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Correlation energy and quantum correlations in a solvable model
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Typically in many-body systems the correlation energy, which is defined as the difference between the
exact ground-state energy and the mean-field solution, has been a measure of the system’s total correlations.
However, under the quantum information context, it is possible to define some quantities in terms of the system’s
constituents that measure the classical and quantum correlations, such as the entanglement entropy, mutual
information, quantum discord, one-body entropy, etc. In this work we apply concepts of quantum information in
fermionic systems in order to study traditional correlation measures (the relative correlation energy). Concretely,
we analyze the two- and three-level Lipkin models, which are exactly solvable (but nontrivial) models commonly
used in the context of the many-body problem. We conclude that the correlation energy is not a good estimator
of the total correlation of the system, and information theoretic measures should be considered.
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I. INTRODUCTION

The atomic nucleus is a mesoscopic system made of
protons and neutrons with strong interactions among its con-
stituents. Due to the complexity of the nuclear interaction and
the large number of particles involved, the dynamic governing
the nucleus is very rich, giving rise to a huge amount of
different situations involving single-particle and/or collec-
tive excitations [1,2]. As a consequence of the underlying
mean field, which implies the existence of well-defined or-
bits, low-energy nuclear properties can dramatically change
by changing a few units of the nucleus’ proton and neutron
numbers as a consequence of the filling of different orbits.
At low excitation energies, the so-called collective excitations
show more regular patterns than the single-particle ones. The
reason is that they are associated to more macroscopiclike
degrees of freedom as the shape of the nucleus, and they
are intimately connected with the mechanism of spontaneous
symmetry breaking and symmetry restoration [3,4]. In finite
systems this mechanism can be viewed as an artifact of the
underlying mean-field description to capture correlations in
a simple way. Nevertheless, the breaking for symmetries at
the mean-field level is intimately connected to properties of
the exact wave functions of the system. The subsequent sym-
metry restoration of the symmetry-broken mean-field wave
functions gives rise to collective bands (rotational bands being
the most prominent example) that represent a prominent part
of the nuclear spectrum with very specific and universal prop-
erties like the I (I + 1) energy rule of rotational bands [2–4].
To improve upon the mean-field plus symmetry restoration
paradigm, one usually adds an additional layer where fluc-
tuations on the collective degrees of freedom are explicitly
treated. This is usually done in the framework of the gen-
erator coordinate method [2,3]. A question that arises very
often is how to quantify the balance between the correlations

associated to symmetry restoration and quantum fluctuations.
The answer to this question might help to devise new ap-
proaches to solve the nuclear many-body problem. On the
other hand, the connection between the exact solution of
the problem and the approximate mean field plus symmetry
restoration plus fluctuations approach is not straightforward,
and there has been quite a lot of work to extract from the exact
shell model solution [5] the underlying symmetry-breaking
mean field. Therefore it is also interesting to find a quantity
to be computed with the exact solution of the problem that
is able to pinpoint the quantum phase transitions observed in
the mean-field description of the nucleus. This is an approach
also pursued in other fields such as quantum chemistry [6,7],
superconductors in condensed matter [8], atomic physics [9],
and even nuclear physics [10,11]. With these two goals in
mind, we analyze in this paper some quantum-information-
related quantities as the overall entropy expressed in the basis
of the natural states, the quantum discord, and the correlation
energy. We will carry out our study in the realm of a simple,
albeit rich, exactly solvable nuclear physics problem: the Lip-
kin model with two [12] and three [13,14] active orbits. Both
models show quantum phase transitions as a function of the
interaction parameter strength that mimics the spontaneous
symmetry breaking mechanism discussed above.

II. THEORETICAL BACKGROUND

In this section we will introduce briefly some concepts
that we will use in the next sections. When dealing with
correlations in a many-body system, one has to clarify two
fundamental issues: what are we defining as a subsystem and
how to quantify the correlations among them? If our Hilbert
space is defined as a tensor product of Hilbert spaces, then
the notion of subsystem arises naturally. For example, the
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Hilbert space of a system formed by N qubits is simply the
tensor product of each qubit’s Hilbert space. However, if we
are dealing with indistinguishable particles (fermions in our
case) in the context of second quantization, we cannot de-
fine the Hilbert space as a tensor product of each particle’s
Hilbert space because of the (anti)symmetry of the wave
function. A lot of effort has been made to disentangle the
correlations associated to the symmetrization principle or su-
perselection rules from those coming from the dynamic of the
system [15–17], and quantities like the fermionic partial trace
between modes [18] or the von Neumann entropy of the one-
body density matrix [10] have been defined. Those quantities
have been thoroughly used in the literature [6,7,11,15,19,20].
In this work we will discuss quantities that make use of both
concepts.

There are many possibilities in order to characterize and
quantify correlations in a quantum system. Typically, if our
Hilbert space can be written as H = HA ⊗ HB,1. we can mea-
sure the entanglement between the A and B subsystems for a
given pure state |ψ〉 ∈ H through the von Neumann entropy
of the reduced states, namely,

S(ρ (A) ) = −Tr(ρ (A) ln ρ (A) ), (1)

where ρ (A) = TrB(|ψ〉〈ψ |) [21]. However, if we are dealing
with mixed states, this method is no longer valid as an entan-
glement measure. Furthermore, entanglement is not the only
type of correlation present in a quantum system: it can also
have classical correlations, and quantum correlations beyond
entanglement.

The quantum discord [22] is a measurement-based quantity
of the total quantum correlations (including entanglement and
beyond) between two subsystems. It is defined as

δ(A, B) = I (A, B) − J (A, B),

where I (A, B) = S(ρ (A) ) + S(ρ (B) ) − S(ρ (A,B) ) is the mutual
information, and J (A, B) is defined as [23]

J (A, B) = max
{�(B)

k }
S(ρ (A) ) − S

(
ρ (A,B)

∣∣{�(B)
k

})
. (2)

While I (A, B) is a measure of all kinds of correlations, J (A, B)
quantifies only the classical part. The measurement-based
conditional entropy in Eq. (2) is defined as

S
(
ρ (A,B)|{�(B)

k

}) =
∑

k

pkS
(
ρ

(A,B)
k

)
,

where ρ
(A,B)
k = 1

pk
�

(B)
k ρ (A,B)�

(B)
k is the measured-projected

total state, and pk = tr(�(B)
k ρ (A,B)�

(B)
k ) is the associated prob-

ability. The measurement and the associated projector �
(B)
k are

defined only in the sector B of the bipartition. For pure states,
the quantum discord reduces to the entanglement between
subsystems with J (A, B) = δ(A, B) [24]. However, for mixed

1As discussed above, when dealing with indistinguishable particles
in the second quantization formalism we don’t have a tensor product
structure. However, if we define the subsystems as the single particle
states (also called orbitals or modes in this work), we can treat the
system as a tensor product if we take into account some subtleties
which arise from the fermionic anticommutation rules [18]

states this is not true in general. This quantity is interesting
since, as we will see in the next sections, it can be a use-
ful measure in order to study quantum phase transitions in
many-body systems [25–27]. Moreover, the quantum discord
is closely related to the entanglement of formation, which is a
generalization of the entanglement entropy, Eq. (1), under the
context of mixed states [28].

However, Eq. (2) requires a variational procedure involving
all possible B-subsystem projectors, so that computing quan-
tum discord is in general analytically and computationally
intractable [29]. Fortunately, if we are dealing with fermionic
systems, no optimization process is needed in order to com-
pute quantum discord between two arbitrary orbitals [30].

Another useful measure of a system’s correlations is the
overall entropy, defined as

Sov =
∑

i

S(ρ (i) ),

where ρ (i) is the reduced density matrix for the ith orbital. Its
value is a measure of the total system’s correlations, if the total
state is pure [7]. It is closely related to the one-body entropy,
defined as the von Neumann entropy of the one-body density
matrix [10], whose elements are γi j = 〈c†

j ci〉. Because of the
parity superselection rule [31] we have

ρ (i) =
(

1 − 〈c†
i ci〉 0

0 〈c†
i ci〉

)
,

where the operator c†
i (ci) creates (annihilates) a particle in

the ith orbital, and the usual fermionic anticommutation rules
{c†

i , c j} = δi j , {ci, c j} = 0 are fulfilled. If the overall entropy
is evaluated in the natural orbital basis {a†

i } (which is defined
as the one that diagonalizes the one-body density matrix, and
it has been shown that that is the basis that minimizes the
overall entropy [19]), then

Snat
ov =

∑
i

f (〈a†
i ai〉),

S(γ ) =
∑

i

g(〈a†
i ai〉),

(3)

where the functions f and g are defined as f (x) = −(1 −
x) log(1 − x) − x log(x) and g(x) = −x log(x). Since both f
and g satisfy f (0) = g(0) = f (1) = g(1) = 0 and are real
valued smooth and strictly concave functions, the information
and behavior of Snat

ov and S(γ ) are essentially the same.
As we will discuss in the following sections, it will be use-

ful to compare this quantity, which quantifies the total system
correlation (under a quantum information perspective), with
the relative correlation energy [32,33], defined as

εcorr = Eexact − EHF

Eexact
,

where Eexact is the exact ground-state energy, and EHF is the
ground-state energy obtained at the mean-field Hartree-Fock
(HF) level. Traditionally, εcorr has been used to quantify the
amount of correlations in a system, since it compares the exact
ground-state energy which contains all the correlations in the
system with the mean-field one, which is taken here as an
uncorrelated reference. Moreover, the correlation energy is
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FIG. 1. A sketch of the two-level Lipkin model with N = 4,
where the lines represent the different orbitals.

closely related with the overlap between the exact ground state
and the Hartree-Fock one [34].

Those quantities will be analyzed in Secs. III and IV under
the context of the two- and three-level Lipkin model, respec-
tively. As we will explain in the following sections, an M-level
Lipkin model consists of a fermionic system composed of M
energy levels with an N-fold degeneracy for each one, where
N is the number of particles. An example with M = 2 and
N = 4 is depicted in Fig. 1.

III. TWO-LEVEL LIPKIN MODEL

In this section we will discuss the quantities previously
defined under the context of the two-level Lipkin model. The
so-called Lipkin model [12] (proposed by Lipkin, Meshkov,
and Glick in 1964) consists of an N-fermion two-level system
separated by an energy gap ε, each level having an N-fold
degeneracy (we assume that all fermions are of the same type
and have no spin, for simplicity). We label the upper and
lower level with the quantum number σ = + or σ = −, re-
spectively, and the degeneracy with the quantum number p =
1, 2, . . . , N . The quantum number σ can also be interpreted as
a parity quantum number (see below). A visual scheme of the
model is given in Fig. 1. The Hamiltonian is given in terms of
fermionic creation and annihilation operators by

H = εK0 − 1
2V (K+K+ + K−K−), (4)

with

K0 = 1

2

N∑
p=1

(c†
+,pc+,p − c†

−,pc−,p),

K+ =
N∑

p=1

c†
+,pc−,p K− = (K+)†.

As the interaction is of the monopole-monopole type, the
quantum number p is conserved in the model.

The advantage of this model is that it is exactly solvable,
since the operators introduced in Eq. (4) are the generators
of the algebra of SU(2).2 The mean-field (HF) solution can
be easily obtained [12] because the HF energy depends on
a single variational parameter. Defining the dimensionless
interaction strength χ = (N−1)V

ε
, it is observed that for certain

values of χ the HF solution breaks the parity symmetry of the
Hamiltonian in Eq. (4) (to be associated with the σ quantum
number). With the above definitions, the parity operator is

2See Refs. [35,36] and references therein for a detailed discussion
of the exact solution.

FIG. 2. Relative correlation energy as a function of the overall
entropy, for the exact ground state of the two-level Lipkin model and
different particle number N .

defined as

Pz = exp

(
iπ

N∑
p=1

c†
−,pc−,p

)
.

The HF states will have a well-defined parity if they are eigen-
states of the parity operator Pz. When χ � 1 the HF solution
preserves the parity symmetry (spherical phase), whereas the
symmetry is broken (deformed phase) when χ > 1 [35]. The
correlation energy of the ground state can be easily computed
by comparing the exact solution with the HF solution. This
quantity as well as the overall entropy in the natural orbital
basis depend on the strength parameter χ and they are strongly
correlated, as can be seen in Fig. 2.

We can distinguish three regions in this plot. For low
enough values of the overall entropy, the relative correlation
energy grows quasilinearly. Then, after a sudden discontinu-
ity of the second derivative (see Fig. 3 below) the relative
correlation energy reaches a maximum and then bends down
to gently decrease until the overall entropy saturates. This
change of tendency is due to the phase transition observed in

FIG. 3. Second derivative of the relative correlation energy
(Fig. 2) for increasing values of N (from left to right). We observe
a discontinuity in χ = 1, related to the phase transition of the model
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FIG. 4. Averaged one-body entropy of the exact ground state as
a function of the parameter κ . As the number of particles increases,
the transition between the spherical phase (low correlation regime)
and the deformed one (highly correlated regime) is sharper.

the HF solution at χ = 1. Figure 2 can also be interpreted in
terms of the values of χ . In the spherical phase (χ � 1) the
mean-field solution catches as many correlations as possible
while preserving the noninteracting picture and preserving the
system’s symmetry. As the correlation and interaction grow
(quantified by the overall entropy and the parameter χ ) the
relative correlation energy grows too, showing that the mean-
field approach is less accurate since the difference between
EHF and Eexact is getting bigger. When χ � 1, the system’s
correlations are too strong and the mean-field solution breaks
the parity symmetry in order to catch as many of them as
possible (see Fig. 4). In this way the relative correlation en-
ergy shows a decreasing behavior until the saturation of the
overall entropy. This change in the behavior of the system
can also be seen in Fig. 3, where the second derivative of
the relative correlation energy is plotted as a function of the
overall entropy. A sudden jump is observed in this quantity
when χ = 1, signaling the quantum phase transition.

However, Fig. 3 hides some subtleties. Although the phase
transition at χ = 1 is clear by the presence of the discon-
tinuity, Fig. 3 must not be interpreted as a “genuine phase
transition indicator.” In a genuine phase transition we observe
a change in the system’s behavior which becomes more ev-
ident as the size of the system grows. In Fig. 3 we see the
opposite behavior: the discontinuity is less abrupt when the
system’s size (the number of particles) is higher. This is due
to the nature of the HF approximation: it is more accurate
for higher values of N [1]. In this way we observe in Fig. 2
lower values for the relative correlation energy as N increases,
and therefore the discontinuity in the second derivative is less
abrupt.

We conclude from the previous discussion that the phase
transition present in the HF solution is not only a “feature” of
the mean-field method but it also reflects a structural change
in the exact wave function of the system. This statement is
consistent with the fact that the mean-field approximation
becomes more and more accurate as the number of particles in
the system increases and also with the fact that the phase tran-
sition is better defined as the number of particles increases. To

FIG. 5. Quantum discord between up and down levels of same
quantum number p (same degeneration level) for the HF ground
state.

exemplify the latter results, we show in Fig. 4 the averaged3

overall entropy (for the exact solution) as a function of the
interaction parameter χ for some values of N .

We observe a sudden change in the averaged one-body en-
tropy when χ = 1, which is sharper as the number of particles
increases. As the value of the averaged one-body entropy is a
measure of the correlations in the system, we conclude that
the spherical phase (χ < 1) corresponds to a low-correlated
regime in the exact solution, while the deformed phase (χ �
1) corresponds to a high-correlated regime. Therefore the
behavior of the overall entropy, which quantifies the total cor-
relation, can help us to distinguish between different phases in
the exact solution.

Other interesting quantity related to the overall entropy,
which is computed from the mean-field state, is the two-
orbital quantum discord [30] between a couple of modes with
same p and opposite σ for the HF ground state. Because of the
symmetries of this model, the reduced density matrix of those
modes are still pure (see Appendix A). For this reason, all
the quantum correlations are entanglement and the quantum
discord reduces to the entanglement entropy between modes.
However, as we will see in Sec. IV, this will not be the case for
the three-level Lipkin model. If we plot the quantum discord
[30]

δ(σ, p; −σ, p) =
{

0, if χ � 1
h(χ ), if 1 < χ

(5)

with h(x) = − 1
2 (1 − 1

x ) ln 1
2 (1 − 1

x ) − 1
2 (1 + 1

x ) ln 1
2 (1 + 1

x )
as a function of the interaction parameter χ we obtain Fig. 5.

As in Fig. 4, we see clearly the quantum phase transition
at χ = 1. In fact, Fig. 5 is very similar to Fig. 4 when the
particle number is large. This is to be expected, as the two-
orbital reduced state is pure and therefore the single-orbital
entropy represents the entanglement between the two orbitals.
Thus the overall entropy is twice the sum of the entanglement
between the orbital pairs. On the other hand, if we use Eq. (3)

3The averaged overall entropy is simply the “overall entropy per
particle,” which is Sov

N .
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and we take into account that in the natural basis 〈a†
−pa−p〉 +

〈a†
+pa+p〉 = 1, then Snat

ov = 2S(γ ). For this reason Figs. 4 and 5
are almost the same in the limit N → ∞. It is relevant to note
that the quantum discord depicted in Fig. 5 does not depend on
the particle number since it is a “microscopic” quantity (i.e., it
is defined between a couple of orbitals) of a mean-field state.
However, we can see clearly the quantum phase transition in
the behavior of this quantity. Moreover, as discussed in [36],
the nonzero quantum discord (entanglement in this model)
showed in Fig. 5 is a direct consequence of the symmetry
breaking at the mean-field level. For the exact ground state,
the reduced density matrix for two levels with the same p
and opposite σ does not have coherent elements and therefore
entanglement. However, for the HF ground state, the reduced
density matrix is pure and entangled.

IV. THREE-LEVEL LIPKIN MODEL

This model is a generalization [13] of the N-particle two-
level Lipkin model discussed in the previous section. There
are three energy levels in the model, each one with an N-fold
degeneracy and, analogously to the two-level Lipkin model,
the interaction term cannot change the degeneracy quantum
number p = 1, 2, ..., N . If we assume that the interaction is
the same for the three levels, which are equally spaced, we
can write the Hamiltonian as

H = ε(K22 − K00) − V

2

(
K2

10 + K2
20 + K2

21 + H.c.
)
, (6)

with

Kσσ ′ =
N∑

p=1

c†
σ pcσ ′ p.

As explained in [13,14,37] the exact ground state of Eq. (6)
can be easily computed numerically in the basis |n1, n2〉,
where ni is the number of particles in the ith level. The basis
elements are built upon the action of the operators Kn1

10 and
Kn2

20 acting on the states with all the orbits in level 0 occupied.
The given set of states is a basis to diagonalize H because the
operators Kσσ ′ are the generators of the algebra of SU(3).

If we compute the HF solution of the three-level Lipkin
model [14,37], it can be seen that there are two phase tran-
sitions, each one corresponding to the breaking of a level’s
symmetry. More precisely, the first phase transition is located
at χ = 1 and corresponds to a paritylike breaking of the
σ = 1 level, while the second one is located in χ = 3 and
corresponds to a paritylike breaking of the σ = 2 level. This
behavior is reflected in Fig. 6, where the relative correlation
energy as a function of the overall entropy, for the exact
ground state, is depicted in a similar way as in Fig. 2. When
the system’s correlation is low enough, the relative corre-
lation energy grows quasilinearly until reaching the second
derivative discontinuity at χ = 1 (Fig. 7). This is required in
order to catch the maximum correlations as possible while
maintaining the noninteracting ansatz. From this point on,
the relative correlation energy increases more slowly until the
second quantum phase transition takes place at χ = 3. From
there on, the relative correlation energy decreases while the

FIG. 6. Relative correlation energy as a function of the overall
entropy for the exact ground state of the three-level Lipkin model.

overall entropy increases, reflecting the fact the mean-field
solution approximates the exact solution better. Finally, as in
Fig. 2, the overall entropy saturates.

As discussed in Sec. III, the relative correlation energy
acquires lower values as the particle number increases, in
agreement with the general idea that the mean-field picture
increases its accuracy in the thermodynamic limit (infinite
number of particles). This is the reason why the discontinuity
in the second derivative depicted in Fig. 7 for different values
of particle number N is less and less pronounced as N gets
higher and higher. The behavior is essentially the same as in
the two-level Lipkin model, except for the double quantum
phase transition.

Following the same analysis as in Sec. III, we can study
the quantum phase transitions through the overall entropy as
a function of the interaction parameter (Fig. 8) and compare
them with the quantum discord between levels with different
σ and same p (Fig. 9).

FIG. 7. Second derivative of Fig. 6 for increasing values of N
(from left to right). We observe a discontinuity in χ = 1 and χ = 3
related to the two phase transitions of this model.
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FIG. 8. Averaged one-body entropy of the exact ground state as
a function of the parameter χ .

The behavior of the overall entropy is very similar in both
models. If N is small (for example N = 5 in Fig. 8) the shape
of the overall entropy is almost the same for the two- and
three-level Lipkin models. Since a quantum phase transition
is a global property, there is no difference between phases.
However, as the particle number increases, the distinction be-
tween the three regions (spherical phase in χ � 1, first parity
break in 1 � χ � 3 and second parity break in 3 � χ ) is
sharper, and the differences between the two- and three-level
Lipkin models arises. They can be clearly observed through
the quantum discord between levels of the same degeneration
number p for the HF ground state (Fig. 9).4 For the spherical
region, there is no quantum correlation between any level,
since the HF orbitals are related to the original ones through
the identity matrix. That is, the mean-field state is simply
the noninteracting ground state of Eq. (6). When the first
symmetry breaking occurs, the quantum correlations between
states with σ = 0 and 1 increases abruptly, while it remains
zero between σ = 0 and 2 and σ = 1 and 2. Indeed, its value
is exactly the same as the two-level Lipkin model [see Eqs. (5)
and (B2)]. Since the σ = 2 level remains unfilled (the σ = 0
and 1 levels are mixed while the σ = 2 level is not), there is
no difference between quantum correlations of the two- and
three-level Lipkin models within the mean-field description.
However, when the second symmetry breaking occurs, the
three σ levels are completely mixed. The quantum corre-
lations between σ = 0 and 1 levels spontaneously decrease
due to the redistribution of the occupation between all levels,
while the quantum discord between σ = 0 and 2 and σ = 1
and 2 grows in a very similar fashion (the quantum correla-
tions between σ = 1 and 2 being always lower). Finally, it is
interesting to note that if we compare the sum of the quantum
discord between the three possible orbital combinations (solid
red line in Fig. 9) with the one-body entropy in Fig. 8, we see

4Unlike in the two-level Lipkin model, here the reduced state is
in general mixed, and we cannot compute the entanglement as in
Eq. (1).

FIG. 9. Quantum discord between levels of the same degener-
ation number p for the HF ground state. The sum of the quantum
discord between the three different configurations is represented with
the solid red line.

that if N is high enough, both line’s shapes follow the same
“double jump” trend.

V. CONCLUSIONS

The relative correlation energy has been typically used in
order to quantify the amount of correlation in a state, since it is
defined as the relative difference between the exact energy and
the mean-field one. On the other hand, with the fast growth in
the last decades of the quantum information field, there are
currently a variety of methods in order to quantify the correla-
tion in a system in terms of their subsystems, for example, the
entanglement entropy, mutual information, quantum discord,
or the one-body entropy. In this work we have analyzed the
relative correlation energy and some quantum information
measures in the context of the two- and three-level Lipkin
model. We found that the relative correlation energy is not
a good estimator of the total correlation of a system, but it is
a good estimator of the accuracy of the mean-field approxi-
mation. Comparing the overall entropy (which is a measure
of the total system’s correlation under the quantum informa-
tion context) and the relative correlation energy, we do not
find quasilinear or monotonously increasing behavior. Indeed,
we find regions in the parameter space in which the overall
entropy grows but the relative correlation energy tends to
decrease, and regions in which both tend to grow. Those re-
gions are defined by quantum phase transitions, which can be
analyzed by computing the quantum discord between orbitals
at HF level, without the need of computing the exact ground
state.

Future work includes the analysis of different models, both
analytically or numerically solvable, such as N-level Lipkin,
picket fence, or single- j shell models. Also, a more exhaus-
tive analysis can be performed in more complex systems by
computing the quantum discord between bigger orbital sub-
systems of interest or extending the mean-field picture to a
quasiparticle vacuum.
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APPENDIX A: PURITY OF THE TWO-ORBITAL
REDUCED DENSITY MATRIX FOR THE HARTREE-FOCK

GROUND STATE OF THE TWO-LEVEL LIPKIN MODEL

In this section we will compute the purity of the two-orbital
reduced density matrix for the HF ground state of the two-
level Lipkin model. As explained in [38],5 we can write the
one-body density matrix of the HF ground state as

γσ p,σ ′ p′ =
{

1
2 (1 − σ cos ϕ)δp,p′ , if σ = σ ′

− 1
2 sin ϕδp,p′ , if σ = −σ ′

with

cos ϕ =
{

1, if χ � 1
1
χ
, if χ > 1.

Following the results in [30], the two-orbital reduced density
matrix is

ρ (A,B) = 1

2

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 + cos ϕ − sin ϕ 0

0 − sin ϕ 1 − cos ϕ 0

0 0 0 0

⎞
⎟⎟⎟⎠,

whose eigenvalues are 0 and 1.

APPENDIX B: QUANTUM DISCORD FOR THE
HARTREE-FOCK STATE IN THE THREE-LEVEL

LIPKIN MODEL

In this section we will briefly develop the analytic ex-
pression for the two-orbital quantum discord in the HF

5Here the authors work with the Agassi model, which is an exten-
sion of the two-level Lipkin model.

state of the three-level Lipkin model. Following Ref. [30],
we only need to compute the one-body elements and the
two-body diagonal elements for each orbital. If we assume
that the system is in the HF ground state, i.e., |HF〉 =∏N

q=1 a†
0q|0〉 (with |0〉 the vacuum state), then, using Wick’s

theorem,

〈HF|c†
αicβ j |HF〉 = U †

α0U0βδi j

〈HF|c†
αic

†
β jcβ jcαi|HF〉 = |U0αU0β |2(1 − δi j ),

with a†
αi = ∑2

β=0 Uαβc†
βi and UU † = 1. Following the results

in [14,37], the mean-field solution can be written as

U =

⎛
⎜⎜⎝

cα cβsα sβsα

−cβsα 1 + c2
β (cα − 1) sβcβ (cα − 1)

−sβsα sβcβ (cα − 1) 1 + s2
β (cα − 1)

⎞
⎟⎟⎠, (B1)

with cα := cos α, sα := sin α and

cos2 α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if χ � 1

1
2

(
1 + 1

χ

)
, if 1 < χ � 3

χ+3
3χ

, if 3 < χ

cos2 β =
⎧⎨
⎩

1, if 1 < χ � 3

1
2

(
3

2χ−3 + 1
)
, if 3 < χ

.

Using those results and Eq. (5) in [30], we easily obtain
the analytic expression for the quantum discord between any
orbital pair:

δ(0, p; 1, p) =

⎧⎪⎪⎨
⎪⎪⎩

0, if χ � 1

s
(

1
2 (1 + 1

χ
)
) + s

(
1
2 (1 − 1

χ

)
), if 1 < χ � 3

−s
(

2
3 + 1

χ

) + s
(

1
3 + 1

χ

) + s
(

1
3

)
, if 3 < χ

δ(0, p; 2, p) =
{

0, if χ � 3

s
(

1
3 + 1

χ

) + s
(

1
3 − 1

χ

) − s
(

2
3

)
, if 3 < χ

δ(1, p; 2, p) =
{

0, if χ � 3

−s
(

2
3 − 1

χ

) + s
(

1
3 − 1

χ

) + s
(

1
3

)
, if 3 < χ

(B2)

with s(x) = −x log x.
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