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Long-range two-hybrid-qubit gates mediated by a microwave cavity with red sidebands

J. C. Abadillo-Uriel,"? Evelyn King ©,3 S. N. Coppersmith,'* and Mark Friesen ®'
' Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2JRIG-MEM-LSIM, CEA, Université Grenoble Alpes, 38000 Grenoble, France
3Microsoﬁ Quantum, 1 Microsoft Way, Redmond, Washington 98052, USA
4School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

® (Received 21 June 2021; accepted 9 September 2021; published 27 September 2021;
corrected 29 September 2021 and 18 March 2024)

Implementing two-qubit gates via strong coupling between quantum-dot qubits and a superconducting mi-
crowave cavity requires achieving coupling rates that are much faster than decoherence rates. Typically, this
involves tuning the qubit either to a sweet spot, where it is relatively insensitive to charge noise, or to a point
where it is resonant with the microwave cavity. Unfortunately, such operating points seldom coincide. Here
we theoretically investigate protocols, based on transverse or longitudinal sideband driving, for implementing
two-qubit gates between quantum-dot hybrid qubits, mediated by a microwave cavity. The rich physics in these
qubits gives rise to two types of sweet spots, which can occur at operating points with strong charge dipole
moments. Such strong interactions provide new opportunities for off-resonant gating, thereby removing one of
the main obstacles for long-distance two-qubit gates. We find that the transverse driving scheme yields faster
gates, while longitudinal driving yields gates that are more resilient to photon decay. Our results suggest that
the numerous tuning knobs of quantum-dot hybrid qubits make them good candidates for strong coupling. In
particular, we show that off-resonant red-sideband-mediated two-qubit gates can exhibit fidelities greater than
95% for realistic operating parameters, and we describe improvements that could potentially yield gate fidelities

greater than 99%.
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I. INTRODUCTION

Semiconductor-based quantum technologies are among the
most promising platforms for large-scale universal quantum
computing [1,2]. Their key strengths include the possibility of
leveraging advances in the semiconductor electronics indus-
try, a highly adaptable design space that enables a wide variety
of qubits and gating schemes [3—-6], attractive material proper-
ties, and the potential to modify and improve qubit coherence
[7-10]. Over the past 20 years, many experiments have sought
to exploit these strengths, and high-fidelity single-qubit gates
have been demonstrated [7,11,12].

Recent progress has also made it possible to improve
the fidelity of two-qubit gates, including short-range gates
between nearest neighbors [13—16] and long-range gates op-
erating over much greater distances [17,18]. Short-range gates
typically exploit either capacitive coupling [5,15] or exchange
interactions [2], while long-range gates exploit spin shuttling
[19,20] or microwave cavities [21-24]. In all cases, gate fi-
delities are improved by increasing the interqubit coupling
strength while minimizing the effects of environmental noise.
Here we focus on long-range gates between qubits coupled
through a microwave cavity. Experimentally, such technology
has already been used to achieve strong coupling between
microwave photons and single-spin qubits [18,25-27]. The re-
sulting interqubit coupling speed is proportional to the charge
dipole moment of the qubits. Hence, any qubits that can
be manipulated quickly, via microwave electric fields, are
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also good candidates for coupling to a microwave resonator
[28,29].

In this work we focus specifically on quantum-dot hybrid
qubits (QDHQs) [6,30,31]. The QDHQ is controlled fully
electrically and does not require the presence of magnetic
fields or magnetic-field gradients that can interfere with the
operation of a superconducting cavity. It can be tuned into a
charge-qubit working regime, where it has a strong dipole mo-
ment but exhibits short coherence times [32], or a spin-valley
qubit regime, where the qubit has a weaker dipole moment
but is better protected from the environment [33]. Microwave
gating of the QDHQ yields high-fidelity single-qubit gates
[11,33]. Moreover, the QDHQ has many tuning knobs that can
be adjusted to improve gate fidelities [34]. The qubit therefore
shows promise for strong coupling to a microwave cavity.

To theoretically explore the coupling between a QDHQ and
a microwave cavity, we map out the most interesting working
regimes and estimate their two-qubit gate fidelities. Our cal-
culations indicate that it is most promising to use red-sideband
transitions, which can be implemented between a qubit and a
resonator while remaining off-resonance [35-38]. We propose
a particular pulse sequence formed of only Z rotations and
red-sideband transitions, which allows us to perform effective
two-qubit controlled-Z (Cz) gates between distant qubits with-
out requiring blue sidebands or intermediate leakage states,
in contrast with Refs. [39—41]. We explore the possibility
of driving these gates using any one of the available tuning
knobs for QDHQs: the double-dot detuning parameter, the
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tunnel coupling, or the valley splitting. As is the case for
any qubit implementation, each of these methods has its own
strengths and challenges. We describe the potential benefits of
each scheme, concluding that fidelities above 95% should be
achievable for current state-of-the-art devices. Moreover, as-
suming reasonable advances in device technology, we predict
that fidelities above 99% should be within reach.

The paper is organized as follows. Section II introduces a
model two-level qubit, which allows us to describe the physics
of longitudinal and transverse driving more pedagogically. We
then adapt the model more specifically to the case of QDHQs.
In Sec. III we describe the simulation methods used to char-
acterize our two-qubit gates. In Sec. IV we present the results
of gate simulations. In Sec. V we discuss the applicability and
prospects for the proposed gating schemes.

II. MODEL

In this section we describe our theoretical model for QD-
HQs coupled to a superconducting cavity. To clarify the
difference between transverse and longitudinal driving, we
begin by considering a generic two-level system defined by
the Hamiltonian H, = (fiw,/2)o,, where w, is the qubit fre-
quency and o, is a Pauli matrix. We also describe the cavity
as a quantum harmonic oscillator with the Hamiltonian H, =
hw,ata, where w, is the resonator frequency and a’ (a) is the
microwave photon creation (annihilation) operator. Both the
cavity and the qubits are subject to decoherence: Photons leak
out of the cavity at a rate x, while the decoherence rate of
the qubit depends on the specific qubit implementation, as
well as the tuning and driving mechanisms. We then adapt
our model to the specific case of QDHQs and identify the
sweet-spot working regimes at which qubit decoherence rates
are minimized. Finally, we describe appropriate Hamiltonians
and protocols for coupling the qubits through a resonator.
Numerical simulations of the two-qubit gates are described
in later sections of the paper.

A. Two-qubit gates

We first describe the qubit-cavity coupling schemes con-
sidered in this work. The simplest schemes do not involve
microwave driving: The qubit is tuned either into resonance
with the cavity or away from resonance (i.e., dispersively). We
have simulated both of these cases for QDHQs, obtaining poor
gate fidelities: Resonant coupling causes excessive leakage
in the form of multiphoton excitation of the resonator, while
dispersive coupling is too slow, causing qubit decoherence.
After exploring a wide range of parameters, we were not
able to find an acceptable operating regime for such undriven
qubits. We therefore do not report those results here. Instead,
we focus on microwave driving.

We consider several protocols based on microwave driving
of the qubits. These schemes may be implemented resonantly
or dispersively, similar to undriven gates. In the resonant
case, the qubit and cavity states are strongly hybridized, and
the main challenge for coherent operation is photons leaking
out of the cavity at the rate x. This process, known as Pur-
cell decay, causes the qubit to decohere at the rate ypyrcen =
&k /(A + k?/4), where Fig is the effective qubit-cavity cou-

pling and iA = hw, — hw, is the qubit-cavity detuning [42].
Purcell decay can be suppressed by simply detuning the qubit
away from the cavity. Although this reduces gate speeds, we
can compensate by driving the qubit. In the context of QD-
HQs, we have considered several such driving protocols. Here
we focus on the one that is found to yield the highest two-
qubit gate fidelities, a red-sideband scheme [38], for which
the native gates are CZ.

The gates considered here can be divided into two cate-
gories, transversely vs longitudinally driven, depending on the
form of qubit driving. In the present subsection, we describe
generic driving Hamiltonians, which can be applied to many
different types of qubits. In the next subsection, we specialize
to the case of QDHQs.

1. Transversely driven gates

Sideband transitions provide a versatile tool for imple-
menting gates between quantum-dot spin qubits [38]. In this
case, the qubits and cavity are intentionally detuned by A, to
suppress the Purcell effect. Such detuning naturally reduces
the effective interaction strength; however, by driving one
of the qubits at the Rabi frequency Qr = £A, red- or blue-
sideband transitions are obtained, as depicted in Fig. 1(b).
We note that the red-sideband transition induces an exchange
of excitations between the qubit and resonator of the form
|04, 1,) <> [1,4,0,), while the blue sideband induces doubly
excited transitions 0,4, 0,) < |14, 1,).

To explore this scheme further, we first consider the un-
driven Hamiltonian

; haw, i
Hgoic = hwra'a + T o, + ligla +a')oy, ()

where the qubit-resonator coupling /ig(a + a")o, is appropri-
ate for an electrostatically coupled quantum-dot charge qubit
[38]. For simplicity, we have included only one qubit in this
expression, since only one qubit at a time couples to the res-
onator in the two-qubit protocols considered here. However,
the coupling parameter g is tunable, as we discuss below;
therefore, if desired, multiple qubits could be coupled in series
to the same resonator, via the same Hamiltonian.

Next, we add a transverse driving term, which couples to
the o, spin component of the qubit:

i o i
Hgriven = hw,a'a + TUZ + hg(a + a')o,

+ dyA(t) cos(wt + ¢)oy. 2)

Here A(?) is the envelope of the drive, expressed in units of
energy, do; is the dimensionless transverse dipole moment
(defined below), w is the frequency of the drive, and ¢ is its
phase. The physical mechanism generating the drive depends
on the type of qubit and will be specified for QDHQs later
in this section. If the qubit is driven resonantly (w = w,), the
corresponding Rabi frequency is given by Qg = dy1A/h.
Sideband transitions are achieved by choosing special val-
ues for the driving amplitudes, as depicted in Fig. 1(b). To
see this, we move to a frame that is corotating at the driving
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FIG. 1. Schematics of methods for coupling qubits via a resonator. (a) Cartoon depiction of the static qubit-cavity coupling scheme. For
resonant coupling, two qubits with frequencies w,; and w,, are tuned to be in resonance with each other and with the resonator at frequency w,..
Interactions between the qubits and the resonator photons /igo(a + a') with bare coupling frequency g are indicated by orange (curved) arrows.
Photon loss with cavity decay rate « is indicated by red (wavy) arrows. Two-qubit gates based on static coupling have relatively low fidelities:
Resonant gates suffer from photon leakage while dispersive gates are slow. (b) Cartoon depiction of sideband driving schemes for two-qubit
gates. One of the qubits is driven, yielding Rabi oscillations (wavy purple lines) of frequency Q. When Qg equals the qubit-cavity detuning
A = w,; — w,, a red sideband transition occurs (short red arrow), and when Qr = —A, a blue sideband transition occurs (long blue arrow).
(c) Cartoon depiction of a quantum-dot hybrid qubit electrostatically coupled to a superconducting cavity. The QDHQ model parameters
include the double-dot detuning bias ¢, the tunnel couplings 7; and 1,, and the singlet-triplet splitting of one of the dots Egr. (d) The three
lowest energy levels of a QDHQ as a function of detuning. The two lowest states span the qubit subspace. The two anticrossings are associated
with the tunnel couplings 7; and 7,. For large positive detuning, the qubit frequency tends to Esr. The insets depict the ground-state charge

configurations in the asymptotic detuning regimes.

frequency @ = w, as defined by the transformation [38]

gl . +

U@)=-exp <—170Z — i(wyt)a a). 3)
The resulting Hamiltonian has a form similar to Eq. (1), with
an effective cavity frequency given by w,..;r = A and an effec-
tive qubit frequency given by w, . = Qg. Thus, by adjusting
the Rabi frequency such that Qr = £A, we can bring the
qubit into resonance with the cavity, inducing a qubit-photon
transition. Moving to a frame rotating at frequency Qp = A
and applying a rotating-wave approximation, we obtain the
effective interaction for the red-sideband (—) transition [43]

I
H =~ g(t)
2

(o100 + e Pogia’), )
where we define o) = o4 and 019 = o_. For Qg = —A, we
obtain the effective interaction for the blue-sideband (+) tran-
sition

hg(t . )
~ ﬁ(e”‘/’a]ocﬁ + ¢“0p1a).

H, )
We see that H_ contains the conventional rotating terms of the
cavity coupling, while H, contains the counterrotating terms.

By driving the qubit in this way for time ¢, we obtain the
unitary gate operations S_(gt, ¢) = e~ -!/" or S (gt, ¢) =
e iH+1/h The corresponding gate times are 7, o 1/g. Com-
pared to gate times f, < A /g* for conventional dispersive
gates, we find that sideband gating has a clear speed advan-
tage. Indeed, typical sideband gate speeds are on the order of
tens of nanoseconds, on par with resonant gates. In contrast
with resonant gates however, the Purcell effect is strongly
suppressed for sideband gates, because they are dispersive.
Additionally, we note that, since A(t) is easily tuned, the side-
band resonance constraint A = +Qp is much less restrictive
than the conventional resonance constraint for undriven gates

(wg = @y).

A composite sequence based on the elemental gates S_ and
S+ has previously been proposed for Cz gates [38]. To sim-
plify this protocol, we propose here a different gate sequence,
involving just red-sideband transitions and single-qubit gates

Ue = Z“)(—%)z@)(%)S‘f’(n, )

x50(2.0)s0(nv2, 2503 7) sV, 00,
(©6)

where Z()(0) is a Z rotation of angle 6, acting on qubit j,
and qubit indices are also included for the sideband gates
S(_j)(gt, ¢). Neglecting the Z rotations, which are very fast, we
estimate the resulting Cz-gate time to be tc, ~ (3 4+ +/2)1 /g,
which is the same as for the previously studied red- and
blue-sideband protocol. By eliminating the blue-sideband
transitions however, the sequence becomes especially attrac-
tive for implementations where blue sidebands are slower than
red sidebands [36,37].

2. Longitudinally driven gates

The qubit may alternatively be driven by coupling to the o,
component of the spin. This is equivalent to driving the qubit
energy splitting and is referred to as longitudinal or parametric
driving. As for transverse gates, the scheme can also be used
to implement red-sideband transitions between a qubit and a
superconducting cavity [36,37].

To describe the coupling, we add a driving term to the
qubit frequency in Eq. (1), w,(t) = @, + (Sw/2) cos(wt + ¢),
where @, is the average frequency of the qubit, dw is the
driving amplitude, and w is the longitudinal driving frequency.
The driving Hamiltonian then becomes

hog (1)
2

Hgtiven = hwraTa + ( )Uz + hgla + (1+)Ux. (N
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Moving to a frame defined by

gl Sw ) :
Ut)=exp|—i—o0;, —i— cos(wt + @)o, —i(w,t)a'a ],
2 2w
3)

we find that the effective interaction for a longitudinally
driven red-sideband transition is given by

oo
S . .
H ~ th [(—i)”Jn(f)e’“"“—“*’%*om + Hc}
n=0

where we have used the Anger-Jacobi expansion [44]. Here
the approximate equality indicates that we have dropped the
counterrotating (blue-sideband) terms in the expression; we
have verified that this approximation is accurate in the operat-
ing regimes of interest for this work. As before, the interaction
between the qubit and the resonator is dispersive; however, the
coupling can now be initiated by applying a driving frequency
nw = A (a red-sideband constraint), yielding a renormalized
coupling of strength %igJ,,(§w/w). The optimal (i.e., strongest)
interaction is obtained when w = dw/1.84, corresponding to
the n = 1 term of the Anger-Jacobi expansion. We do not
consider the n = 0 term here because it gives a significant
blue-sideband contribution that complicates the qubit dynam-
ics. A Cz gate is then obtained using the sequence given in
Eq. (6).

B. Quantum-dot hybrid qubits

The effective qubit-resonator coupling g determines the
two-qubit gate speed. It is the product of the bare coupling gy,
which depends on the device geometry, and the charge-dipole
matrix element, which depends on the choice of qubit and the
tuning of the device. The qubit dephasing rate also depends on
these same parameters. To weigh these two competing effects,
we must consider a specific qubit model. Here we describe a
minimal Hamiltonian for the QDHQ and use it to compute
g. In the following section we use the same Hamiltonian to
characterize the QDHQ dephasing.

The QDHQ is formed in a double-quantum dot with three
electrons [6,30]. Denoting by (n, m) the charge configura-
tion with n electrons in the left dot and m electrons in the
right dot, we define ¢ as the energy difference or detun-
ing between the (1,2) and (2,1) configurations, with ¢ =0
corresponding to the degeneracy point. Note here that the
double-dot detuning ¢ is different than the qubit-cavity detun-
ing A. In addition to charge, the system also has a spin degree
of freedom, and the lowest excitation energy for a given
charge configuration is approximately equal to the singlet-
triplet splitting Egt of the dot containing two electrons. Here
we adopt the convention that ¢ < O represents the tuning
regime for which the ground-state splitting is largest. We
will assume that this regime is used for readout while the
& 2 0 regime is used to perform qubit gate operations. Since
the excited spin state does not play a role in readout and
since the excitation energy is relatively large in this case,
we may simply ignore the excited (2,1) spin state in a min-
imal model. The resulting model is then three dimensional,
with one (2,1) state and two (1,2) states. Defining the spin

basis states as {|S, |), [{,S), v1/3I{, To) +2/31, T-)},

the three-dimensional Fermi-Hubbard Hamiltonian for the
QDHQ becomes [6,30]

% T] T
H=|7u -3 0 , )
n 0  —5+Est

where |1) and ||) indicate the spin states of the singly
occupied dot; |S), |Tp), and |7_) refer to spin singlet, spin-
zero triplet, and spin-polarized triplet states in the doubly
occupied dot; 7; denotes the tunnel coupling between states
IS, {) and |{, S); and 7, denotes the tunnel coupling between
states |S, |) and «/1/3|, To) + +/2/3|{, T_), as illustrated in
Fig. 1(c).

The eigenvalues of the Hamiltonian (9) are plotted in
Fig. 1(d) as a function of the detuning parameter ¢ for typical
QDHQ settings. The two lowest levels represent the qubit
states |0) and |[1), while the third level is a leakage state [L).
Near zero detuning, the qubit states are chargelike, with a
large dipole moment that can couple to the microwave cavity,
but which also interacts strongly with the environment. Away
from zero detuning, the qubit states become more spinlike,
with nearly identical charge configurations that are well pro-
tected from environmental charge noise [33,45], but the small
dipole moment does not couple strongly to the microwave
cavity.

The electrostatic coupling between the qubit and the cavity
is typically mediated by a metal top gate, fabricated above one
of the dots, which taps into one end of the microwave cavity
[21]. This coupling is proportional to the capacitive coupling
8o, between the qubit and the top gate, and the (dimensionless)
charge dipole moment dj; defined below. For sideband tran-
sitions, the qubit is driven, yielding a time-dependent dipole
moment dy;(t). The effective coupling between the qubit
and the resonator is then given by g(¢) & go do;(¢). We now
calculate the dipole matrix element for a QDHQ, following
Refs. [46,47].

We first diagonalize Eq. (9) at a desired working point. The
diagonal Hamiltonian H' is related to the original Hamiltonian
H by

H =U'HU = ZE,,|n)(n|, (10)

where E, is the energy of eigenstate |n) € {|0), |1), |L)}. The
unitary operator U can be expressed analytically in certain
limits [46], but is more generally obtained by numerical diag-
onalization. We refer to the diagonal basis as the qubit frame,
while the original basis, corresponding to Eq. (9), defines the
charge frame. The dipole operator is naturally expressed in the
charge frame as

10 o
d=10 -1 o0 (11)
0o 0 -3

To compute the qubit-cavity coupling, we need to express
the dipole operator in the qubit frame: d’ = U'dU. Defining
the dipole matrix elements as d,,, = (n|d’|m) and the general-
ized Pauli matrices as o,,,, = |n)(m|, the qubit-cavity coupling
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becomes
0,1,L

20 Y dy(a+a o,

n,m

12)

Note that while the qubit-cavity coupling is purely transverse
in the charge frame, gody(a + a"oy, in the qubit frame it
can have both longitudinal (dj, d{,) and transverse (d,, d},)
components.

We now investigate the limiting behaviors of the qubit-
cavity coupling. When & = 0, the eigenstates are com-
pletely delocalized, with |0) ~ (IS, }) — |4, 5))/+/2 and
1) ~ (S, 1)+ 14, S})/ﬁ. Here small deviations of ¢ from
zero cause large shifts in the charge state. We then find that
dj; ~ 1 is maximized, while dj, ~ dj; ~ 0, as consistent
with a dominant transverse coupling. When ¢ > 0, additional
longitudinal components are present in the coupling. In the
far-detuned limit ¢ >> 1, 12, Esr, the qubit states are strongly
localized in the same (1,2) charge configuration and variations
of & have almost no effect on the charge state. Consequently,
the dipole matrix elements are very small, although both trans-
verse and longitudinal components are present. This ability to
tune the dipole matrix element provides an important resource
for controlling two-qubit gate operations. Alternatively, g can
be set to zero by simultaneously suppressing both of the tunnel
couplings, which prevents charge motion between dots.

The QDHQ qubit can also be manipulated by externally
modulating the Hamiltonian parameters as a function of time.
For the case of detuning modulations §&(¢), the perturbation
to the Hamiltonian (9) in the charge frame is given by

0 0
0 ’

H, = ée(t)

(13)

S Owi
NI—

1
2

which we readily identify as H, = SS(I)Q . Transforming to
the qubit frame, we then have

0,1,L
H,=U'HU =) 8e()h)om, (14)

where the matrix elements for detuning driving are given by
h;l[i’r)l = di,lm'

Double-dot qubits can also be driven by modulating the
tunnel couplings. For the QDHQ, the driving Hamiltonian in

the charge frame is given by

0 &u dn
s x4 x4
H, =4t(t) 3—2' 0 0 (15)
T
5 0 0

Here we assume the tunnel couplings are driven simultane-
ously, in a fixed ratio 67;/81,, by changing the voltage on a
single top gate [34,48]. Transforming to the qubit frame, we
obtain the driving Hamiltonian

0,1,L
H, =U'HU =) 81", 00, (16)

which defines the matrix elements A(%) for tunnel-coupling
driving.

Finally, we can drive the Esr term in Eq. (9). In
this case, in the charge frame, we simply have Hg, =
8Egr(t)diagf{0, 0, 1}, which in the qubit frame yields

0,1,L
Hp =U'Hg U =Y SEst(Oh 3 oy, (17)
n,m

which defines the matrix elements 4“5, In silicon quantum
dots, Est can be modulated through the orbital confinement
potential [49] or the valley splitting, as described below.

C. Optimal working points

Charge noise that causes the detuning parameter ¢ to fluc-
tuate [50] is a problem for all quantum-dot qubits. For Si
quantum dots with two electrons, in most cases, it consti-
tutes the main dephasing mechanism [51]. Previous work has
shown that the optimal working points for single-qubit gates
in a QDHQ should occur at sweet spots, where the derivative
of the qubit frequency with respect to detuning vanishes [33].
We have also shown previously that the optimal fidelities of
two-qubit gates of double-dot singlet-triplet qubits mediated
by a microwave cavity also occur near sweet spots [28]. We
now map out the sweet spots for the QDHQ.

Numerical computation of the parameter values of the
sweet spots at which dw,/de =0, using Eq. (9), reveals
regimes with zero, one, or two sweet spots, depending on
the values of the tunnel couplings, as indicated in Fig. 2(a).
Some examples of sweet spots are shown in Fig. 2(b). Here
the sweet-spot locations are indicated on the detuning axis
and their corresponding tunnel couplings values are indicated
by purple star, triangle, and square markers in Fig. 2(a). For
cases with two sweet spots (e.g., the top or bottom panels), the
sweet spot nearest to zero detuning occurs in a regime where
the qubit is chargelike; we therefore refer to this as a charge
sweet spot (CSS). The other sweet spot is less chargelike, and
we refer to it as a valley sweet spot (VSS).

The CSS and VSS can both be used as working points,
although they offer different resources for gate operations.
The CSS has a stronger charge dipole, since it occurs near
zero detuning, which allows for faster cavity-mediated gates.
On the other hand, the qubit dispersion is typically flatter near
a VSS and its sweet spot is wider, yielding better coherence
properties. We can characterize the qubit coherence by com-
puting the second derivative of its dispersion relation. These
results are plotted for the CSS in Fig. 2(c) and for the VSS
in Fig. 2(d). Note that the VSS occurs only in the region with
two sweet spots, while the CSS occurs in the regions with one
or two sweet spots. Since it is important for the single-qubit
coherence time to be long, we only consider sweet spots as
working points; we therefore exclude the curved white region
on the right-hand side of Figs. 2(c) and 2(d), which contains
no sweet spots.

In Figs. 2(c) and 2(d) we see that the best coherence (i.e.,
the lowest 82wq /dg?) is found near the boundaries between
regions with different numbers of sweet spots. At the first
boundary, between the regions with one or two sweet spots
(along the line t; = 1), the VSS moves out to ¢ — oo, where
the qubit dispersion is very flat; the other sweet spot (a CSS)
occurs at finite ¢. At the boundary between regions with zero

032612-5



J. C. ABADILLO-URIEL et al.

PHYSICAL REVIEW A 104, 032612 (2021)

(a) (b)
1
Ecss *
12 l e
kVSS
0.75 10
£ 1 N
. & o\ s
N . =
Oy o 7| l
| | o
0.25 S o1\ e Evss M
10 l
00025 05 075 1 -10 0 10 20 30 40
T, /Egr e/h (GHz)

10
—_ . 75 l(aGEﬁw?;
N N -
EED (:E ‘max
~ ~ 5
S < i
K K
2.5 i
0
o0 2.5 5 75 10 0 2.5 5 75 10
7,/h (GHz) 7;/h (GHz)

FIG. 2. QDHQ sweet spots and energy dispersions. Qubit decoherence arising from detuning fluctuations is suppressed at sweet spots,
where the first derivative of the qubit frequency with respect to detuning is zero. Having a small second derivative of the qubit frequency with
respect to detuning is also favorable for reducing the decoherence arising from charge noise. (a) Number of available sweet spots as a function
of the two tunnel-coupling parameters. (b) Three examples of QDHQ energy dispersions with either one (middle panel) or two (top and bottom
panels) sweet spots. The corresponding tunnel-coupling values are indicated by the star, triangle, and square markers in (a). The star shows
the location of the highest gate fidelity, as computed in Sec. IV, corresponding to (e, 71, 72, Est)/h = (15.59, 6.18, 4.9, 10) GHz. Each sweet
spot is labeled as a charge or valley sweet spot, as described in the text. (¢) Second derivative of the qubit frequency with respect to detuning,

evaluated at the CSS. (d) Same quantity as in (c), evaluated at the VSS.

or one sweet spot (also along the line 7; = 1), there is only
one sweet spot (a CSS), which moves out to ¢ — co. At the
third boundary, between the regions with zero or two sweet
spots, the CSS and VSS merge into a line of second-order
sweet spots, where dw,/de = d*w,/de* = 0. In general, we
expect this regime to be optimal for gate operations because
the dispersion is extremely flat and the dipole moment is not
vanishingly small.

Finally, we note that the gate-fidelity calculations, de-
scribed in later sections, include additional physics that is not
reflected in Figs. 2(c) and 2(d); in particular, they include
leakage. As a result, it will be shown that the best fidelities
are not achieved precisely at the second-order sweet spots,
because leakage effects are also most prominent along this
line. However, the dispersion is still quite flat in the vicinity of
second-order sweet spots. Consequently, the highest-fidelity
working point in this work is found to occur near the triple
point (ty, ©2)/Est = (1, 1)/ V2 [46], where the regions with
zero, one, and two sweet spots all converge. This optimal
working point is indicated by a purple star in Figs. 2(a) and
2(b).

D. QDHQ two-qubit Hamiltonians

The two-qubit Hamiltonians of Sec. Il A were developed
for simple two-level systems; however, they can be extended
to describe the three-level QDHQ system. First, we combine
Eq. (10) and terms involving the cavity to obtain the static
Hamiltonian

0.1L 1.2
H' gaic = hoya’a+ Y Y EVoD
noj

0,1,L 1,2

+ 3> ed i a+ael).  (18)
nm j

where the index j labels the two qubits. As described in
Sec. IT A, we then consider perturbations to the QDHQ control
parameters 8¢, 87, or §Egr, in the form of sinusoidal driving

We set Est/h = 10 GHz for all results shown here.

terms. Denoting the time-varying envelopes of the driving
terms as A, (¢), A¢(t), and Ag, (¢), the full Hamiltonian in the
qubit frame becomes

0.1,L 12
Hériven = hwrCﬁa + Z ZErEj)O.rSr{)
noj
0.1,L 1,2 o
+ Y Y (e d' @ +a)
nm j
+ [Agj)(t)h,(;;j) —i—A(tj)(l‘)hE;,;j)
+ AL OnET M cos(@ Pt + gplosl.  (19)
For definiteness, we will always choose A;maxx =
\/ St} + 617 = \/ ¥ +17/5 in the simulations described

in Secs. IIT A and ITI C.

Again, we can identify appropriate sideband transitions
in Eq. (19). The QDHQ tuning parameters ¢ and T modify
the qubit dispersion most strongly in the vicinity of ¢ ~ 0,
where the matrix elements hfﬁ;f ) and hfzfq;j ) are predominantly
transverse. We therefore use the ¢ and 7 terms to provide
transverse driving. These parameters can be driven indepen-
dently, or in tandem, to obtain larger Rabi frequencies. The
qubit should be driven resonantly, with ) = wf/ ). the mod-
ified transverse Rabi sideband constraint is then given by
h((f]‘j DAY o + hffl’j JAY) = =AY, for red or blue sidebands.
Note that the Rabi constraint specifically picks out the trans-
verse components of iy and A7, although other matrix
components are also present in Eq. (19).

The Est parameter describes the singlet-triplet splitting of
the dot with two electrons. Modulating Egy requires varying
either the dot confinement potential or its valley splitting. The
former occurs naturally, any time there is a relative change
in neighboring top-gate voltages, while the latter is accom-
plished by shifting the lateral position of the dot or varying
the electric field perpendicular to the quantum well [45,52—
54]. In this work, unless otherwise noted, we will always
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assume Egt = 10 GHz as a typical value. By further lowering
the value of Esr, we could potentially loosen the constraints
on the cavity resonance frequency, as described below. How-
ever, lower Egr also leads to increased leakage, as discussed
in Appendix A. Higher Esr values suggest optimal cavity
frequencies that are difficult to achieve in the laboratory, as
also described below. The value Egt = 10 GHz is therefore a
convenient, intermediate, and realistic choice.

Simulations of the valley splitting in Si quantum dots sug-
gest that the maximum amplitude that can be achieved for
driving of the Egr parameter, without altering the electronic
charge occupations, is approximately given by Agrmax & 4
GHz, when Est = 10 GHz (see Appendix B). An important
benefit of using Egt as a driving parameter is that gating can
still be accomplished when the qubit is tuned to the asymptotic
regime ¢ — oo, where the qubit dispersion is very flat. In this
regime, the matrix element components RESTD) are primarily
longitudinal, and we therefore employ Egr for longitudinal
driving. As described in Sec. I A, the resonant condition for
longitudinal driving is then given by no = AY), We note
that, while nonlongitudinal components of RESTD are present
in Eq. (19), these yield negligible off-resonance corrections to
the dynamics.

II1. SIMULATION METHODS

Optimizing two-qubit gate fidelities requires balancing
gate speeds and decoherence rates. In this section we describe
the methods used to include noise in our numerical simula-
tions. The simulations proceed in two steps. First, we estimate
the relevant coherence times of the system by injecting 1/f
charge noise into the detuning parameter. We then incorporate
these coherence times into master equations that describe the
dynamical evolution of the various gate protocols.

A. Charge-noise simulations

We consider fluctuations of the qubit detuning parameter,
defined as £(¢) = € + 8&(t), where the average detuning value
£ is always set to a sweet spot, as described in previous
sections. Fluctuating time series for &(¢) are generated using
the method described in Refs. [28,55]. Here we adopt a 1/f
charge-noise power spectrum, commonly observed in semi-
conductor qubits [7,56], defined as

2 2
% forwy < o] < wp

Se(w) = {'7

0 otherwise,

(20)

where the low- and high-frequency cutoffs are given by
w; /27w = 100 kHz and w; /2w = 40 GHz, respectively. Un-
less otherwise noted, we will always employ a noise amplitude
of c. =0.56 peV, which corresponds to a noise stan-
dard deviation of o, =2 peV, through the relation o, =
c[2In(~v2m e, /)2 [28,57].

To determine 7, we simulate QDHQ free-induction de-
cay by considering the initial state |y (0)) = (|0) + |1))/\/§,
which we evolve according to the Hamiltonian (9), including
the detuning fluctuations. The resulting evolution is expressed
in terms of the density matrix p(z) = |¥ (¢)) (¥ (¢)|. We repeat
this procedure 10* times, with different random time series,

and compute the average density matrix p(t). Here 7" is
determined by fitting the off-diagonal term of this average to
the form

exp[—(t/T5)P]
—

Here B is also a fitting parameter, which is found to be close
to unity over most of the parameter range. Since € is tuned to a
detuning sweet spot, the resulting 7" is found to be a function
of the tunnel-coupling parameters that determine the location
of the sweet spot.

The results of these simulations are shown in Fig. 3(a) for
the case where € is set to a CSS and in Fig. 3(b) where € is set
to a VSS. In the first case, we obtain relatively poor coherence
on the left-hand side of the plot, corresponding to small 1
and large 1, because the CSS is very narrow in this regime.
Better coherence is achieved in the upper-right-hand corner,
near the line t; = t1,, because the sweet spot occurs in the far-
detuned regime, where the energy dispersion is very flat. In the
second case [Fig. 3(b)], we obtain relatively poor coherence
on the bottom of the plot (small 1;, large 1), because the VSS
is very narrow. Better coherence is again achieved near the
line 7; = 15, because the sweet spot occurs in the far-detuned
regime. We note that 7," values in the range of 5-10 us are
often unphysical, since other decoherence mechanisms take
over [51]. For both CSS and VSS, fairly good coherence is
also achieved near the boundary between regions with zero
and two sweet spots [see Fig. 2(a)], because this corresponds
to a line of second-order sweet spots.

[Po1 ()] = 1)

B. Rabi-frequency fluctuations

Charge noise can affect qubits in new ways when they are
driven [58,59]. In Ref. [28] we showed that fluctuations of
the Rabi frequency Qg (1) = Qg + §Qg(7) become important
when single-triplet qubits are driven. Here we show that sim-
ilar fluctuations also affect QDHQs. The origin of the effect
can be understood from Eq. (19). We focus on the case of
& driving, because it is more challenging to apply strong t
driving or Egr driving in the laboratory, as discussed below.
After moving to the rotating frame, the Rabi frequency Qg =
Ag(t)h((fl) plays the role of a quantizing field. However, as
noted, the Rabi frequency is itself susceptible to charge-noise
fluctuations, causing dephasing to occur in the rotating frame,
over the characteristic timescale 75,. This noise mechanism
is primarily quasistatic or low frequency [58]; for double-dot

qubits, it couples to the drive through fluctuations of the dipole
matrix element déi)(t) = Effl) + Sdé’i)(t). Following Ref. [28],
we can write the resulting contribution to dephasing in the

rotating frame as
1 A 0dy)
T, 45 de

0. (22)

Using the simulation method described in the preceding
subsection, we obtain estimates for 75,, as shown in Fig. 3(c)
for the case when ¢ is tuned to a CSS and in Fig. 3(d) for the
case when ¢ is tuned to a VSS. We see that 75, is enhanced
along the line t; = 1,, which corresponds to the far-detuned
regime, because here the dipole moment dy; is very small,
so its derivative in Eq. (22) is also very small. In Fig. 3(c),
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FIG. 3. Computed single-qubit decoherence times due to 1/f charge noise, as defined in Eq. (20): (a) 7,* computed at a CSS, (b) T;*
computed at a VSS, (c) 75, computed at a CSS, and (d) 75, computed at a VSS. In (c) and (d) we show the results for ¢ driving with amplitude
A./h = 1 GHz; however, solutions for different values of A, are also included in our two-qubit simulations.

1>, is also enhanced along the line 7, = 0, which corresponds
to a conventional charge sweet spot, with 8dé§) /de =0. In
Fig. 3(d), the same line corresponds to a sweet spot in the
transverse components of the interaction. In the two-qubit
simulations described below, we include 75, fluctuations us-
ing a master equation approach. We note that, since the master
equation is expressed in the laboratory frame, the Lindblad
operator for Rabi-frequency fluctuations takes the form of a
transverse decay term.

C. Two-qubit gate simulations

We now compute the gate fidelities for two-qubit Cz gates,
performed by driving one of the QDHQ tuning parameters &,
71 (and 1), or Egr. To simulate a given gating protocol, we
adopt the master equation

(J)pU(J)

1
,0 h [Hdrlvena pl+ Z <2T* 10)

) ) ) () ) ()
_(2‘701 POy — 919 Op1 P — P15 Op1 )

+ 2T,
p)

1
() )
+ 2T2p (60{ ,OO‘I(J)

+ ‘71((])):0(75{)

K .
+ E(Za,oa' —d'ap — paTa)>, (23)
where o, = o099 — 011, and we incorporate the coherence
times obtained in the previous section. Note that we have in-
cluded a phenomenological relaxation term with 77 = 10 pus,
to account for the effects of phonons [60,61]; this term is
important when charge-noise effects are suppressed, for ex-
ample, in cases where the energy dispersion is very flat [51].
We have also accounted for photons leaking out of the mi-
crowave cavity at rates in the range of « /27 = 0-10 MHz
[35], and we have introduced 7>, noise using the Lindblad
operators described in Ref. [28]. The operators Hgiven and p
are both 9N, dimensional, corresponding to 3?> = 9 two-qubit
states and N, = 5 photon-number modes in the resonator. (We
have checked that cavity modes with N, > 5 play no role
for the qubit parameters and driving parameters considered
here.) Clearly, Eq. (23) does not describe all possible deco-
herence channels in this high-dimensional system; however,
it incorporates the most important effects for two-qubit gates,

including 75, Ty, T>,, and « processes and coherent leakage to
the quantum dot |L) states and cavity states with N, > 1.

We calculate the fidelities of two-qubit gates based on
the Uc, pulse sequence given in Eq. (6). Specifically, we
compute the chi matrix y, for process £(p), by employing
the Choi-Jamiotkowski isomorphism [62] and following the
computational procedure described in Ref. [47]. Since the
single-qubit gates are fast, compared to the sideband-mediated
gates, we simply assume they can be performed perfectly
and without noise. As in Ref. [47], we are only concerned
with initial states in the subspace {|nin;) ® |0),1}, where
{n1, ny} = {0, 1} are the logical basis states of qubits 1 and
2 and |0),; is the ground state of the resonator. Within the
Choi-Jamiotkowski formalism, we then compute the process
matrix x = dpg, where d = 4 is the dimension of the sub-
space of interest and pg is the density matrix of a system
comprised of the two qubits (1 and 2) and the cavity (r1), as
well as two replicated qubits (3 and 4) coupled to a replicated
cavity (r2) [62]. Here the initial state for the simulations
is given by pg(0) = |P)(P|, where |®) = 220‘|mn2
|0),1 ® |n3n4) ® |0),2, and the full system evolution is gov-
erned by

i
—E[I3,4 ® I2 ® Hysiven, pe]

pe =
1234 .
3 (gl neo = pe)
j 2
) ) ) () ), ()
+ 2_T1(2001 PET Yy — 010 Tp1 PE — PETH Opy )
) ) ) )
2D, (‘701 POy T O LT — :08))

1,2
K .
+ Z ~2a® pga®™" —a®ape — pea®’a®)), (24)
- 2

in analogy with Eq. (23), where I3 4 and /,, represent identity
matrices for the replicated qubits and resonator. The process
fidelity is finally computed using F' = Tr(Xidea1 X )» Where Xideal
is the ideal process x matrix for a CZ-gate operation, defined
in the absence of noise or leakage.

We wish to compute Cz-gate fidelities as a function of var-
ious system parameters. However, there are many parameters
that may be considered, including ¢, 71, 12, Est, 80, @, @y,
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FIG. 4. Infidelities 1 — F of two-qubit CZ gates, optimized over a wide range of tuning parameters, in the presence of 1/f charge noise
with amplitude o, = 2 ueV. (a) Infidelity as a function of the resonator frequency w,, assuming the cavity decay rate k = 0. Results are shown
for 7, Egt, and ¢ driving. Sudden changes in the slope occur when the optimal fidelity switches from a CSS (small w,) to a VSS (large w,).
(b) Infidelity as a function of k, optimizing over all variables, including w,. (c) Infidelity as a function of A, for ¢ driving and several values
of «. (d) Infidelity as a function of o, the standard deviation of the charge noise, with k = 0.

A, A;, and Ag,,. We therefore begin by setting two of the
parameters Esp/h = 10 GHz [33] and go/27 = 60 MHz [63]
to typical experimental values, since these properties are not
broadly tunable after fabrication is complete, although some
fine-tuning is possible. We additionally satisfy the following
constraints, which were described in previous sections. First,
we ensure that ¢ is tuned to a sweet spot, as discussed in
Sec. IIC, with ¢ = ecss(ty, 7o) for the CSS sweet spot or
& = eyss(ty, 7o) for the VSS sweet spot. Next, for transverse
sideband operation, we satisfy the constraints QY = A,
For longitudinal sidebands, we satisfy o) = AY) and set
Sw/w" ~ 1.84, where iSw ~ Astmax < 4 GHz, as discussed
in Sec. I1 D. (For simplicity, here we assume A" = A®)) For
T driving, we choose A; max = «/(Stlz + 81:22 = «/1:12 + r22/5,
as mentioned above. For all driving schemes, we limit our
search to the range t;/h, 12/h, w;, Ae. max < 10 GHz, which
is typical for QDHQs [33]. After applying these constraints,
we are left with a more manageable set of parameter sweeps.
However, ¢ driving still involves more free parameters than t
driving or Egt driving; we therefore limit our investigation to
several discrete values of A,. The CZ-gate fidelity estimates
described in Sec. IV are reported after finally optimizing over
a full sweep of the remaining, unconstrained tuning parame-
ters.

IV. SIMULATION RESULTS

The main results of our two-qubit gate simulations are
summarized in Fig. 4. We begin by calculating the maximum
fidelities ' (or minimum infidelities 1 — F') for the CZ-gating
protocol described in Sec. IT A 1, by applying the ¢, 7, or Egt
driving schemes. To first characterize the qubit, we include
only 7.}, T;, and T, decoherence processes in our simulations,
setting the cavity decay rate to k = 0. Specifically, we use
T, and T, values obtained from our charge-noise simula-
tions in Secs. III A an III B, assuming a charge noise level of
o, = 2 peV. These results may be considered as upper bounds
on the fidelity, consistent with very high-Q (low-«) cavities,
which could become available in the future. The resulting
infidelities are plotted in Fig. 4(a) as a function the cavity
frequency w,. Note that w, affects the two-qubit evolution
directly, as indicated in Eq. (19), but also indirectly through
the sideband constraints.

For x = 0, we thus find that the highest fidelities occur for
T driving, with a maximum fidelity of F ~ 98.1%. To under-
stand why 7 driving is preferred, we first note that transverse
gates (obtained by ¢ driving or t driving) are generally faster
than longitudinal gates (obtained by Egr driving), because
they occur closer to the charging transition (¢ & 0), where
the dipole matrix element is large; in turn, this allows for
shorter exposure times to charge fluctuations. Second, we note
that the tunnel-coupling noise strength o, is much smaller
than the detuning noise strength (o, &~ 10730, [64]), yielding
negligible Rabi noise for t driving compared to & driving.
Based on the trends observed in Fig. 4(a), it appears that
better fidelities could potentially be obtained for ¢ driving,
using smaller A, values than the ones considered here; this is
because the coherence-limiting mechanism in Eq. (22) scales
as D, O(A;l. However, a smaller A, with « > 0 (studied
below) suffers from cavity decay and does not provide better
fidelities.

For k = 0, the optimal cavity frequencies occur at values
where the infidelities in Fig. 4(a) are minimized. For each of
the driving schemes, the optimal values of w, are found to
occur near 10 GHz, which can be understood from the fol-
lowing arguments. Since the best sweet spots are obtained in
the far-detuned regime, where /iw, ~ Esr, the optimal cavity
frequency must therefore satisfy w, /27w ~ w,/2x ~ Est/h ~
10 GHz. Moving away from this optimal value requires using
suboptimal sweet spots, which in turn reduces the fidelity.
For t driving, it is difficult to operate QDHQs outside the

JoTE 4873 <\ J2 +13/5 or mi/h o/ <
10 GHz, yielding driving amplitudes that are relatively weak.
Moreover, the dipole matrix element for 7 driving is weak
in the far-detuned regime and the resulting 2z is small. Sat-
isfying the sideband constraint AV = QY we again find a
small qubit-cavity detuning A’ such that w,/27 &~ 10 GHz
for optimized operations. In contrast, the restriction to small
driving amplitudes does not apply to ¢ driving, since A, can
be quite large. This suggests optimal w, /27 values that are be-
low 10 GHz. However, such strong driving also increases the
decoherence arising from the 75, mechanism. Hence, optimal
w, /27 values for ¢ driving (for k = 0) are also near 10 GHz.
In principle, we could increase 75, o« A ! by employing driv-
ing amplitudes A, that are smaller than those considered

range A; max =
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in Fig. 4(a). However, this would require cavity frequen-
cies w,/2m > 10 GHz, which are difficult to achieve in the
laboratory. Finally, Egr driving allows for optimal resonator
frequencies that are somewhat further away from w, /27w =
10 GHz. This is because relatively large driving amplitudes
are possible, §w/2m ~ Apg.max/h < 4 GHz, as described in
Appendix B. The coupling requirement $w/w") ~ 1.84 then
suggests that the resulting qubit driving frequencies »/) can
be of the order of gigahertz. Satisfying the sideband constraint
AV = ) therefore allows for large qubit-cavity detunings
and optimized operation with smaller w, values.

As indicated in Figs. 2(c) and 2(d), the best t; and 1,
values for two-qubit gates are located near the boundary be-
tween the regions with zero and two sweet spots, shown in
Fig. 2(a). As explained in Sec. II C, this boundary represents a
line of second-order sweet spots, where dephasing effects are
suppressed. Unfortunately, leakage effects are also enhanced
in this region. Consequently, optimal fidelities are obtained
slightly away from the boundary line. The best overall fidelity
for k = 0 is given by F = 98.1% and occurs at the 7; and 1,
values marked by a purple star in Fig. 2(a), which is almost a
second-order sweet spot. At this setting, a transversally driven
red-sideband CZ gate is implemented in about 30 ns. Although
two sweet spots (VSS and CSS) are observed throughout the
green (lower central) region in Fig. 2(a), we find that better
fidelities are obtained from a VSS, rather than a CSS, since
it occurs further from the charging transition and therefore
enjoys better coherence properties. Consequently, the optimal
behavior at the purple star corresponds to a VSS. In contrast,
the orange (upper left) region in Fig. 2(a) has only one sweet
spot, which is of the CSS type. Therefore, upon crossing from
the green (lower central) region to the orange (upper left)
region, the optimal behavior switches from a VSS to a CSS, as
revealed by a sudden jump in the infidelity slope in Fig. 4(a).

We now include the effects of cavity decay by setting
k > 0. For each value of x, we compute the infidelity as
a function of w,, as in Fig. 4(a), and identify the optimal
values. These optimized fidelities are plotted in Fig. 4(b) as
a function of typical « /27 values in the range 0.01-10 MHz,
where « /2w = 10 MHz corresponds to a resonator quality
factor of Q = 10°. In the limit of x ~ 0, T driving is found
to give the best fidelity, as consistent with Fig. 4(a). Larger
k values reduce the fidelity for all the driving schemes, due
to the Purcell effect; however, the size of the effect depends
on the driving scheme. Most importantly, the Purcell effect is
enhanced when the qubit and cavity are near resonance. Since
optimized t driving must be performed near resonance, as
discussed above, this scheme suffers the most greatly when «
is large. Its fidelity can be improved slightly by increasing A,
which increases A and suppresses the Purcell effect. However,
we have also noted that A; cannot be increased significantly.
We find that ¢ driving outperforms t driving when « /27w > 2
MHz, because A, can be significantly increased, to maintain
a large qubit-cavity detuning. On the other hand, a large A,
also tends to suppress the fidelity, due to the effect of Rabi-
frequency fluctuations. Hence, an optimal value of A, emerges
in the simulations, as a function of «, as shown in Fig. 4(c).
(We note again that small values of A,/h < 1 GHz suggest
using large optimized w, values, which are difficult to achieve
in the laboratory.) In addition, Ag, can also be increased, to

keep the qubit and cavity well detuned. However, in the large-
& regime, the dipole matrix element for Egr driving is much
larger than for ¢ driving, so it is not necessary to strongly
drive Egy. As a result, a large qubit-cavity detuning can be
maintained without inducing detrimental Rabi-frequency fluc-
tuations. Consequently, Egr driving is found to give the best
fidelities in Fig. 4(b), when « /27 > 2 MHz.

Up to this point, we have considered a fixed level of charge
noise o, = 2 ueV. Reducing the noise naturally leads to im-
provements in the gate fidelity. To characterize the magnitude
of such improvements, we close this section by repeating the
analyses described above for a range of o, values. To focus on
the charge noise rather than cavity decay, we assume a perfect
resonator, with no Purcell decay (« = 0), obtaining the results
shown in Fig. 4(d). As expected, the infidelity grows rapidly
with o,. The value of o,, below which the fidelity exceeds
99%, corresponds to 0.5, 0.6, or 0.9 ueV for ¢ driving, Esr
driving, or t driving, respectively. We note that a noise level of
0. < 0.9 peV has previously been demonstrated in Si qubits
[65].

V. CONCLUSION

In this work we have focused on the physics of two-qubit
gates between QDHQs. We now conclude by describing more
general operating modes. In particular, we explain how to turn
the qubit-cavity coupling off and how to tune the qubit into a
regime appropriate for single-qubit gates.

An important benefit of sideband gating is that it can
largely be extinguished by turning off the drive. However, a
residual dispersive coupling remains, resulting in unwanted
dynamics that evolve at a rate proportional to g%/ A. This cou-
pling can then be suppressed by adiabatically tuning g(e) =
godo1 (¢) to zero, making use of the fact that the dipole moment
dy, is strongly suppressed when ¢ 2 7y, 71, Esr.

A bigger challenge for controlling the coupling, and for
performing other types of QDHQ gates, is to be able to tune ¢
while remaining protected from charge noise at a sweet spot.
The sweet spots depicted in Fig. 2(a) satisfy the nontrivial
relations ¢ = ecss(Ty, T2) or € = eyss(Ty, T2). It is usually
difficult to vary 7; and 7, independently, because their ratio
is largely determined by atomistic details of the quantum well
interface, while their average value is controlled by a single
tunnel-barrier top gate. Limited, independent control of 7; and
7, has previously been achieved using plunger-gate controls
to modify the shape and/or the position of the dot in the
quantum well [45]. An easier and more conventional approach
is to leave the ratio 7;/71, fixed [34,48], varying only the
tunnel-barrier height. The resulting tuning paths correspond
to straight lines in Fig. 2(a); the requirement for ensuring a
sweet spot is then to properly adjust €.

To navigate Fig. 2(a) in this way, when performing gate op-
erations, we suggest a strategy similar to the one proposed for
singlet-triplet qubits in Ref. [28]. In this approach, the qubit is
initially tuned to a desirable starting point on the line defined
by 71/1, = const. Let us assume that t; > 15, so that the line
traverses the green (lower central) region of Fig. 2(a), which
contains two sweet spots. Gating then proceeds by simultane-
ously adjusting the tunnel-barrier gate voltage, which controls
the barrier height, and the plunger-gate voltage, which

032612-10



LONG-RANGE TWO-HYBRID-QUBIT GATES MEDIATED BY ...

PHYSICAL REVIEW A 104, 032612 (2021)

controls the detuning, to remain at a sweet spot. This allows us
to maneuver from a location in the interior of the green (lower
central) region to the boundary of the blue (right) region,
which corresponds to a second-order sweet spot. The latter
is an excellent location for idling. The second-order sweet
spot also represents the merging of the CSS and the VSS.
From this branch point, we may therefore follow either a CSS
or a VSS path, which allows us to make the best use of the
different sweet spots, the CSS being advantageous for faster
gates and the VSS being advantageous for quieter gates. The
most desirable line of sweet spots passes through the optimal
working point, marked by a purple star in Fig. 2. Unfortu-
nately, the tunnel coupling ratio t;/7, is the most difficult
system parameter to control and it may not always be possible
to achieve this target. We have therefore performed additional
simulations to study such control limitations. Assuming errors
in the range of 5%—-25% for 1, /71, and additional errors of 1%
for ¢, we observe a 1%—15% reduction of the fidelity, when
aiming to operate at the ideal working point.

Finally, we note that the gate simulations described here do
not make use of optimal control methods [66]. For example,
the CRAB algorithm may be used to improve simple pulse
sequences while accounting for physical constraints on the
control parameters [67,68]. Alternatively, the GRAPE algo-
rithm [69] has already been used to optimize pulse sequences
for capacitively coupled two-qubit gates in hybrid qubits,
obtaining fidelities of approximately 99% [47]. We could
therefore expect such techniques to improve gate fidelities
beyond those obtained here.

In summary, we have investigated the fidelity of two-qubit
gates in QDHQs, mediated by a microwave cavity. To mitigate
the Purcell effect in this system, it is necessary to detune
the qubit and cavity into the dispersive regime. We focused
here on sideband gating protocols in which one of the QDHQ
control parameters &, t, or Egr is driven, with stronger drives
enabling greater dispersiveness. We have developed a pulse
scheme for CZ gates that only uses red-sideband transitions
and single-qubit rotations, simplifying previous schemes that
require both red and blue sidebands or intermediate oper-
ations that introduce leakage states. Additional benefits of
sideband gating include (i) potentially high gate speeds, (ii)
the resonance condition being achievable by tuning the driv-
ing frequency, which is much easier than tuning the qubit
frequency, and (iii) the coupling being nominally extinguish-
able by simply turning off the drive. Optimal performance
is achieved by working at either a VSS or a CSS, whose
locations we have mapped out. In the regime where both types
of sweet spots are present, we achieve higher fidelities at a
VSS. For most cases of interest, the desirable sweet spots are
located in the far-detuned regime, where ¢ 2 11, 172, Est, and
the qubit energy is given by fiw, ~ Esr.

Several competing effects suppress the two-qubit gate fi-
delities. In the strong-driving regime, Rabi-frequency noise
T, is important, although it is typically only relevant for
& driving. The Purcell effect is also enhanced for weak
driving because the resulting qubit-cavity detuning is small.
Consequently, the Purcell effect is important for 7 driving, be-
cause these parameters typically cannot be strongly driven. To
balance these competing noise effects, we optimize the two-
qubit gate fidelity over many different tuning parameters. For

typical charge noise levels of o, &~ 2 ueV and cavity decay
rates of k /2w =~ 2.1 MHz, we obtain the best results for Egt
driving, with gate fidelities of 96.6%. For two-qubit gates,
the Purcell effect is currently the most serious obstacle for
high-fidelity operation. Technical improvements in resonator
quality factors would therefore be welcome for this system. To
estimate the possible improvements, we consider the limiting
case k¥ = 0, for which the best results are obtained for t
driving, yielding gate fidelities of about 99% for low charge
noise o, < 1 ueV, which has already been achieved in the
laboratory.
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APPENDIX A: NOISE-INDUCED LEAKAGE

Our two-qubit gate simulations of QDHQ include the ef-
fects of coherent leakage to state |L), induced by driving. The
presence of charge noise [Eq. (20)] can also cause undesired
transitions to the leakage state. To estimate the importance
of this effect, we perform charge-noise simulations as de-
scribed in Sec. III A, without any additional driving term.
For the initial state, we choose the fully relaxed state p =
1/2(]0){0] + |1)(1]). We then monitor the time dependence
of the ensemble-averaged density matrix, p. The simulation
includes all three quantum-dot states |0), |1), and |L) and we
estimate the leakage rate 1/7; by fitting the results to

2 +exp(—t/Tr)

3 (AL)

Poo(t) +01,() =

The results of such leakage simulations are shown in
Figs. 5(a) and 5(b) for Est/h = 10 GHz. Generally, we find
that 7; > T,*, suggesting that there is no reason to include
noise-induced leakage in our two-qubit simulations. The only
regime where the ratio 7, /T," drops below 10 is very near the
line of second-order sweet spots. However, along this line,
all leakage effects are enhanced, including driving-induced
leakage, which dominates over the noise-induced leakage.

Finally, to test whether leakage can be suppressed for
Esr/h > 10 GHz, we repeat the leakage simulations for the
case Egt/h = 20 GHz. The results shown in Figs. 5(c) and
5(d) confirm than any unwanted noise-induced leakage is
strongly suppressed by increasing Egr.
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FIG. 5. Simulations of noise-induced leakage rates 1/7; as described in Appendix A. In all cases, we find that noise-induced leakage
is dominated by other noise or leakage effects, suggesting that it is not necessary to include noise-induced leakage in our two-qubit gate
simulations. (a) Results for Esy/h = 10 GHz at a CSS. (b) Results for Est/h = 10 GHz at a VSS. (c¢) Results for Esr/h = 20 GHz at a CSS.

(d) Results for Est/h = 20 GHz at a VSS.

APPENDIX B: ESTIMATION OF THE Eg;-DRIVING
AMPLITUDE A,

The valley splitting in SiGe/Si/SiGe quantum wells is
determined by the details of the penetration of the electron
wave function into the SiGe barriers [52]. The splitting is ap-
proximately proportional to the electric field perpendicular to
the quantum well. The plunger-gate voltage therefore provides
an effective knob for tuning the valley splitting; however,
it also controls the dot occupation, effectively limiting the
range of valley splittings that can be obtained in a qubit. In a
recent valley-splitting experiment, it was shown that a typical
range of electric fields for a SiGe/Si/SiGe quantum dot in
which the dot preserves the same configuration is given by
F, =~ (2.8+£0.1) MV/m [70].

To estimate Ag,,, we perform a tight-binding simulation of
a quantum dot in a SiGe/Si/SiGe quantum well, using the

method described in Refs. [45,71]. This method also allows
us to account for the atomic-scale step disorder at the quantum
well interface, which plays an important role in determining
the magnitude of the valley splitting. In our simulations, we
consider the electric-field range given above and adjust the
disorder step width to match the average valley splitting used
in this work, Egt/h = 10 GHz. The result of this procedure
gives Ag,,./h = 4 GHz. We note that, for any driving scheme,
including Egt driving, varying a single gate voltage (in this
case, the plunger gate) can affect multiple system parameters,
including the valley splitting, the detuning, and the tunnel
coupling. However, it is common practice nowadays to or-
thogonalize the control of these parameters by adjusting sev-
eral gate voltages simultaneously, using a procedure known as
compensation.
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