(g(N )(2i j )) into a part belonging to
g(N )(2i j, yS ) [Tint(g(N )(2i j, yS ))] and a remaining “negligible”
part of excitations [�Tint(g(N )(2i j ))],

Tint(g(N )(2i j )) = Tint(g(N )(2i j, yS )) + �Tint(g(N )(2i j )). (42)

The controlled version of the selection step is achieved
by noticing that the effect of the negligible amplitudes
�Tint(g(N )(2i j )) can still be absorbed [using another down-
folding step within the g(N )(2i j ) CAS] in the form of
additional similarity transformation

[P + Qint (fi j )][e
−�Tint (hi j )H eff (hi j )e

�Tint (hi j )]eTint (fi j )|�〉
= EeTint (fi j )|�〉, fi j = g(N )(2i j, yS ), hi j = g(N )(2i j ),

(43)

where Qint(g(N )(2i j, yS )) is a projection operator on excited
configurations generated by the Tint(g(N )(2i j, yS )) when acting
on the reference function |�〉.

The CC flow equations can also be naturally linked to
approximate CC schemes used in studies of spin systems.
In Refs. [171,172] Bishop et al. considered a hierarchy of
approximations where excitation manifolds are defined using
the so-called subsystems defined by contiguous lattice sites,
each of which is a nearest neighbor to at least one other in the
subsystem. These subsystems can be naturally identified with
the active spaces, making CC flow equations similar to the
SUBn-m and LSUBm schemes discussed in Refs. [171,172]
As shown in the previous paragraphs, the application of CC
flows to the spin systems offers an interesting way of defining
reduced-scaling methods for quantum lattice models. This
can be achieved by selecting the essential class of excitations
(for a given subsystem) using density matrices corresponding
to subsystem’s downfolded Hamiltonians. This approach can
address problems associated with the high numerical overhead
of the highly accurate SUBn-m and LSUBm approaches. In
analogy to the seminal paper on the non-Hermitian many-
body CC formulations discussed in Ref. [173], the proposed
CC flow equation formulations indicate the advantages of
utilizing non-Hermitian formulations. Especially interesting
are CC flow formalism extensions based on the normal and ex-
tended CC formalisms for bosonic and/or fermionic systems
(see, for example, Refs. [6,13–16,173]).

Summarizing, several basic threads of DLPNO CCSD
equations are consequences of CC flow equations defined by
g(N )(2i j ) subalgebras. The local character of correlation ef-
fects is a net effect of the local character of the basis set used,
asymptotic properties of one- and two-electron interactions,
and fundamental properties of the CC formalism associated
with the CC subsystem memory. This feature allows one to
construct, in a rigorous way, Schrödinger-type equations for
subsystems (in this case, a pair of orbitals) defining the flow.
Additionally, rigorous definitions of the subsystem and the
associated wave function lead to natural definitions of the
subsystem density matrix and natural orbitals. We believe that
the CC flow equations based on the SES formalism are an
interesting tool for constructing various approximations for
correlated systems. This formulation can be universally used
in stationary formulations of canonical and local CC formu-
lations and extended to the time-dependent CC equations.
The general CC flow formalism is not limited to types of
interactions that are considered molecular systems and can
also be extended to other types of many-body interactions
encountered in chemical and physical applications.

III. SUBSYSTEM FLOWS BASED ON THE
DOUBLE-UNITARY CC REPRESENTATION

OF THE WAVE FUNCTION

We find properties of SR CC flows very appealing from the
point of view of quantum computing. Instead of considering
expensive global space approaches (as done in the majority
of existing QC formalisms) that require too many parameters
to be optimized at the same time, one could partition the
problem into smaller computational subproblems that can be
tuned to available systems of qubits. For this reason, we would
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like to adapt the SR CC ideas from previous sections to the
double-unitary CC ansatz (see Ref. [85]). While the DUCC
formalism mirrors some properties of the SES CC formal-
ism and additionally ensures the Hermitian character of the
effective Hamiltonians in C (h), due to the noncommutative
nature of the anti-Hermitian cluster operators employed by
this formalism, coupling various DUCC problems into a flow
requires several approximations, described in the following
section.

The DUCC formalism discussed in Refs. [85,86] uses a
composite unitary CC ansatz to represent the exact wave func-
tion |�〉, i.e.,

|�〉 = eσext (h)eσint (h)|�〉, (44)

where σext (h) and σint (h) are general-type anti-Hermitian
operators

σ
†
int (h) = −σint (h), (45)

σ
†
ext (h) = −σext (h). (46)

All cluster amplitudes defining the σint (h) cluster operator
carry active indices only (or indices of active orbitals defining
a given h). The external part σext (h) is defined by amplitudes
carrying at least one inactive orbital index. In contrast to the
SR CC approach, internal (external) parts of anti-Hermitian
cluster operators are not defined in terms of excitations be-
longing explicitly to a given subalgebra but rather by indices
defining active (inactive) orbitals specific to a given h. There-
fore, h will be used here in the context of the CAS’s generator.

When the external cluster amplitudes are known (or can be
effectively approximated), in analogy to single-reference SES
CC formalism, the energy (or its approximation) can be calcu-
lated by diagonalizing the Hermitian effective or downfolded
Hamiltonian in the active space using various quantum or
classical diagonalizers. An important step towards developing
practical computational schemes is to simplify the infinite ex-
pansions defining both cluster amplitudes and nonterminating
commutator expansions defining downfolded Hamiltonians.
A legitimate approximation of σext (h) and σint (h) in Eq. (44)
for well-defined active spaces is to retain lowest-order terms
only, i.e.,

σint (h) � Tint (h) − Tint (h)†, (47)

σext (h) � Text (h) − Text (h)†, (48)

which has been discussed in Ref. [85]. In particular, Text (h)
can be approximated by SR CCSD amplitudes that carry at
least one external spin-orbital index. Other possible sources
for obtaining external cluster amplitudes are higher-rank SR
CC methods and approximate unitary CC formulations such
as UCC(n) methods [105,106].

Using the DUCC representation (44), it can be shown that
in analogy to the SR CC case, the energy of the entire system
[once the exact form of the σext (h) operator is known] can
be calculated through the diagonalization of the effective or
downfolded Hamiltonian in SES-generated active space, i.e.,

H eff (h)eσint (h)|�〉 = Eeσint (h)|�〉, (49)

where

H eff (h) = [P + Qint (h)]H̄ext (h)[P + Qint (h)], (50)

with

H̄ext (h) = e−σext (h)Heσext (h). (51)

Typical approximations for the downfolded Hamiltonian uti-
lize (i) various sources for evaluation of the Text (h) operator
in (48), (ii) various lengths of commutator expansion defin-
ing the H̄ext (h) operator, (iii) various excitation ranks in the
many-body expansion of the H̄ext (h) operator, and (iv) various
molecular basis choices.

Recently, applications of QPE and VQE quantum algo-
rithms to evaluate eigenvalues of downfolded Hamiltonians
H eff (h) became a subject of intensive studies. In the case of
the VQE method, the energy functional

min
θ(h)

〈�(θ(h))|H eff (h)|�(θ(h))〉 (52)

is optimized with respect to variational parameters θ(h),
where |�(θ(h))〉 approximates eσint (h)|�〉,

|�(θ(h))〉 � eσint (h)|�〉, (53)

at the level of the quantum circuit. This approach turned out to
be very efficient, especially when “correlated” natural orbitals
are employed. The advantage of using the VQE approach is
the possibility of extracting the information about cluster am-
plitudes defining σint (h) from the optimized parameters θ(h).
This feature plays a vital role in designing DUCC subsystem
flows and ensures the mechanism of quantum information
passing between various computational blocks. In the follow-
ing analysis we will assume that the variational parameters
θ(h) correspond to cluster amplitudes in the σint (h) expansion.

DUCC flow equations: Applications in quantum computing

The DUCC flow idea is very interesting from the point
of view of its applications in quantum computing, where
a quantum computer can process computational blocks
(corresponding to either energy functional minimization or
diagonalization of the downfolded Hamiltonians). In this sec-
tion we extend the idea of the SR CC subsystem flow to the
DUCC formalism and we highlight the similarities and dif-
ferences between these two approaches. The main differences
between the SR CC and DUCC methods should be attributed
to the noncommutative nature of many-body components
defining anti-Hermitian DUCC cluster operators. This fact,
in the case of the DUCC approach, significantly impedes the
analysis of the equations and partitioning them into separate
computational blocks that can be integrated into subsystem
flow equations. However, this can be achieved with a sequence
of approximations that we describe below.

We start our analysis by assuming that we would like to
perform DUCC effective simulations for a SES h problem
(49) which is, for whatever reason, too complex or too big for
quantum processing. We will assume that external amplitudes
σext (h) can be effectively evaluated using perturbative formu-
lations. For simplicity, we will introduce a DUCC Hermitian
Hamiltonian A(h), which is defined as H eff (h), or its approx-
imation in the [P + Q(h)] space (in the simplest case it can
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FIG. 4. Schematic representation of the DUCC flow. It is as-
sumed that the most important classes of excitations required to
describe a state of interest are captured by the target active space (or
virtual space) too large for direct QC simulations and that the target
active space (corresponding to subalgebra h) can be approximated by
excitations included in smaller yet computationally feasible active
spaces corresponding to subalgebras h1, . . . , hM (see the text). The
DUCC flow combines computational blocks that correspond to vari-
ational problems associated with each subalgebra hi (i = 1, . . . , M).
The green dashed line represents the Fermi level.

be just the [P + Q(h)]H[P + Q(h)] operator). We will denote
A(h) simply by A. We will also assume that the situation where
excitations from h that are relevant to state of interest can be
captured by excitation subalgebras h1, h2, . . . , hM (see Fig. 4),
where, in analogy to the SR CC case, we admit the possibility
of sharing excitations or deexcitations between these subalge-
bras. We also assume that the number of excitations belonging
to each hi (i = 1, . . . , M) is significantly smaller than the
number of excitations in h and therefore numerically tractable
in quantum simulations. Below we will discuss the challenges
and approximations that are needed to obtain well-defined
DUCC flow equations.

The A(h) Hamiltonian and the [P + Q(h)] space can be
treated as a starting point for the secondary DUCC decom-
positions generated by subsystem algebras hi (i = 1, . . . , M)
defined above, i.e.,

Aeff (hi )e
σint (hi )|�〉 = Eeσint (hi )|�〉 (i = 1, . . . , M ), (54)

or in the VQE-type variational representation as

min
θ(hi )

〈�(θ(hi ))|Aeff (hi )|�(θ(hi ))〉 (i = 1, . . . , M ). (55)

Each Aeff (hi ) is defined as

Aeff (hi ) = [P + Qint (hi )]Āext (hi)[P + Qint (hi )] (56)

and

Āext (hi) = e−σext (hi )Aeσext (hi ), (57)

where we have defined the external σext (hi ) operator with
respect to h or [P + Qint (h)] space [i.e., cluster amplitudes
defining σext (hi ) must carry at least one index belonging to
active spin orbitals defining h and not belonging to the set of
active spin orbitals defining hi]. In other words, subalgebras
hi generate active subspaces in larger active space h, i.e.,
[P + Qint (hi )] ⊂ [P + Q(h)]. However, connecting DUCC
computational blocks (54) or (55) directly into a flow is
a rather challenging task. In contrast to the SR CC sub-
system flows where cluster amplitudes are universal for all
subalgebra-induced problems (i.e., the given amplitude car-
ries the same value across all computational blocks), the
same is no longer valid for DUCC flows. Again, this is a
consequence of the noncommutativity of the anti-Hermitian
operators defining the DUCC representation of the wave func-
tion. For example, the internal amplitude for some hi problem
may assume a value different from the same amplitude being
an internal amplitude for a different problem corresponding
to subalgebra h j (i 
= j), which means that DUCC amplitudes
explicitly depend on the subalgebra index hi (as opposed to
the SR CC flow formalism, where values of particular am-
plitudes are independent of the subalgebra index). Similar
effects could be observed in adaptive derivative-assembled
pseudo-Trotter VQE formulations [112], where amplitudes
from the excitation poll may appear multiple times carrying
various values in the wave-function expansion. An additional
problem is related to the fact that while for the SR CC flows
the effective Hamiltonians corresponding to various SESs can
be constructed exactly, for the DUCC case Aeff (hi ) can be
constructed only in an approximate way, and therefore their
ground-state eigenvalues may not be exactly equal.

To address these issues and define practical DUCC flow we
will discuss the algorithm that combines secondary downfold-
ing steps with Trotterization of the unitary CC operators. Let
us assume that the σint (h) operator can be approximated by
σint (hi ) (i = 1, . . . , M), i.e.,

σint (h) �
M∑

i=1

σint (hi ) + X (h, h1, . . . , hM ), (58)

where the X (h, h1, . . . , hM ) operator (or X for short) elim-
inates possible overcounting of the shared amplitudes. This
enables us to reexpress σint (h) as

σint (h) = σint (hi ) + R(hi ) (i = 1, . . . , M ), (59)

where

R(hi) = (i)
M∑

j=1

σint (h j ) + X (60)

with (i) ∑M
j=1 designating the sum where the ith element is

neglected. Consequently, we get

eσint (h)|�〉 = eσint (hi )+R(hi )|�〉 (i = 1, . . . , M ). (61)

Using the Trotter formula, we can approximate the right-hand
side of (61) for a given j as

eσint (h)|�〉 � (eR(hi )/N eσint (hi )/N )N |�〉. (62)
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Introducing the auxiliary operator G(N )
i ,

G(N )
i = (eR(hi )/N eσint (hi )/N )N−1eR(hi )/N (i = 1, . . . , M ),

(63)
the internal wave function (61) can be expressed as

eσint (h)|�〉 � G(N )
i eσint (hi )/N |�〉 (i = 1, . . . , M ). (64)

One should recall that G(N )
i is a complicated function of all

σint (h j ) ( j = 1, . . . , M) and the above expression does not
decouple σint (hi ) from the G(N )

i term. However, this expression
may help define a practical way of determining computational
blocks for flow equations. To see this, let us introduce the
expansion (64) to Eq. (49) [with H eff (h) replaced by the A
operator], premultiply both sides by [G(N )

i ]−1, and project
onto [P + Qint (hi )] subspace, which leads to the nonlinear
eigenvalue problem

[P + Qint (hi )]
[
G(N )

i

]−1
AG(N )

i eσint (hi )/N |�〉
� Eeσint (hi )/N |�〉 (i = 1, . . . , M ). (65)

We will utilize this equation as a computational block for the
DUCC flow. To make practical use of Eq. (65) let us lin-
earize it by defining the downfolded Hamiltonian �

(N )
i , �(N )

i =
[P + Qint (hi )][G

(N )
i ]−1AG(N )

i [P + Qint (hi )], as a function of
all σint (h j ) ( j = 1, . . . , M) from the previous flow cycle(s)
p. We will symbolically represent this by using a special
symbol for the �

(N )
i effective Hamiltonian, i.e., the �

(N )
i (p)

Hamiltonian. Now we replace eigenvalue problems (65) by
optimization procedures described by Eq. (55), which also
offer an easy way to deal with shared amplitudes. Namely, if
in analogy to SR CC subsystem flow we establish an ordering
of hi subalgebras, with h1 corresponding to the CAS closest
to the wave function of interest, then in the hi problem we
partition [in analogy to Eq. (33)] a set of parameters θN (hi )
into a subset θCP

N (hi) that refers to a common pool of am-
plitudes determined in the preceding steps [say, for h j ( j =
1, . . . , i − 1)] and a subset θX

N (hi) that is uniquely determined
in the hi minimization step, i.e.,

min
θX

N (hi )

〈
�

(
θX

N (hi ), θ
CP
N (hi )

)∣∣�(N )
i (p)

∣∣�(
θX

N (hi), θ
CP
N (hi )

)〉

(i = 1, . . . , M ), (66)

where |�(θX
N (hi ), θ

CP
N (hi ))〉 approximates eσint (hi )/N |�〉. In this

way, each computational block coupled into a flow cor-
responds to a minimization procedure that optimizes the
parameters θX

N (hi ) using quantum algorithms such as the VQE
approach. At the end of the iterative cycle, once all amplitudes
are converged, in contrast to the SR CC flows, the energy
is calculated using the h1 problem as an expectation value
of the converged �

(N )
1 operator. The DUCC flow is com-

posed of classical computing steps, where the approximate
second-quantized form of the �

(N )
i (p) operators (at the cost

of additional similarity transformations or their approximate
variants in small-size active space) is calculated, and quantum
computing steps, where cluster amplitudes are determined
using the VQE algorithm. The discussed formalism introduces
a broad class of control parameters, which define each com-
putational step’s dimensionality. These are the numbers of
occupied (unoccupied) active orbitals defining hi subalgebras

xRi (ySi ). Similar results can be obtained by using the Zassen-
haus formula. Moreover, the present formalisms, in analogy
to the SR CC flows, can be extended to the time domain.

An essential feature of the DUCC flow equation is asso-
ciated with the fact that each computational block (66) can
be encoded using a much smaller number of qubits compared
to the full size of the global problem. In fact, the maximum
size of the qubit register Q(mmax) required in DUCC quantum
flow is associated with the maximum size of the subsystem
and not with the size of the entire quantum system of interest

Q(mmax) � Q(g(N ) ), (67)

where Q(g(N ) ) is the total number of qubits required to
describe the whole system. This observation significantly
simplifies the qubit encoding of the effective Hamiltonians
included in quantum DUCC flows, especially in formulations
based on the utilization of the localized molecular basis set as
discussed in Sec. II C (for early quantum algorithms exploit-
ing locality of interactions see Ref. [174]).

IV. CONCLUSION

This paper discussed the properties of SR CC subsystem
flow equations stemming from the SES CC formalism for
restricted Hartree-Fock reference functions. It was shown that
flow equations define an alternative (to the canonical formu-
lations) way of introducing selected classes of higher-rank
excitations based on system partitioning or choice of sub-
system excitation subalgebras corresponding to various active
spaces. An essential feature of the SR CC flow lies in the fact
that flow equations can be built upon g(N )(xR, yS ) subalgebras
with xR and yS chosen in a way that makes the flow tunable
to available computational resources. We also demonstrated
that the idea of CC flow naturally extends to the time do-
main, offering a possibility of performing calculations for the
quantum system’s time evolution affordably. Interestingly, the
ideas behind SES CC and SR CC subsystem flows can also
provide a deeper understanding of local CC formulations and
the concept of locality of correlation effects. As explained in
Sec. II B, the SR CC flows based on the utilization of local
molecular orbitals provide a rigorous way of defining the
subsystem through the effective Hamiltonian corresponding
to the (i, j)-determined SES g(N )(2i j ). The (i, j)-pair density
matrix can be further used to calculate pair natural orbitals and
select leading excitation as postulated in the DLPNO CCSD
formulations. We believe that the SR CC flows defined by
larger active spaces also provide a natural way of introducing
higher-rank excitations, although maintaining linear scaling
of the resulting local CC formulation may not be possible.
On the other hand, following the SR CC flow philosophy for
localized orbitals, although numerically more expensive, may
help in reestablishing the desired level of accuracy in pertur-
bative (noniterative) energy corrections due to the higher-rank
cluster excitations.

Due to the noncommutative nature of the general type
of unitary CC formulations, the direct extension of SR CC
subsystem flows to DUCC-type flow is a rather challenging
endeavor. However, utilizing the Trotter formula in downfold-
ing procedures leads to computationally feasible algorithms.
In the quantum computing variant, the flow represents a
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sequence of coupled Hermitian eigenproblems, where diago-
nalization is replaced by the VQE-type optimization to obtain
a corresponding subset of amplitudes. In this formulation, the
flow of quantum information corresponding to shared or exter-
nal amplitudes (defined for a given subsystem) can be easily
implemented at the level of the quantum circuit. In analogy to
the SR CC flows, the DUCC flows can be tuned to the avail-
able quantum resources. As such, the DUCC flows offer an
interesting possibility of decomposing large-dimensionality
problems into a collection of reduced dimensionality com-
putational blocks. We believe that the DUCC flow methods
can significantly extend the limits of system-size tractabil-
ity in quantum simulations. It should also be stressed that
the SR CC or DUCC flow methods allow one to enlarge the
size of the probed space systematically while retaining the
size extensivity of the energies calculated in this way. This
feature is especially important in applications of DUCC flows
to chemical reactions and extended systems.

An exciting feature of the SES CC formalism and CC flows
is their universal character irrespective of the particular form
of interactions defining correlated many-body systems.
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APPENDIX A

In this Appendix we will analyze properties of the CC flow
equations. Let us assume that flow equations involve M eigen-
value problems defined by subalgebras {hi}M

i=1. For generality,
let us also assume that each eigenvalue problem yields its own
value of ground-state energy E (hi ) [see Eq. (32)],

H eff (hi )e
Tint (hi )|�〉 = E (hi )e

Tint (hi )|�〉 (i = 1, . . . , M ).

(A1)

The ith computational block can be written in the form

[P + Qint (hi )][e
−Text (hi )HeText (hi ) − E (hi )]e

Tint (hi )|�〉 = 0,

(A2)

where the Text (hi ) operator contains excitations from all re-
maining cluster operators Tint (h j ) ( j = 1, . . . , M; j 
= i) not
belonging to the set of excitations defining the Tint (hi ) opera-
tor. After introducing the resolution of identity

e−Tint (hi )eTint (hi ) = 1 (A3)

right to the projection operator [P + Qint (hi)] in Eq. (A2) one
obtains

[P + Qint (hi )]e
Tint (hi )[e−T HeT − E (hi )]|�〉 = 0, (A4)

where

T = Tint (hi ) + Text (hi ). (A5)

It should be stressed that the T operator is not carrying an
index of any subalgebra and T is defined as a sum of unique
excitations defining {Tint (hi )}M

i=1 operators. We will symboli-
cally represent T as a union of unique excitations originating
in various Tint (hi ),

T =
M⋃

i=1

Tint (hi). (A6)

This is a consequence of the CC flow definition. Given the fact
that the operator eTint (hi ) is nonsingular and that

[P + Qint (hi )]e
Tint = [P + Qint (hi )]e

Tint [P + Qint (hi)], (A7)

the eigenvalue problem is equivalent at the solution to

[P + Qint (hi)][e
−T HeT − E (hi )]|�〉 = 0 (A8)

or in the “standard” form of CC equations

[P + Qint (hi )][e
−T HeT ]|�〉 = 0, (A9)

E (hi ) = 〈�|e−T HeT |�〉 = E . (A10)

Using Eqs. (A9) and (A10), one can draw the following con-
clusions.

Conclusion 1. The CC flow equations (A1) at the solution
are equivalent to the standard connected CC equations for the
T cluster operator.

Conclusion 2. All converged ground-state eigenvalues
E (hi ) of computational blocks given by Eq. (A2) are equal and
at the solution assume the value of CC energy E calculated
using the standard formulation for the T cluster operator.

Conclusion 2 indicates that all energies E (hi ) from the
onset of the iterative solution of the flow equations can be
assumed to be equal, which allows rewriting Eq. (A1) as

H eff (hi )e
Tint (hi )|�〉 = EeTint (hi )|�〉 (i = 1, . . . , M ). (A11)

The final remark concerns the size of the subspace sam-
pled by our flow equations, which is defined by excitations
included in the T cluster operator. For the CC flow defined
by all possible g(N )(2Ri ) subalgebras, the T operator contains
all singles, doubles, and subsets of triple and quadruple ex-
citations as shown in Eq. (30). For the CC flow defined by
all g(N )(3Ri ) subalgebras, the T operator contains all singles,
doubles, triples, and subsets of quadruples, pentuples, and
hextuples. The CC flows equations also offer flexibility in
choosing subalgebras involved in the flow, for example, the
flow can involve various g(N )(xRi , ySi ) subalgebras. As long
as T is defined by unique excitations of the internal cluster
operators corresponding to the subalgebras involved in the
flow, conclusions 1 and 2 are still valid.

APPENDIX B

The analysis in Appendix A can be extended to the CC
flows in the time domain, where the flow is composed of
coupled time-dependent CC equations

ih̄
∂

∂t
eTint (hi,t )|�〉 = H eff (hi, t )eTint (hi,t )|�〉 (i = 1, . . . , M ).

(B1)
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For a given subalgebra hi time-dependent equations can be
cast in the form (we assume that spin orbitals are time inde-
pendent)

ih̄[P + Qint (hi )]
∂

∂t
eTint (hi,t )|�〉 = H eff (hi, t )eTint (hi,t )|�〉.

(B2)
By expanding H eff (hi, t ), Eq. (B2) can be rewritten as

[P + Qint (hi )]e
Tint (hi,t )[P + Qint (hi )]{

ih̄
∂

∂t
T (t ) − e−T (t )HeT (t )

}
|�〉 = 0, (B3)

where T (t ) is defined as

T (t ) =
M⋃

i=1

Tint (hi, t ). (B4)

Using a matrix representation of the Tint (hi, t ) operator in the
hi-generated CAS denoted by T int (hi, t ), we get

det(eT int (hi,t ) ) = eTr[T int (hi,t )] = 1 (B5)

for arbitrary time t . This is a consequence of the fact that
T int (hi, t ) is a lower diagonal matrix with zeros on the
diagonal. Therefore, Eq. (B1) is equivalent to standard time-
dependent equations

[P + Qint (hi )]

{
ih̄

∂

∂t
T (t ) − e−T (t )HeT (t )

}
|�〉 = 0. (B6)

Following the same reasoning as in Appendix A, we can state
the following.

Conclusion 3. The time-dependent CC flow approach (B1)
is equivalent to the standard representation of the time-
dependent CC equations defined by the T (t ).

APPENDIX C

In this Appendix we discuss properties of the CC flows
defined by approximate methods for solving computational
blocks (A1). First, let us assume that the Tint (hi ) (defined by
excitation level mi) is approximated by the operator T (A)

int (hi),
which is by defined by excitations of maximum rank m(A)i

[m(A)i < mi]. In this case, to obtain working equations for
T (A)

int (hi ) amplitudes, we will project Eq. (A2) for a given hi

onto P + Q(A)
int (hi ), where Q(A)

int (hi ) is a projection operator on
excitations generated by T (A)

int (hi ) when acting on |�〉, i.e.,
[
P + Q(A)

int (hi )
]
[H eff (hi ) − E ]eT (A)

int (hi )|�〉 = 0, (C1)

where the full projection operator Qint (hi ) can be partitioned
as

Qint (hi ) = Q(A)
int (hi ) + R(A)

int (hi ). (C2)

Equation (C1) can be now rewritten in the form[
P + Q(A)

int (hi )
]
[H eff (hi ) − E ]

[
Q(A)

int (hi ) + R(A)
int (hi )

]
× eT (A)

int (hi )|�〉 = 0, (C3)

which clearly shows that truncating the full form of Tint (hi )
results in equations that, due to the presence of the R(A)

int (hi )-
dependent term, no longer represent the eigenvalue problem.
A similar form of nonlinear eigenvalue representation of

CC flow has been analyzed by Živković and Monkhorst in
Ref. [175]. Nevertheless, using reasoning similar to that in
Appendix A, it can be shown that even in the case of stan-
dard approximations, Eq. (C1) can be recast in the standard
connected form[

P + Q(A)
int (hi )

]
e−T (A)

HeT (A) |�〉 = 0, (C4)

E = 〈�|e−T (A)
HeT (A) |�〉, (C5)

where

T (A) =
M⋃

i=1

T (A)
int (hi ). (C6)

APPENDIX D

In this Appendix we focus on details of the numerical
realization of the CC flow shown in Fig. 2. Without loss of
generality, we focus on the serial flow shown in Fig. 2(a). The
following steps are involved in the iterative process.

Step 1. Defining subalgebras or active spaces forming the
flow. In this step we define a set of active spaces corresponding
to subalgebras hi (i = 1, . . . , M). In the flow we solve for the
cluster operator T , T = ⋃M

i=1 Tint (hi ).
Step 2. Ordering of active spaces. In serial flows, an im-

portant step is associated with establishing the importance
of active spaces. For example, this can be achieved using
values of the second order of many-body perturbation theory
correlation energy contributions in active spaces included in
the flow.

Step 3. Initialization of the T operator. For this purpose we
can use simple perturbative or low-rank CC approximations
(CCSD).

Step 4. Solving eigenvalue problems for active spaces. In
this step we solve for the Tint (hi ) update by diagonalizing
e−Text (hi )HeText (hi ) in the corresponding active space [Text (hi ) =
T − Tint (hi )]. In this step, the resulting CI-type coefficients
have to be transformed, using cluster analysis, to the Tint (hi )
amplitudes.

Step 5. Update of the global T operator. All Tint (hi ) (i =
1, . . . , M) define a new T operator.

Step 6. Convergence check. If the T operator satisfies con-
vergence criteria, the final value of the correlation energy is
calculated using either the standard CC energy expression or
diagonalizing any of the effective Hamiltonians involved in
the flow. If it does not, we repeat the procedure from step 4.

The peak computational cost of the CC flow is defined
by the maximum-size active-space problem (Cmax). Therefore,
the cost per iteration is proportional to M × Cmax. The CC
flow equation approach offers flexibility in the choice of the
number of active spaces (M) and their size (Cmax), thus pro-
viding a framework where the resulting computational model
is tuned to available computational resources.

It is also instructive to analyze the numerical cost of
solving each computational block with approximate methods
such as CCSDT or CCSDTQ (see Appendix C). Without
loss of generality, let us assume a CC flow defined by
g(N )(3Ri , ySi ) (i = 1, . . . , M) problems. We assume that for
each i = 1, . . . , M the number of active virtual orbitals is the
same and equals y. For the CCSDT solver the upper bound for
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the numerical cost of the flow FCCSDT is given by the follow-
ing formula, which is obtained by analyzing the contributions
from the the most expensive terms:

FCCSDT � α × M ×
(

y

3

)
× n2

v. (D1)

Using the CCSDTQ solver for the same type of flow, the
numerical cost of the upper bound FCCSDTQ is given by the

formula

FCCSDTQ � β × M ×
(

y

4

)
× n2

v. (D2)

In (D1) and (D2), α and β are constant prefactors. Both upper
bounds depend on M and y, whose values can be chosen to
match available computational resources and/or provide the
desired level of accuracy.
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