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Efficient nonlinear witnessing of non–absolutely separable states with lossy detectors
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Entangled states are undoubtedly an integral part of various quantum information processing tasks. On the
other hand, absolutely separable states which cannot be made entangled under any global unitary operations are
useless from the resource theoretic perspective, and hence, identifying non–absolutely separable states can be
an important issue for designing quantum technologies. Here we report that nonlinear witness operators provide
significant improvements in detecting non–absolutely separable states over their linear analogs, by invoking
examples of states in various dimensions. We also address the problem of closing the detection loophole and
we find the critical efficiency of detectors above which no fake detection of non–absolutely separable (non–
absolutely positive partial transposed) states is possible.
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I. INTRODUCTION

With the advent of quantum information science, shared
entanglement [1] turns out to be one of the main re-
sources for quantum technologies [2] which include quantum
key distribution [3], dense coding [4], teleportation [5],
clock synchronization [6], remote state preparation [7], and
measurement-based computation [8], to name a few. In the
theory of entanglement, developing efficient methods for the
generation, detection, and preservation of entangled states is
an important enterprise [1,9,10] while finding unprofitable
resources like unentangled or separable states which can be
decomposed in terms of a convex combination of pure product
states [11] also plays a crucial role. Over the years, several
criteria have been proposed for identifying entangled states,
although according to the computational complexity class,
the so-called entanglement-separability problem is NP-hard
[12,13]. A prominent mathematical detection method is the
partial transposition map, a necessary and sufficient criterion
for a bipartite system having dimensions up to six, which
is through the existence of all positive but not completely
positive maps [14,15].

Apart from these theoretical endeavors, an entanglement
witness (EW) provides a powerful tool in the domain of iden-
tification of entangled states. Since the set of the separable
states is convex and compact, the Hahn-Banach theorem en-
sures that there exists a witness operator for each entangled
state [15,16]. EWs are Hermitian operators, whose expecta-
tion value with respect to all separable states is non-negative
while they give a negative value for at least one entangled
state. Importantly, they provide an efficient method of de-
tecting entanglement in laboratories via local measurements,
thereby establishing themselves as useful [17].

As far as production of entanglement is concerned, sepa-
rable states can be made entangled by suitable joint unitary
operations [1]. On the contrary, there exists a class of separa-

ble states which cannot be made entangled by the application
of any joint unitary gate, known as absolutely separable (AS)
states or separable states from spectrum [18–26]. In a similar
fashion, absolutely positive partial transposed (PPT) states
are introduced. Although beyond qubit-qutrit states, PPT and
separability are not equivalent due to the existence of PPT
bound entangled states [27,28], interestingly, it was found
that absolute PPT and AS are the same in these dimensions
[21,23]. From the perspective of resource theory, AS states
or absolute PPT states are a kind of free or useless states
and, hence, detecting them is significant to identify resources.
In the recent past, witnesses for non-AS states have been
proposed in a similar spirit of linear EWs [24].

In the domain of detecting entanglement, another inter-
esting twist comes from the possibility of improving linear
witness operators by finding a way to obtain nonlinear EWs
[29–38]. It has been shown that every EW can be upgraded
by adding nonlinear term(s) and this technique enables us to
show that the set of separable states cannot have facets [30],
thereby shedding light on the geometry of quantum states [39]
(see recent results on the boundary of the set of AS states
[40,41]).

In the present work, we explore nonlinear improvement
of linear witnesses for determining non-AS states. To this
end, some expectation values in quadratic form have to be
subtracted from the linear witness operators by maintaining
their essential properties. We consider two ways of modifying
linear witnesses [29]—one is by subtracting a nonlinear term
corresponding to a single state which will be specified later
while in the other case, terms corresponding to a full basis set
are subtracted. The method is demonstrated by considering
a class of two-qubit, qubit-qudit, and two-qutrit states. In all
these cases, we show that nonlinear witnesses perform better
for detecting non-AS or non–absolutely PPT states in compar-
ison with the linear ones. Specifically, in higher dimensions,
we propose a class of absolutely separable states as well as
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absolutely PPT states by mixing bound entangled states with
white noise, and we construct nonlinear entanglement wit-
nesses explicitly to detect non–absolutely PPT states. Towards
obtaining the results, we also provide classes of global unitary
operators which can transform PPT states to states having
non–positive partial transposition (NPPT).

Finally, we discuss the change in behavior of these nonlin-
ear witnesses for non-AS states in a more realistic condition,
i.e., under inefficient detectors. Specifically, we consider the
scenario when the detectors may not click, indicating lost
events. Addressing the detection loophole in the Bell test is
an old problem [42]. In the context of EWs, critical detector
efficiency above which no fake detection of entanglement is
possible was derived in Ref. [43]. Recently similar conditions
for closing the detection loophole in the context of nonlin-
ear and measurement device-independent EWs are reported
[37,44]. In the context of identification of non-AS states, we
also show that nonlinear witnesses provide substantial im-
provements in critical detector efficiencies than that obtained
via linear witness operators.

We organize the paper in the following way. In Sec. II,
the mathematical condition for absolutely separable as well
as absolutely PPT states and nonlinear entanglement witness
operators are presented. To demonstrate the power of nonlin-
ear witnesses, a class of two-qubit non-AS states is considered
in Sec. III, while the classes of non–absolutely PPT states
are constructed and their identification methods via nonlinear
witnesses are exhibited in Sec. IV. In Sec. V, we provide a
method to overcome inefficiencies in the detection procedure,
and finally, we conclude in Sec. VI.

II. PRELIMINARY CONCEPTS, DEFINITIONS,
AND NOTATIONS

Before going into the main results, we first present the
known criteria for detecting absolutely separable and abso-
lutely PPT states. Let us also briefly introduce the nonlinear
witness operators for the set of non–absolutely separable and
non–absolutely PPT states.

A. Criteria for absolutely separable and absolutely positive
partial transpose states and their witness operators

Let us first give the definitions of absolutely separable and
absolutely PPT states.

Definition 1. Absolutely separable states are a class of
separable states which cannot be made entangled by the ap-
plication of any joint unitary operation.

Definition 2. Absolutely PPT states are those states which
cannot be made NPPT by applying any global unitary opera-
tions.

Detection criteria of absolutely separable states. If a bi-
partite state ρAB in 2 ⊗ n dimensions [45] has eigenvalues λ1,
λ2, . . . , λ2n in descending order, the condition for the absolute
separability reads as [21]

λ1 − λ2n−1 − 2
√

λ2n−2λ2n � 0. (1)

Interestingly, note that, in 2 ⊗ n dimensions, the set contain-
ing absolutely PPT states coincides with the set of absolutely
separable states [23], which is not true for the partial transpo-

sition criteria in the entanglement-separability paradigm for
n > 3.

Criteria for identifying absolutely PPT states. On the other
hand, in higher dimensions, i.e., in 3 ⊗ n, let the eigenvalues
of ρAB be λ1, λ2, . . . , λ3n organized in the descending order.
The states are absolutely PPT [21] when they satisfy the
following conditions:∣∣∣∣∣∣∣

2λ3n λ3n−1 − λ1 λ3n−3 − λ2

λ3n−1 − λ1 2λ3n−2 λ3n−4 − λ3

λ3n−3 − λ2 λ3n−4 − λ3 2λ3n−5

∣∣∣∣∣∣∣
� 0 (2)

and ∣∣∣∣∣∣∣
2λ3n λ3n−1 − λ1 λ3n−2 − λ2

λ3n−1 − λ1 2λ3n−3 λ3n−4 − λ3

λ3n−2 − λ2 λ3n−4 − λ3 2λ3n−5

∣∣∣∣∣∣∣
� 0. (3)

Notice that there exist no simple criteria for absolutely
separable states in higher dimensions. Moreover, with the
increase of dimensions, finding all the eigenvalues for check-
ing the above criteria requires full tomography [46], which
becomes cumbersome. Hence, the witness operators can play
a crucial role in detecting non–absolutely PPT states, both
theoretically and experimentally.

B. Nonlinear witnesses for non–absolutely PPT states

In functional analysis, a celebrated theorem, known as the
Hahn-Banach separation theorem, states that, if S1 and S2 are
two nonempty, convex disjoint subsets of a normed linear
space V , there is a hyperplane that separates S1 and S2 [47].
Moreover, if A and B are two nonempty disjoint subsets of
a normed linear vector space V , where one of them, say,
A, is convex, there exists a hyperplane, serving as a witness
operator which can separate the entire subset A from any point
of B. Since separable states and absolutely separable states
both form compact and convex sets, a Hermitian operator, W ,
for which Tr(σW ) � 0 for all separable states (absolutely sep-
arable states), σ , and Tr(ρW ) < 0 for at least one entangled
state (non-AS state), ρ, is called the linear witness operator.
They are linear witnesses since linear expression of mean
values of W is involved in the definition. Note that the set
of absolutely PPT states is also compact, and hence, one can
construct witness operators which can detect non–absolutely
PPT states. Given two EWs, W1 and W2, W2 is said to be finer
than W1 if it can detect all states which are also identified by
W1, while an EW is called optimal if there is no other witness
finer than it [48].

On the other hand, it was shown that the linear witness
operator can always be upgraded according to its capability
to identify nonseparable states by introducing nonlinearity
[29,30]. For example, let us consider states whose entangle-
ment can be detected by NPPT. In this case, nonseparability
can be witnessed by |φ〉〈φ|TB , where |φ〉 is the eigenvector
corresponding to the negative eigenvalue of ρTB , where TB

stands for partial transposition with respect to the party B. As
prescribed in Ref. [29], one can introduce nonlinearity in the
following ways:

F 1(ρ) = 〈|φ〉〈φ|TB〉 − 1

S(ψ )
〈X TB〉〈(X TB )†〉 (4)
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and

F 2(ρ) = 〈|φ〉〈φ|TB〉 −
k∑

i=1

〈
X TB

i

〉〈(
X TB

i

)†〉
, (5)

where all the expectation values are taken with respect to the
given state ρ. Here in Eq. (4), X is given by |φ〉〈ψ |, where
|ψ〉 is any arbitrary state and S(ψ ) is the square of the largest
Schmidt coefficient of the state |ψ〉, while in Eq. (5), Xi is
defined by |φ〉〈ψi| (i = 1, 2, . . . , k) with an orthonormal basis
being {|ψi〉}.

Let us now adopt a similar procedure to detect a non–
absolutely separable (non–absolutely PPT) state, say, ρ ′,
which can be made entangled from a separable (PPT) state
by the global unitary operator U [24]. In this situation, to
detect ρ ′, the witness operator |φ〉〈φ|TB should be modified
as U †|φ〉〈φ|TBU , where |φ〉 is the eigenvector corresponding
to the negative eigenvalue of (Uρ ′U †)TB .

Let us now incorporate the nonlinear terms into witness op-
erators for determining non-AS (non–absolutely PPT) states.

Observation 1. Identification procedures for non-AS and
non–absolutely PPT states based on nonlinear witness opera-
tors.

Like Eqs. (4) and (5), the detection method for non-AS
(non–absolutely PPT) states takes the the following forms:

F 1(ρ ′) = 〈U †|φ〉〈φ|TBU 〉 − 1

S(ψ )
〈U †X TBU 〉〈(U †X TBU )†〉,

F 2(ρ ′) = 〈U †|φ〉〈φ|TBU 〉 −
k∑

i=1

〈
U †Xi

TBU
〉〈(

U †Xi
TBU

)†〉
,

(6)

where X TB is replaced by U †X TBU and all the expectation val-
ues have to be taken with respect to the given state ρ ′. We will
show that in the detection process of non–absolutely separable
(non–absolutely PPT) states finding a nontrivial global U is,
in general, difficult.

III. NONLINEAR IMPROVEMENT IN WITNESSING
TWO-QUBIT NON–ABSOLUTELY SEPARABLE STATES

We now explicitly show advantages of nonlinear witnesses
over their linear counterparts by constructing them and by
invoking a class of two-qubit states.

We now use the criteria given in Eq. (1) to find the range of
the state parameter for which the state is absolutely separable.
To illustrate the method, let us consider a generalized Werner
state [11],

ρgW = p|ξ 〉〈ξ | + 1 − p

4
I4×4. (7)

where |ξ 〉 = cos α|00〉 + eiφ sin α|11〉, p is the mixing pa-
rameter and I4×4 is the identity operator with the subscript
representing the size of the matrix, thereby indicating the
dimension of the system. Following the condition written in
Eq. (1) with 2n = 4, we find that ρgW is absolutely separable
in the range 0 � p � 1

3 , which is independent of α and φ,
while the state is entangled when 1

1+2 sin 2α
< p � 1. Except

for α = π/4, there exists a range of p in which the state is sep-
arable but not absolutely separable. For example, for α = π

12 ,

i.e., sin 2α = 1
2 , the state ρgW is entangled with 1

2 < p � 1
and separable but not absolutely separable in 1/3 < p � 1/2.
This implies that there exists a global unitary operator which
can convert the state ρgW to an entangled state (or, NPPT in
2 ⊗ 2), say, ρe, in the range 1

3 < p � 1
1+2 sin 2α

.
Let us consider a global unitary operator, given by

U = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0
√

2 0 0

0 0
√

2 0
−1 0 0 1

⎞
⎟⎟⎟⎠. (8)

After applying this unitary operator, ρgW becomes ρe for
p > 0.366; i.e., when 0.366 < p < 0.5, the state is entangled
although it was initially separable, i.e., PPT.

By choosing |φ〉 = 1√
2
(|01〉 + |10〉), we can show that

U †|φ〉〈φ|TBU can detect the state ρgW as non–absolutely
separable in the range 0.366 < p < 0.5. Let us take
|φ〉 = cos θ |01〉 + sin θ |10〉 (0 � θ � π ), and in that case,
U †|φ〉〈φ|TBU can detect the state ρgW as non–absolutely sep-
arable in the range 1

1+√
3 sin 2θ

< p < 0.5, with the condition
being

〈W (ρ1)〉 = −√
3p sin 2θ − p + 1

4
< 0. (9)

To make a relatively weaker witness than optimal with θ =
π/4, consider any value of θ between π/10.21 and π/2.4872
to detect the range for which the state ρgW is non–absolutely
separable. Let us now introduce nonlinearity to improve the
range of detection. By considering |ψ〉 = |01〉, and by using
Eq. (6), we can reach the condition for the state ρgW to be
non–absolutely separable if

F 1
|01〉(ρ1) = −√

3p sin 2θ − p + 1

4

− [cos θ (1 − p) − √
3p sin θ ]2

16
< 0, (10)

while using |ψ〉 = |10〉, the condition gets modified as

F 1
|10〉(ρ1) = −√

3p sin 2θ − p + 1

4

− [sin θ (1 − p) − √
3p cos θ ]2

16
< 0. (11)

Instead of product states, if we use entangled state as |ψ〉 =
1√
2
(|01〉 ± |10〉), we cannot provide any advantage except for

some range of θ . On the other hand, for obtaining F 2, we
choose an orthonormal basis, {|ψ〉i = |00〉, |01〉, |10〉, |11〉},
and obtain the criteria for witnessing non–absolutely separa-
ble states as

F 2(ρ1) = −√
3p sin 2θ − p + 1

4

− [cos θ (1 − p) − √
3p sin θ ]2

16

− [sin θ (1 − p) − √
3p cos θ ]2

16
< 0. (12)
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FIG. 1. Witness operators 〈W 〉 vs p of the generalized Werner
state, ρgW in Eq. (7). Solid (blue), dashed (red), and dotted (green)
lines correspond to nonlinear witness operators, F 2 and F 1, and
linear witnesses, respectively. Here α = π/12 in |ξ〉 and θ = 0.352
in the witness operator in |φ〉, in radians. Both the axes are
dimensionless.

Notice that instead of the computational basis {|ψi〉}, if we
take the Bell basis (i.e., entangled states as basis elements),
we reach the same condition as above. Figure 1 depicts the
comparison between linear witness operators and two kinds
of nonlinear witness operators in the case of detecting a
non–absolutely separable state, ρgW, for fixed values of α

and θ .

IV. CONSTRUCTION OF NON–ABSOLUTELY PPT STATES
WITH THE CONJUNCTION OF PPT BOUND ENTANGLED

STATES AND THEIR WITNESSES

In this section, we show the usefulness of nonlinearity in
witness operators for recognizing non–absolutely separable
and non–absolutely PPT states in higher dimensions. To illus-
trate this, we construct absolutely separable (absolutely PPT)
states by mixing white noise with PPT bound entangled states
in 2 ⊗ 4 and 3 ⊗ 3 systems. Such examples also shed light on
the boundaries of the set of PPT bound entangled states and
absolutely PPT states.

A. Witnessing non–absolutely separable states
via PPT bound entangled states

In the 2 ⊗ 4 system, let us concentrate on the mixture of
the PPT bound entangled state with white noise, given by

ρ2 = pρb + 1 − p

8
I8×8, (13)

where ρb is the bound entangled state [27] represented as

ρb = 1

7b + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2

2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2

2 0 0 1+b
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(14)

FIG. 2. Mixing parameter p against b in ρ2 = pρb + 1−p
8 I8×8 in

Eq. (13). Circles (red), squares (blue), and triangles (green) rep-
resent the boundaries of absolutely separable states and non-AS
states, PPT states and NPPT states after applying unitary operators
U (π/3, π ) and U1 in Eqs. (15) and (A1), respectively. Both the axes
are dimensionless.

with b ∈ [0, 1]. Except for b = 0 and 1 where ρb is separable,
it is PPT bound entangled. The condition for this state to be
absolutely separable, and thereby absolutely PPT, in this case
is given by [following inequality (1) with 2n = 8] λ1 − λ7 −
2
√

λ6λ8 � 0, where λi’s are eigenvalues of ρ2 in descending
order. In Fig. 2, circles indicates the boundary of absolutely
separable and non-AS states in the (b, p) plane and, hence, the
region below the boundary represents the absolute separability
or absolute PPT of ρ2. Moreover, we find that ρ2 is always
PPT for any values of b and p and, therefore, it is important to
identify the states lying above the boundary that are non-AS
states which can be converted to NPPT states with the help of
global unitary operators. For example, we consider a global
unitary operator, U , given by

U (φ1, φ2) = a1 [σx ⊗ σy ⊗ σz] + a2 [σy ⊗ σz ⊗ σx]

+ a3 [σz ⊗ σx ⊗ σy], (15)

where σ ’s are Pauli spin matrices with some parameters a1,
a2, and a3, such that a2

1 + a2
2 + a2

3 = 1. We parametrize them
as a1 = cos φ1, a2 = sin φ1 sin φ2, and a3 = sin φ1 cos φ2, 0 �
φ1 � π and 0 � φ2 � 2π . Taking φ1 and φ2 as π/3 and π , re-
spectively, we observe that some non-AS states become NPPT
states, which are marked in Fig. 2 by squares. We observe that
there still exist some non-absolute PPT states (lying between
the envelopes of circles and squares) which we cannot make
into NPPT states by this unitary operator.

At this point, it should be noted that different values of
b require different witnesses to detect the state properly. Let
us illustrate the entire process for b = 0.7. We find that W =
U (π/3, π )†|φ〉〈φ|TBU (π/3, π ) can detect ρ2 as a non-AS
state, when 0.62 < p � 1 as shown in Fig. 3. Here |φ〉 is the
column vector (−0.133 48, 0.677 43, −0.097 38, 0.022 71,
0.003 33, 0.040 54, −0.714 27, 0.037 88)T , where (...)T

denotes the transposition of |φ〉. It is the best linear witness
operator for b = 0.7 and for a given U (π/3, π ), since W
constructed by using |φ〉 can detect all the non-AS states when
p ∈ (0.62, 1].
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FIG. 3. Witness operators with p for ρ2 in Eq. (13). Choices
of {θi}’s in |φ′〉 are mentioned in the text. Here b = 0.7. All other
specifications are the same as those in Fig. 1. Both the axes are
dimensionless.

Let us now take a general |φ′〉 = (sin θ1 sin θ2 sin θ3 sin θ4

sin θ5 sin θ6 sin θ7, sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6 cos θ7,

sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 cos θ6, sin θ1 sin θ2 sin θ3 sin θ4

cos θ5, sin θ1 sin θ2 sin θ3 cos θ4, sin θ1 sin θ2 cos θ3, sin θ1

cos θ2, cos θ1)T , with 0 � θi � π, i = 1, . . . , 6 and
0 � θ7 � 2π . In the case of a linear witness operator,
U (π/3, π )†|φ′〉〈φ′|TBU (π/3, π ) can also detect ρ2 as
a non-AS state in some range of p depending on the
parameter values involved in |φ〉. However, we can introduce
nonlinearity to improve the range of detection. For this
purpose, we consider |ψ〉 = 1√

2
(|00〉 + |10〉) for the F 1 type

of nonlinear witness operator and the orthonormal basis
{|00〉, |01〉, |02〉, |03〉, |10〉, |11〉, |12〉, |13〉} for F 2. Now,
using Eq. (6), and choosing θ1 = 2.073 45, θ2 = 2.367 10,
θ3 = 1.5128, θ4 = 1.508, θ5 = 1.5382, θ6 = 1.7109, and
θ7 = 0.194 55 in |φ〉 (where all values are in radians), we
observe a clear improvement over linear witness operators
(see Fig. 3).

Remark 1. A similar method can also be applied for other
values of b.

Remark 2. For the clear demonstration of the utility of
nonlinear witness operators, we choose a set of {θi}. Different
values of {θi} lead to qualitatively similar results.

B. Detecting non–absolutely PPT states in a 3 ⊗ 3 system

Let us move to an example of a class of two-qutrit state.
This example is different than the examples considered before,
since in a 3 ⊗ 3 system the sets of absolutely separable states
and absolutely PPT states are different and we concentrate on
the detection of non–absolutely PPT states. For this purpose,
let us consider the state

ρ3 = pρ ′
b + 1 − p

9
I9×9, (16)

where ρb [28] is given by

ρ ′
b = 2

7
|ψ̃〉〈ψ̃ | + b

7
σ+ + 5 − b

7
σ−. (17)

Here |ψ̃〉 = 1√
3
(|00〉 + |11〉 + |22〉), σ+ = 1

3 (|01〉〈01| +
|12〉〈12| + |20〉〈20|), and σ− = 1

3 (|10〉〈10| + |21〉〈21| +
|02〉〈02|). The state ρ ′

b is PPT for 1 � b � 4, and so
we confine our calculations to this range of b. By using

FIG. 4. The mixing parameter p with respect to b in the state
ρ3 in Eq. (16). Here we choose U (π/18, 5π/6) and U1 as given in
Eqs. (18) and (A2). All other specifications are the same as those in
Fig. 2.

inequalities (2) and (3), we provide the range of b and p for
which the state ρ3 is absolutely PPT (see the red circles in
Fig. 4 for the boundary of absolutely PPT and non–absolutely
PPT states). Like Eq. (15), the unitary operator in this case
reads as

U (φ1, φ2) = cos φ1[σx ⊗ σy ⊗ σz]

+ sin φ1 sin φ2[σy ⊗ σz ⊗ σx]

+ sin φ1 cos φ2[σz ⊗ σx ⊗ σy] ⊕ [1], (18)

where [1] is a 1 × 1 matrix with entry 1. A unitary operator of
this class, specifically, U (π/18, 5π/6), is capable of making
non–absolutely PPT states into NPPT states for some region
in the (b, p) plane as depicted by squares in Fig. 4. Notice that
we require a different unitary operator if the non–absolutely
PPT states belonging to the region between circles and squares
have to be made into NPPT states (as also seen in Fig. 2).

Like in the previous example, we fix b = 1.5. Let us
first construct a linear witness operator, W = U (π/18,

5π/6)†|φ〉〈φ|TBU (π/18, 5π/6), which detects the state ρ3 as
non–absolutely PPT for 0.6 < p � 1. In this case, |φ〉 =
(−0.4476 − 0.004 054i, −0.0103 − 0.009 966i,−0.001 158
+ 0.3953i, 0.029 44 − 0.048 32i, 0.000 352 7 − 0.001 285i,
−0.050 52 + 0.010 27i, 0.000 449 − 0.3918i, −0.0478 −
0.030 61i, 0.6933)CT , where (...)CT means the transposition
of the row vector (...) alongwith complex conjugation.

To portray the power of the nonlinear witness operator,
let us choose |φ′〉 = (p1 + ip2,−0.0103 − 0.009 966i,
−0.001 158 + 0.3953i, 0.029 44 − 0.048 32i, 0.000 352 7 −
0.001 285i, −0.050 52 + 0.010 27i, 0.000 449 − 0.3918i,
−0.0478 − 0.030 61i, p3 + ip4)CT , with p1 = −0.564 882,
p2 = 0.471 498, p3 = 0.373 546, and p4 = 0.0, and for F 1

and F 2, let us choose |ψ〉 = 1+i√
2
|22〉 and the orthonormal

basis 1+i√
2
{|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉},

respectively. Notice that |φ′〉 is almost same as |φ〉 in the
linear witness operator except for the first and the last entries.
With these parameter values, we again identify a range of the
noise value p for which the performance of F 2 is better than
that of F 1 and the linear witness operator (see Fig. 5).
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FIG. 5. Plots of nonlinear and linear witness operators 〈W 〉
against the noise parameter p for ρ3 in Eq. (16). Here b = 1.5. The
choices of {pi}’s and the basis required for witness operators are
mentioned in the text. All other specifications are the same as those
in Fig. 1.

V. DETECTION LOOPHOLE IN NONLINEAR WITNESS
OPERATOR FOR NON–ABSOLUTELY SEPARABLE

(NON–ABSOLUTELY PPT) STATES

All the results derived in Secs. III and IV are under the
assumption that the apparatuses used in the identification
process are perfect. We will now investigate the response of
imperfect detectors, like no clicking of detectors (lost events)
or additional events on nonlinear witnesses [37,43]. We find
the critical efficiency of detectors so as to avoid the fake
detection of resources.

Towards fulfilling the aim, we decompose a witness opera-
tor in the local operator basis such that W = C0I + ∑

α CαSα ,
where I stands for the identity operator, Sα represents a term
from the expansion of W in the local operator basis, and Cα is
the corresponding expansion coefficient [43]. Using this de-
composition, it can be shown that the condition for detecting
a NPPT state using a linear witness operator experimentally
when the detector does not work ideally is given by

〈Wφ〉m < C0

(
1 − 1

η−

)
, (19)

where 〈Wφ〉m is the experimentally measured value of the
witness operator and η− is the lost event efficiency of the de-
tector (which is supplied). We here assume that the additional
event efficiency vanishes. On the other hand, in the case of
the nonlinear witness operator, F 1, the relation between the
measured and the true values modifies as [37]

〈Wφ〉m < C0

(
1 − 1

η−

)
+ η−

S(ψ )

(〈H〉2
m + K2

H − 2〈H〉mKH
)

+ η−
S(ψ )

(〈A〉2
m + K2

A − 2〈A〉mKA
)

= C0

(
1 − 1

η−

)
+ η−

S(ψ )
X 2

nl, (20)

where 〈H〉m and 〈A〉m are experimentally measured values of
the Hermitian and anti-Hermitian parts of X TB , respectively
and X 2

nl is dependent on η− unless |ψ〉 is orthogonal to |φ〉.
Moreover KH and KA are given by

KH = C0H

(
1 − 1

η−

)
and KA = C0A

(
1 − 1

η−

)
, (21)

FIG. 6. Inefficiency in detectors. The upper bound of 〈Wφ〉m in
the inequality (22), W up, against Xnl = (〈H〉2

m + 〈A〉2
m ) for ρ2. We

plot for different values of η−. |φ〉’s chosen for computing F1 and
U are the same as those in Fig. 3. The behavior of W up indicates
that with the increase of the lost event inefficiency η−, nonlinearity
helps to obtain the high measured witness value. Both the axes are
dimensionless.

with C0H and C0A being the coefficients of the decomposition
of H and A in the local operator basis, respectively, corre-
sponding to the identity matrix.

It is possible to obtain 〈Wφ〉m for all the examples that we
have considered so far. For example, when η− is supplied,
for the generalized two-qubit Werner state, 〈Wφ〉m < 1

4 (1 −
1
η−

) with the linear witness operator, while for the nonlinear

case, 〈Wφ〉m < 1
4 (1 − 1

η−
) + η−{(〈H〉m − KH )2 + 〈A〉2

m}, with

KH = 1
4 cos θ (1 − 1

η−
) and KA = 0. So, for two qubits, the

loophole cannot be closed for our chosen linear witness (with
θ = 0.352) if η− < 0.435 82, while in case of the nonlinear
witness operator, for a given Xnl = 0.4, the upper bound of η−
can further be lowered to 0.3881, where we assume that |ψ〉 is
orthogonal to |φ〉 in F 1, so that KH and KA both are zero and
S(ψ ) = 0.88113.

Considering the qubit-qudit state ρ2 given in Eq. (13),
let us demonstrate the advantageous role of nonlinear
witness operators towards defeating the inefficiency in
detectors. In this case, the loophole of a linear witness
can be closed when 〈Wφ〉m < 1

8 (1 − 1
η−

), while the
similar condition in the presence of nonlinearity reads as
〈Wφ〉m < 1

8 (1 − 1
η−

) + η−{(〈H〉m − KH )2 + 〈A〉2
m}, where

KH = 1
8
√

2
(1 − 1

η−
) sin θ1 sin θ2 sin θ3(cos θ4 + sin θ4 sin θ5

sin θ6 sin θ7) and KA = 0.
Let us consider a special case when |ψ〉 is orthogonal to

|φ〉, thereby leading to the vanishing KH and KA. For a fixed
η−, the lost event inefficiency can be overcome when

〈Wφ〉m <
1

8

(
1 − 1

η−

)
+ η−

S(ψ )

{〈H〉2
m + 〈A〉2

m

} ≡ W up.

(22)
The above equation can be rewritten if we consider (〈H〉2

m +
〈A〉2

m) = X 2
nl. In Fig. 6, the upper bound of 〈Wφ〉m is shown

with respect to Xnl for different values of η−, which indicates
that the chances of detecting non–absolutely separable states
(with respect to the detector efficiency) increase with the
increasing value of nonlinearity X 2

nl. To visualize this, let us
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consider the situation when 〈Wφ〉m vanishes and the nonlinear
term is taken to be X 2

nl = 0.2. The detection of the non-AS
state is then possible when η− � 0.424, while for X 2

nl = 0.6,
η− � 0.275. Therefore, the increase of nonlinearity, i.e., Xnl,
enhances the possibility of identifying non-AS states even in
the presence of a relatively inferior detector. If we compare
the values with the linear witness operators, we can also show
that nonlinearity in the witness operator helps to overcome the
detection loopholes.

The similar detection inefficiency can also be overcome
when the task is to identify the range of p in ρ3, representing
the non–absolute PPT states. In this case, KH and KA can be
evaluated to be 1

9
√

2
(p3 + p4)(1 − 1

η−
) and 1

9
√

2
(p3 − p4)(1 −

1
η−

), respectively, and hence, the condition in Eq. (20) can also
be obtained for a fixed η−.

VI. CONCLUSION

Quantum information processing tasks can only success-
fully be realized if the resource states required for that
particular job are prepared and identified in an efficient man-
ner. Among several available resources, entanglement shared
between multiple parties has become one of the important
ingredients in most of the quantum protocols discovered to
date. Interestingly, however, it was found that there exists
a set of unentangled states which can be made entangled
by global unitary transformation while the rest of the states
remain useless, known as absolutely separable states.

Therefore, in the development of quantum technologies,
determining non–absolutely separable states in laboratories
can be a significant issue. Among several identification
methods developed in the theory of entanglement, the most
experimental-friendly one is the linear witness operators,

although, for a given state, the general method of obtaining an
optimal witness operator is still not known. On the other hand,
nonlinear witness operators are shown to be good alternatives
with respect to the detection of useful resources.

The present work develops nonlinear witness operators for
detecting non–absolutely separable and non–absolutely posi-
tive partial transposed (PPT) states in the presence of an ideal
detector and an inefficient detector. We explicitly constructed
nonlinear witness operators for the class of two-qubit states
and admixtures of bound entangled states with white noise
in different dimensions. Specifically, we showed that in the
presence of noise, nonlinear witness operators can be more
efficient at recognizing non–absolutely PPT states compared
to their linear counterparts. Moreover, we found that such
advantages are more pronounced when the detectors are in-
efficient.
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APPENDIX: DIFFERENT UNITARY OPERATORS LEAD
TO DIFFERENT WITNESS OPERATORS

It is to be noted that different unitary transformations make
a PPT state into a NPPT one in a different parameter range.
For example, motivated by the unitary transformation in two-
qubits, we write a global unitary operator in a 2 ⊗ 4 system
as

U1 = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1

0
√

2 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0
√

2 0 0 0

0 0 0 0 0
√

2 0 0

0 0 0 0 0 0
√

2 0

−1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

while for a 3 ⊗ 3 system, a similar unitary transformation takes the following form:

U1 = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1

0
√

2 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0
√

2 0 0 0

0 0 0 0 0 0
√

2 0 0

0 0 0 0 0 0 0
√

2 0

−1 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)
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In Figs 2 and 4, triangles symbolize the boundary between PPT states which can be made into NPPT states via these unitary
operators and the PPT states which remain PPT states even after their applications. Clearly, the above unitary operators are
weaker than U in Eqs. (15) and (18).
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