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Using discrete and continuous variable subsystems, hybrid approaches to quantum information could enable
more quantum computational power for the same physical resources. Here, we propose a hybrid scheme that
can be used to generate the necessary Gaussian and non-Gaussian operations for universal continuous variable
quantum computing in trapped ions. This scheme utilizes two linear spin-motion interactions to generate a
broad set of nonlinear effective spin-motion interactions including one- and two-mode squeezing, beam splitter,
and trisqueezing operations in trapped ion systems. We discuss possible experimental implementations using
laser-based and laser-free approaches.
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I. INTRODUCTION

Quantum information is typically encoded in a discrete
set of eigenvalues, such as two-level qubit systems. Practical
computation using such systems will require error correction,
which may need up to millions of physical qubits, potentially
limiting near-term applications [1]. Continuous variable quan-
tum computation (CVQC) [2–5] offers an alternative approach
by storing information in states with a continuum of eigenval-
ues, enabling higher density encoding for the same physical
resources. In contrast to discrete systems, which require one-
and two-qubit gates for universality, universal CVQC requires
Gaussian operations (displacement, squeezing, etc.) and at
least one non-Gaussian operation (trisqueezing) [2]. Exper-
imentally, it has thus far been challenging to implement a
scheme with the flexibility to perform both types of operations
unilaterally. This challenge could be addressed with hybrid
platforms that incorporate both discrete and continuous vari-
ables, utilizing the advantages of each system [5–8].

Trapped ions (a leading platform for quantum information
[9–17], quantum simulation [18–20], and quantum metrol-
ogy [21–25]) are a prime candidate for CVQC [26] and
hybrid quantum computing [5,6,27]. The Jaynes-Cummings-
type interaction between the (discrete) internal states of ions
coupled to their (continuous) motional states can generate
Gaussian [28–30] and non-Gaussian [31] operations. The
strength of this spin-motion coupling is typically determined
by the Lamb-Dicke factor η ≡ �kx0, where �k is the effec-
tive wave number of the applied field and x0 is the extent of
the ground-state motional wave packet; typically, η is ∼ 0.1
for laser-based interactions and ∼ 0.0001 for laser-free inter-
actions. Existing schemes that generate nonlinear interactions
with respect to their motional coupling are ∝ η2 or higher or-
der, making them significantly weaker than ∝ η interactions.
These higher-order interactions include the state-dependent
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beam splitter and one- or two-mode squeezing operations, and
can also be used to generate non-Gaussian states [32–34].
Here we introduce an alternative scheme that scales linearly
with respect to η, enabling stronger, higher-order interactions,
and can also be used to implement multiple types of oper-
ations using the same control fields, reducing experimental
overhead. We show that we can use two, simultaneously
applied, spin-dependent displacement interactions [35–37],
typically used in geometric phase gates, to selectively gen-
erate effective couplings that are nonlinear in their motional
component; we will thus refer to this as a geometric phase-
gate interaction.

This paper is organized as follows. In Sec. II A, we show
that one can selectively implement a broad set of effective
Hamiltonians, representing Gaussian and non-Gaussian inter-
actions, by simultaneously applying two geometric phase-gate
interactions to one ion, where the spin-components of the
interactions do not commute. We can select which effective
Hamiltonian to implement by simply adjusting the frequen-
cies of the phase-gate interactions. In Sec. II B, we present a
method for implementing our scheme in a laser-free system
with a single spin-motion coupling interaction. In Sec. III,
we compare numerical simulations of the (exact) geomet-
ric phase-gate Hamiltonians with the (approximate) effective
Hamiltonians, which converge for long-enough gate dura-
tions. In Sec. IV, we give conclusions and prospects for future
work.

II. THEORY

In this section, we describe how two noncommuting
phase-gate interactions can create Gaussian and non-Gaussian
operations, sufficient for universal CVQC [2] (also see the
Appendix). Such phase-gate interactions are typically used
in trapped-ion experiments to generate entanglement with
or without lasers. We also show that this scheme can be
implemented in a laser-free experiment with a single radiofre-
quency gradient [20,38,39]. We consider a single spin, with
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TABLE I. List of effective Hamiltonians Ĥeff that can be generated by choosing the values of n, φ, j, and j′ in Eq. (2). Setting n = ±1
generates forms of Ĥeff that correspond to the 2nd-order term in the Magnus expansion, producing Gaussian operations on 1 or 2 phonon
modes, with a Rabi frequency �2 ≡ 2�α�α′/�. Setting n = ±2 generates forms of Ĥeff that correspond to the 3rd-order terms in the Magnus
expansion, producing non-Gaussian operations on 1 or 2 modes, with Rabi frequency �3 ≡ 2�α′�2

α/�
2

Effective Hamiltonian Gaussian n j = j′

Ĥeff � ih̄�2εαα′α′′ σ̂α′′
(
â†2

j eiφ − â2
j e

−iφ
)

yes −1 yes
Ĥeff � ih̄�2εαα′α′′ σ̂α′′ (â†

j â
†
j′ e

iφ − â j â j′ e−iφ ) yes −1 no
Ĥeff � ih̄�2εαα′α′′ σ̂α′′ (â†

j â je−iφ − â j â
†
j e

iφ + cos φ) yes 1 yes
Ĥeff � ih̄�2εαα′α′′ σ̂α′′ (â†

j â j′ e−iφ − â j â
†
j′ e

iφ ) yes 1 no

Ĥeff � h̄�3σ̂α′
(
â†3

j eiφ + â3
j e

−iφ
)

no −2 yes
Ĥeff � h̄�3σ̂α′

(
â†2

j â†
j′ e

iφ + â2
j â j′ e−iφ

)
no −2 no

Ĥeff � h̄�3σ̂α′ (â j â
†
j â jeiφ + â†

j â j â
†
j e

−iφ ) no 2 yes
Ĥeff � h̄�3σ̂α′

(
â2

j â
†
j′ e

iφ + â2†
j â j′ e−iφ

)
no 2 no

states |↓〉 and |↑〉, whose interaction is represented by Pauli
operators σ̂α , where α ∈ {x, y, z}. Importantly, the theoretical
scheme presented here is independent of the number of ions
N in a crystal, where Gaussian and non-Gaussian operations
on the crystals’ 3N collective modes may be implemented
by a addressing a single ion, coupling its spin to the desired
mode. The spin is coupled to one or two harmonic oscillator
modes j, whose interactions are represented with an annihila-
tion(creation) operator â j (â

†
j ).

A. Spin-dependent nonlinear spin-motion coupling

In this section, we discuss applying interactions that are
linear in â j , to generate effective spin-motion interactions that
are nonlinear in â j . We analyze our effective Hamiltonians
using the Magnus expansion for a unitary time-propagator
acting under Schrödinger’s equation [40]

Û (t ) � exp

(
−i

h̄

∫ t

0
dt1Ĥ1 − 1

2h̄2

∫ t

0

∫ t1

0
dt1dt2[Ĥ1, Ĥ2]

+ i

6h̄3

∫ t

0

∫ t1

0

∫ t2

0
dt1dt2dt3{[Ĥ1, [Ĥ2, Ĥ3]]

+ [Ĥ3, [Ĥ2, Ĥ1]]}
)

, (1)

where Ĥk ≡ Ĥ (tk ) represents the Hamiltonian describing the
system at time tk . We truncated the expansion after the third
order, leaving analysis of higher-order interactions to future
work. In the following, we will discuss effective Hamiltonians
Ĥeff, where Û (t ) � exp(−it Ĥeff/h̄).

We begin with a Hamiltonian that represents two geometric
phase-gate interactions acting on a single ion in the interaction
picture with respect to the ion’s qubit and motional energies

Ĥ (t ) = h̄�ασ̂α â je
−i�t + h̄�α′ σ̂α′ â j′e

−i(n�t+φ) + c.c., (2)

where �α,α′ are the Rabi frequencies of the corresponding
spin-motion coupling terms, � = 2π/ti is the detuning, n
is an integer, and φ is an arbitrary phase. Note that �α,α′

both scale linearly with the Lamb-Dicke factor η. We assume
α �= α′. The first-order term in the Magnus expansion is 0
for integer multiples of ti. The total interaction duration is
t f = Kti, where K is an integer.

Plugging Eq. (2) into Eq. (1), setting n = ±1, and solving
for a duration t f gives

Û2(t f ) = exp(�2t f εαα′α′′ σ̂α′′ {δn,−1(â†
j â

†
j′e

iφ − â j â j′e
−iφ )

+ δn,1(â†
j â j′e

−iφ − â j â
†
j′e

iφ )

+ δ j, j′δn,1 cos(φ)}) + O([�α/�]3), (3)

where �2 ≡ 2�α�α′/�. For the error term, we assume
�α and �α′ are the same order of magnitude. Here, the
second-order terms in the Magnus expansion are the largest
contributions to the overall dynamics of the system. By ap-
propriate choice of n, φ, j, and j′ we can create a set of
interactions Ĥeff that are spin-dependent and second order in
â j, â j′ (see Table I), including one- (Sec. III A) and two-mode
(Sec. III B) squeezing, as well as beam-splitter (Sec. III C)
interactions.

Similarly, for n = ±2, the third-order terms in the Mag-
nus expansion are the largest contribution to the dynamics;
the first- and second-order terms integrate to zero. Plugging
Eq. (2) into Eq. (1) again, we obtain

Û3(t f ) = exp
( − i�3t f σ̂α′

{
δn,2(â j â

†
j′ â je

iφ + â†
j â j′ â

†
j e

−iφ )

+ δn,−2
(
â†2

j â†
j′e

iφ + â2
j â j′e

−iφ
)})

+O([�α/�]4), (4)

where �3 ≡ 2�α′�2
α/�2. This time-evolution operator cor-

responds to spin-dependent effective Hamiltonians that are
third order in â j, â j′ (see Table I), which includes trisqueezing
(Sec. III D).

In both Eqs. (3) and (4), the time evolution primarily
corresponds to a selected Ĥeff. The undesired, higher-order
terms in the Magnus expansion decrease faster with � than
Ĥeff. Therefore, the time evolution converges to that of Ĥeff

as the iterations K of the interaction and � increase, such
that �2t f or �3t f is fixed. Thus, Û (t f ) → exp(− i

h̄ Ĥefft f ) for
large values of K . As t f = Kti = 2πK/�, for second-order
interactions this results in

4π�α�α′K

�2
= �2t f , (5)

which must be held constant. Thus, as K increases from
1, � → �K1/2 and t f → t f K1/2. Similarly, for third-order
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interactions, we see that

4π�2
α′�αK

�3
= �3t f (6)

must be held constant. Therefore, increasing the value of K
from 1 gives � → �K1/3 and t f → t f K2/3. Therefore, for
large values of K , the evolution of the interactions reported in
Table I can be made accurate to an arbitrary degree. In Sec. III,
we verify this behavior through direct numerical integration of
Eq. (2).

Since the convergence criteria for both the second- and
third-order interactions depend only on �α/�, and �α is
linear with respect to η, � is also linear with respect to η.
Thus, �2 and �3 are linear with respect to η as well; this
makes our scheme, to the best of our knowledge, a unique
method for generating spin-motion coupling that is nonlinear
in â j with field interactions that are only linear in η. This
linearity is crucial for laser-free-based approaches, where η

is small and nonlinear interactions are hard to generate.

Physical Interpretation

In the above discussion, a clear pattern emerged: the largest
nonzero contribution to the overall dynamics of the system
comes from terms in the Magnus expansion that oscillate at
opposite frequencies to one another. When n = 1 in Eq. (2),
for example, the â j, j′ and â†

j, j′ terms oscillate with frequen-

cies −� and �, respectively, leading to Ĥeff ∝ â†
j′ â j + c.c. If

n = −1, the opposite is true, leading to Ĥeff ∝ â j′ â j + c.c. We
also see the same behavior for third-order terms in the Magnus
expansion when n = ±2. If we consider that the values of �

and n� represent the detuning of the gate fields from their
respective transitions, we can interpret this apparent pattern
as a result of the conservation of energy. This means that
Ĥeff describes the leading-order energy conserving transition
in the Magnus expansion. From this perspective, the physics
we describe here parallels that of a Raman transition, where
the spin-dependent displacement acts as an auxiliary state.
In Sec. III we show that, similar to a Raman transition, the
larger the detuning from the auxiliary state, the more the
time evolution corresponds to Ĥeff, due to the reduced effect
off-resonant processes. This leads to the question of whether a
more general pattern exists, where, for example, larger values
of n in Eq. (2) generate forms of Ĥeff that are higher order
in â j, j′ beyond the third-order interactions shown here. In this
work, we only postulate that such a pattern exists, leaving a
rigorous proof to future work.

B. Laser-free implementation with radiofrequency gradient

Equation (2) may be implemented with multiple pairs of
lasers, symmetrically detuned around the transition frequency
of the qubit. The same interaction may also be implemented
without lasers, using multiple pairs of gradients oscillating
close to the qubit frequency [41,42]. In this subsection, we
present a method of implementing Eq. (2) in a laser-free sys-
tem using a single radiofrequency gradient in addition to a pair
of weak, symmetrically detuned microwave fields [17,38,39].
Such a scheme would simplify the experimental, overhead as
multiple gradients are typically hard to generate.

In the interaction picture with respect to the motion and
qubit frequencies, the Hamiltonian for such a microwave-
driven system, after the rotating wave approximation, takes
the form [38]

Ĥr (t ) = 2h̄�μσ̂x cos(δt )

+ 2h̄σ̂z cos(ωgt )
∑

j

�g, j{â†
j e

iω j t + â je
−iω j t }, (7)

where �g, j is the Rabi frequency of the radiofrequency gradi-
ent coupled to one or two motional modes j, �μ is the Rabi
frequency of the symmetrically detuned microwave pair, and
δ is the magnitude of the detuning of each microwave pair
from the qubit frequency. We assumed the microwave pair is
polarized in the x direction.

We analyze the dynamics of Eq. (7) by transforming into
the interaction picture with respect to the bichromatic mi-
crowave pair [38,43,44]

ĤI (t ) = Û †
I (t )Ĥr (t )ÛI (t ) + ih̄ ˙̂U †

I (t )ÛI (t ), (8)

where the frame transformation ÛI (t ) is given by

ÛI (t ) = exp
{

− 2i�μ sin(δt )

δ
σ̂x

}
. (9)

Here, ĤI (t ) takes the form

ĤI (t ) = 2h̄ cos(ωgt )
{ ∑

j

�g, j (â je
−iω j t + â†

j e
iω j t )

}

×
{
σ̂z

[
J0

(4�μ

δ

)
+ 2

∞∑
m=1

J2m

(4�μ

δ

)
cos(2mδt )

]

+ 2σ̂y

∞∑
m=1

J2m−1

(4�μ

δ

)
sin([2m − 1]δt )

}
, (10)

where Jm represents the mth Bessel function of the first kind,
which we assume has an argument of 4�μ/δ from here on.
As δ � �g, j in typical laser-free experiments, Eq. (10) shows
that there is an infinite set of potential spin-motion interactions
that can be generated by tuning an integer multiple of δ to
be near any of the ω j ± ωg sidebands. Choosing δ such that
it is an even multiple of ω j ± ωg produces a σ̂z coupling to
the spin, while an odd multiple of δ produces a σ̂y coupling
[38,45]. Finally, we must ensure that the dynamics one expects
from ĤI (t ) correspond to that of Ĥr (t ). If the bichromatic
microwave pair is ramped on and off slowly compared to 1/δ,
ÛI (t f ) → Î and the time propagator that results from Ĥr (t )
converges to that of ĤI (t ). We can, therefore, consider ĤI (t )
exclusively when discussing the dynamics of Ĥr (t ) [38,45].

The authors of Ref. [45] discussed methods to set the
values of δ and ωg to generate an entangling interaction that
is insensitive to decoherence of the qubit and motion. We
implement a similar idea here to produce a Hamiltonian that
takes the form of Eq. (2). Assuming that the values of ω j and
ω j′ are fixed, we generate Eq. (2) by setting even and odd
multiples of δ to be near the ω j − ωg and ω j′ + ωg sidebands,
respectively. As an example, we choose δ and ωg to satisfy

2δ = (ω j − ωg) − �,

3δ = (ω j′ + ωg) − n�, (11)
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1
−

F

20 4 86 10 12 14
0.0

0.1

0.2

0.3

0.4

P
tfΩ/2π

rs = 0.5

rs = 1.5
rs = 1.0

nj

FIG. 1. One-mode squeezing operation generated by Eq. (2). We
plot the infidelity 1 − F versus normalized gate duration t f �, while
keeping �2t f constant. This dependence is shown for squeezing
parameters 2�2t f ≡ rs of 1.5 (blue dashed), 1.0 (purple dotted), and
0.5 (solid light blue). For large values of t f , 1 − F → 0, as described
in the text. The inset shows the probability P of phonon state |nj〉 for
a squeezed state with rs = 1.5, generated by integrating Eq. (2) for
t f �/2π � 2.2.

where, in the above equation, j′ may or may not refer to the
same mode as j. Upon making the rotating wave approxima-
tion, this gives

ĤI (t ) � h̄{�g, jJ2σ̂zâ je
−i�t − i�g, j′J3σ̂yâ j′e

−in�t } + c.c.,

(12)

taking the form of Eq. (2) wherein �α = �g, jJ2, �α′ =
�g, j′J3, and φ = π/2. Thus, our scheme enables nonlinear
spin-motion coupling, without lasers, using a single gradient.

III. NUMERICAL SIMULATIONS

Here we show that, for a selection of the Ĥeff shown in
Table I, the time dynamics produced by Ĥeff converge to those
of Eq. (2) when � is large compared to �α,α′ . Here, we
assume that �α and �α′ have the same value �. We also
assume that α = y and α′ = x. We show the convergence
to Ĥeff in Figs. 1–4 with the “fidelity” F of each opera-
tion, defined as F ≡ | 〈T |ψ (t )〉 |2, where |T 〉 is the target
state obtained through direct integration of Ĥeff, and |ψ (t )〉
is the state obtained through direct integration of Eq. (2).

1
−

F

tfΩ/2π

r2s = 0.75

r2s = 0.25
r2s = 0.50

P

nj

nj

FIG. 2. Two-mode squeezing operation generated by Eq. (2).
Here we show the infidelity 1 − F versus the normalized gate dura-
tion t f �/2π . This dependence is shown for squeezing parameters r2s

of 0.75 (red dashed), 0.5 (pink dotted), and 0.25 (orange solid). For
larger values of t f , all three calculations converge to that of Ĥeff. The
inset shows the probabilities P of occupying a state with nj phonons
in the j mode and nj′ phonons in the j ′ mode for r2s = 0.75 and
t f �/2π � 1.7.

1
−

F

tfΩ/2π

rbs = π/2

rbs = π/4 P |01

|10

rbs/π

FIG. 3. Beam-splitter operation generated by Eq. (2). Here we
show the infidelity 1 − F versus normalized gate duration t f �/2π .
This dependence is shown for two squeezing parameters rbs =
π/4 (solid turquoise) and rbs = π/2 (dashed green), for a system
initialized to the state |↓〉 |nj = 1, nj′ = 0〉. The inset shows the
probabilities of the phonon subspace being in the state |10〉 and |01〉
versus time, for a rbs = π/2 interaction such that t f �/2π � 2.5.

After the simulation, we can approximate experimental run-
times for both laser-based and laser-free experiments, using
Rabi frequencies of �/2π = 10 kHz and �/2π = 1 kHz, re-
spectively, which are within the parameter regime of current
experiments [15,16,39].

A. One-mode squeezing

One-mode squeezing has been shown to enhance quan-
tum metrology [21,23,46,47], the speed of entangling gates
[48,49], and is an integral component of CVQC [2]. In trapped
ions, squeezing of the motion can be generated through modu-
lation of the trapping potential at twice the motional frequency
[21,23], a diabatic change of the trapping frequency [21,50],
a pair of laser beams with a difference frequency that is twice
the motional frequency [28,51], or reservoir engineering [30].
Here, we present an alternative scheme, where each geometric
phase gate interaction in Eq. (2) operates on the same mode
( j = j′) with opposite detunings � from one another (n =
−1). This interaction produces a spin-dependent squeezing
operation

Ĥeff � ih̄�2σ̂z
(
â†2

j eiφ − â2
j e

−iφ
)
. (13)

P

tfΩ/2π

1
−

F

nj

r3s = 0.12

r3s = 0.06
r3s = 0.09

FIG. 4. Trisqueezing operation generated by Eq. (2). We show
the infidelity 1 − F versus normalized gate duration t f �/2π for
three squeezing parameters r3s = 0.12 (brown dashed), r3s = 0.09
(light brown dotted), and r3s = 0.06 (tan solid). The inset shows
the probabilities P of each phonon state nj for r3s = 0.12 and
t f �/2π � 2.9 generated by Eq. (2), showing that only states with
phonon numbers that are multiples of 3 are populated.
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This spin-dependent squeezing operation can be combined
with single qubit rotations and spin measurements to create
non-Gaussian states [33].

In Fig. 1, we numerically integrate both Eqs. (2) Eq. (13),
showing 1 − F versus t f for squeezing parameters rs ≡ 2�2t f

of 0.5, 1.0, and 1.5. For all three calculations, the results
of Eqs. (2) and (13) converge to one another, showing that
our scheme can produce an effective squeezing operation to
arbitrary accuracy for large-enough values of t f . We can use
the results shown in Fig. 1 to approximate the experimental
run time needed to induce a given value of rs and F . For
example, a squeezing parameter of rs = 1.5 with fidelity F �
0.99 has a normalized gate duration of t f �/2π = 1.2. This
corresponds to 120 μs for laser-based (�/2π = 10 kHz) and
1.2 ms for laser-free (�/2π = 1 kHz) implementations.

B. Two-mode squeezing

Two-mode squeezing generates an entangled state between
two bosonic modes [52]. It has been used as a resource
for CVQC, quantum cryptography, as well as quantum tele-
portation [4,53–55], and is potentially useful for quantum
metrology [34]. Experiments have been demonstrated with
optical [54,55] and microwave [56] photons, but not the
phonon modes of a trapped ion crystal. Two-mode squeez-
ing in trapped ions has been proposed through the nonlinear
motional coupling of the ions to laser fields oscillating at
ω j + ω j′ [29,34]; our approach offers an alternative that uses
only linear motional coupling. Implementing Eq. (2), where
each geometric phase-gate interaction operates on different
modes ( j �= j′) and each of the interactions have equal and
opposite detunings (n = −1), the effective interaction is

Ĥeff � ih̄�2σ̂z(â†
j â

†
j′e

iφ − â j â j′e
−iφ ), (14)

representing spin-dependent two-mode squeezing. Since this
Hamiltonian is spin-dependent, it may be combined with
single-qubit operations and observations of the spin to cre-
ate the superpositions of multiple two-mode-squeezed states
described in Ref. [34].

In Fig. 2, we numerically integrate Eqs. (2) and (14) for
n = −1 and j �= j′, showing 1 − F versus the normalized
gate duration t f �/2π for squeezing parameters r2s ≡ �2t f

[52] of 0.25, 0.5, and 0.75; here, there is a factor of 2
difference in the definitions of r2s and rs [52]. For all three cal-
culations, the results of Eqs. (2) and (14) converge, showing
that our scheme is capable of producing an effective two-mode
squeezing operation to arbitrary accuracy for large-enough
values of t f . For r2s = 0.75 and F � 0.99, t f �/2π = 1.4,
giving experimental run times of t f � 140 μs and 1.4 ms
for laser-based (�/2π = 10 kHz) and laser-free parameters
(�/2π = 1 kHz), respectively.

C. Beam splitter

The beam-splitter interaction swaps the states of two boson
modes [52]. This interaction is useful for CVQC [2,4,53],
and can also be used to cool multiple motional modes of
trapped ion crystals [57,58]. This interaction was experimen-
tally demonstrated in trapped ions by modulating the voltages
of the trap electrodes [57], and with a running optical lat-

tice [32]. Instead, we here implement Eq. (2), where each
geometric phase-gate interaction operates on different modes
( j �= j′) and each interaction has the same detuning (n = 1).
The resulting interaction is

Ĥeff � ih̄�2σ̂z(â j â
†
j′e

iφ − â†
j â j′e

−iφ ), (15)

representing a spin-dependent beam splitter.
In Fig. 3, we numerically integrate Eq. (2), for n = 1

and j �= j′, and Eq. (15), showing 1 − F versus t f �/2π .
The figure compares two calculations where the system is
initialized to the state |↓〉 |nj = 1, n j′ = 0〉, for rbs ≡ �2t f

of π/4 and π/2. The inset of the figure shows the prob-
abilities of finding the motion in the states |10〉 and |01〉,
traced over the spin degree of freedom, for t f �/2π � 2.5 and
rbs = π/2. For a value of rbs = π/4, a value of t f �/2π � 1.8
is needed to achieve F � 0.99. This duration is t f � 180 μs
for laser-based parameters (�/2π = 10 kHz) and t f � 1.8 ms
for laser-free parameters (�/2π � 1 kHz).

D. Trisqueezing

Universal CVQC requires at least one non-Gaussian oper-
ation [2]. For n = −2 and j = j′ in Eq. (2), we generate the
effective interaction

Ĥeff � h̄�3σ̂x
(
â†3

j eiφ + â3
j e

iφ
)
, (16)

which is the trisqueezing Hamiltonian [59–62], which has
recently been demonstrated using microwave photons [63].
Here, we stay in a regime where the squeezing parameter is
small t f �3 ≡ r3s � 0.12. Importantly, implementing the non-
Gaussian trisqueezing interaction using our scheme has no
additional experimental overhead compared to the Gaussian
interactions discussed above.

In Fig. 4, we numerically integrate Eq. (2) starting in the
motional ground state, and compare the results to Eq. (16)
by showing 1 − F versus the normalized time t f �/2π . The
inset of the figure shows the probability of the motional mode
having a given number of phonons n j , tracing over the spin
degree of freedom for an implementation of Eq. (2) with
and t f �/2π � 2.9; this shows that, as expected, only states
with phonon numbers that are multiples of 3 have nonzero
populations. For r3s = 0.12, a gate duration of t f �/2π � 1.4
is needed to achieve F � 0.99 which corresponds to t f �
140 μs and t f � 1.4 ms using laser-based (�/2π = 10 kHz)
and laser-free parameters (�/2π = 1 kHz), respectively.

IV. CONCLUSION

In conclusion, we introduced an alternative hybrid scheme
for implementing spin-motion interactions that are nonlinear
in their motional component, using only spin-motion interac-
tions that are linear in their motional component. Through
the application two geometric phase-gate interactions acting
on a single ion, we showed that it is possible to create a
broad set of Gaussian and non-Gaussian operations, sufficient
for universal quantum computation over continuous variables.
The type of operation can be chosen by simply changing
the frequencies of the individual phase-gate interactions. We
also proposed an implementation of our scheme in a laser-
free setup using a single radiofrequency gradient. Finally, we
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verified the validity of our scheme numerically, and provided
approximate experimental run times. While most experimen-
tal demonstrations of nonlinear coupling to a boson mode
have only focused on one type of interaction, all the in-
teractions discussed here can be implemented in the same
experimental setup.
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APPENDIX: UNIVERSAL CVQC WITH LINEAR
SPIN-MOTION COUPLING

The authors of Ref. [5] showed that a spin’s nonlinear
interaction with a harmonic oscillator may be used to gener-
ate non-Gaussian motional states. We here show that, when
combined with single-qubit rotations on the Bloch sphere,
the interaction used in geometric phase gates can achieve
universal CVQC. This Hamiltonian takes the form

Ĥ (φ, α, j) = h̄�σ̂α (â†
j e

iφ + â je
−iφ ), (A1)

where � is the interaction Rabi frequency, φ is a phase,
α ∈ {x, y, z}, and j corresponds to the motional mode. Follow-
ing Ref. [2], we can generate higher-order interactions from
Eq. (A1) using the sequence

e−(i/h̄)Ĥδt e−(i/h̄)Ĥ ′δt e(i/h̄)Ĥδt e(i/h̄)Ĥ ′δt = e(δt/h̄)2[Ĥ ′,Ĥ ]

+O([δt�]3). (A2)

This sequence was used in trapped ions to simulate a spin-1/2
particle in an external potential [31], but relied on interactions
that were nonlinear in â j to achieve a universal continuous
variable gate set. Here, we use interactions that are only linear
in â j , relaxing the experimental requirements.

Choosing Ĥ (φ, α, j) and Ĥ ′ = Ĥ (φ′, α′, j′), we can obtain
a general second-order gate interaction

Û2g = exp(−2iδt2�2εα,α′,α′′ σ̂α′′ {iδ j j′ sin(φ − φ′)

+ (â†
j e

iφ + â je
−iφ )(â†

j′e
iφ′ + â j′e

−iφ′
)}) + O([δt�]3),

(A3)

where δ j j′ is the Kronecker delta function and εα,α′,α′′ is
the Levi-Civita symbol. If we assume α �= α′, and apply a
single-qubit rotation to transform the spin to a ∓1 eigen-
state of σ̂α′′ , and ignore a global phase, the gate operator
becomes

Û2g = exp(±2iδt2�2{(â†
j e

iφ + â je
−iφ )(â†

j′e
iφ′

+ â j′e
−iφ′

)}) + O(δt3). (A4)

In combination with coherent displacements, which can be
generated by Eq. (A1) alone, this represents the Gaus-
sian operations needed for universal CVQC [53]. Gaussian
operations alone are not sufficient for universal quantum
computation [2], however, and can be classically simulated
efficiently if the initial state is Gaussian [64,65]. To achieve
higher-order motional couplings, we can apply Eq. (A2)
again, substituting Û2g for e±(δt/h̄)2Ĥ ′

, where the required
Ĥ ′ → −Ĥ ′ may be achieved by applying π pulses to the
spin [66]. This interaction will generate the degree-3 motional
coupling needed to satisfy the Lloyd-Braunstein criterion for
universal CVQC [2]. For example, if we generate Û2g with
Ĥ (0, x, j) and Ĥ ′(0, y, j) and, again, apply Eq. (A2) using
Ĥ = Ĥ (0, x, j) we obtain

Û3g = exp(4iδt3�3[â†
j + â j]

3σ̂y). (A5)

If this operator acts on a ±1 eigenstate of σ̂y, we obtain

Û3g → exp(±4iδt3�3[â†
j + â j]

3). (A6)

This time-evolution operator corresponds to a cubic phase
gate [53], and, taken in combination with Gaussian opera-
tions, satisfies the Lloyd-Braunstein criterion. Note that the
cubic phase gate was chosen for simplicity, and a simi-
lar prescription could be chosen to generate a broad set of
degree-3 gates through different choices of φ and j at each
step.

This section shows that our hybrid approach to universal
CVQC has the same physical gate requirements as discrete
quantum computing. There are, however, many situations
where a digitized series of pulses is not desirable, for example,
if Gaussian interactions are needed for reasons other than
CVQC [21,23,49]. Therefore, in the main paper we discuss
a technique for generating higher-order spin-motion coupling
that uses continuously applied fields.

[1] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[2] S. Lloyd and S. L. Braunstein, Quantum Computation over
Continuous Variables, Phys. Rev. Lett. 82, 1784 (1999).

[3] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an
oscillator, Phys. Rev. A 64, 012310 (2001).

[4] S. Braunstein and P. van Loock, Quantum information with
continuous variables, Rev. of Mod. Phys. 77, 513 (2005).

[5] H.-K. Lau and M. B. Plenio, Universal Quantum Computing
with Arbitrary Continuous-Variable Encoding, Phys. Rev. Lett.
117, 100501 (2016).

[6] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and
A. Furusawa, Hybrid discrete-and continuous-variable quantum
information, Nat. Phys. 11, 713 (2015).

[7] J. Hastrup, K. Park, J. B. Brask, R. Filip, and U. L. Andersen,
Measurement-free preparation of grid states, npj Quantum Inf.
7, 17 (2021).

[8] B. de Neeve, T. L. Nguyen, T. Behrle, and J. P. Home, Error
correction of a logical grid state qubit by dissipative pumping,
arXiv:2010.09681.

[9] J. I. Cirac and P. Zoller, Quantum Computations
with Cold Trapped Ions, Phys. Rev. Lett. 74, 4091
(1995).

032609-6

https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevLett.117.100501
https://doi.org/10.1038/nphys3410
https://doi.org/10.1038/s41534-020-00353-3
http://arxiv.org/abs/arXiv:2010.09681
https://doi.org/10.1103/PhysRevLett.74.4091


UNIVERSAL HYBRID QUANTUM COMPUTING IN TRAPPED … PHYSICAL REVIEW A 104, 032609 (2021)

[10] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland, Demonstration of A Fundamental Quantum Logic
Gate, Phys. Rev. Lett. 75, 4714 (1995).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, England, 2010).

[12] H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with
trapped ions, Phys. Rep. 469, 155 (2008).

[13] R. Blatt and D. J. Wineland, Entangled states of trapped atomic
ions, Nature (London) 453, 1008 (2008).

[14] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
High-Fidelity Preparation, Gates, Memory, and Readout of A
Trapped-Ion Quantum Bit, Phys. Rev. Lett. 113, 220501 (2014).

[15] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M.
Lucas, High-Fidelity Quantum Logic Gates Using Trapped-Ion
Hyperfine Qubits, Phys. Rev. Lett. 117, 060504 (2016).

[16] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C.
Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and
D. J. Wineland, High-Fidelity Universal Gate Set for 9Be+ Ion
Qubits, Phys. Rev. Lett. 117, 060505 (2016).

[17] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A.
Kwiatkowski, S. Glancy, E. Knill, D. J. Wineland, D. Leibfried,
A. C. Wilson, D. T. C. Allcock, and D. H. Slichter, High-
fidelity laser-free universal control of trapped ion qubits, Nature
(London) 597, 209 (2021).

[18] D. Porras and J. I. Cirac, Effective Quantum Spin Systems with
Trapped Ions, Phys. Rev. Lett. 92, 207901 (2004).

[19] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, Direct
Observation of Dynamical Quantum Phase Transitions in an
Interacting Many-Body System, Phys. Rev. Lett. 119, 080501
(2017).

[20] R. T. Sutherland, Analog quantum simulation of superradiance
and subradiance in trapped ions, Phys. Rev. A 100, 061405(R)
(2019).

[21] D. J. Heinzen and D. J. Wineland, Quantum-limited cooling and
detection of radio-frequency oscillations by laser-cooled ions,
Phys. Rev. A 42, 2977 (1990).

[22] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,
Squeezed atomic states and projection noise in spectroscopy,
Phys. Rev. A 50, 67 (1994).

[23] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson,
D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C.
Allcock, Quantum amplification of mechanical oscillator mo-
tion, Science 364, 1163 (2019).

[24] S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C.-W.
Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, 27Al+

Quantum-Logic Clock with a Systematic Uncertainty below
10−18, Phys. Rev. Lett. 123, 033201 (2019).

[25] K. C. McCormick, J. Keller, S. C. Burd, D. J. Wineland,
A. C. Wilson, and D. Leibfried, Quantum-enhanced sensing
of a single-ion mechanical oscillator, Nature (London) 572, 86
(2019).

[26] H.-K. Lau and D. F. V. James, Proposal for a scalable universal
bosonic simulator using individually trapped ions, Phys. Rev. A
85, 062329 (2012).

[27] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,
K. Mehta, and J. P. Home, Encoding a qubit in a trapped-ion
mechanical oscillator, Nature (London) 566, 513 (2019).

[28] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and
D. J. Wineland, Generation of Nonclassical Motional States of
a Trapped Atom, Phys. Rev. Lett. 76, 1796 (1996).

[29] H.-S. Zeng, L.-M. Kuang, and K.-L. Gao, Two-mode squeezed
states and their superposition in the motion of two trapped ions,
Phys. Lett. A 300, 427 (2002).

[30] D. Kienzler, H.-Y. Lo, B. Keitch, L. De Clercq, F. Leupold,
F. Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home,
Quantum harmonic oscillator state synthesis by reservoir engi-
neering, Science 347, 53 (2015).

[31] D. Leibfried, B. DeMarco, V. Meyer, M. Rowe, A. Ben-Kish,
J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband
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