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Hybrid classical-quantum approach to solve the heat equation using quantum annealers
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The numerical solution of partial differential equations by discretization techniques is ubiquitous in compu-
tational physics. In this work we investigate this approach in the quantum realm by solving the heat equation
for a square plate subject to fixed temperatures at the edges and random heat sources and sinks within the
domain. The hybrid classical-quantum approach consists of the solution on a quantum computer of the coupled
linear system of equations that results from the discretization step. Owing to the limitations on the number of
qubits and their connectivity, we use the Gauss-Seidel method to divide the full system of linear equations into
subsystems, which are solved iteratively in block fashion. Each of the linear subsystems was solved using 2000Q
and Advantage quantum computers developed by D-Wave Systems Inc. By comparing classical numerical and
quantum solutions, we observe that the errors and chain break fraction are, on average, greater on the 2000Q
system. Unlike in the classical Gauss-Seidel method, the errors of the quantum solutions level off after a few
iterations of our algorithm. This is partly a result of the span of the real-number line available from the mapping
of the chosen size of the set of qubit states. We verified this by using techniques to progressively shrink the range
mapped by the set of qubit states at each iteration (increasing floating-point accuracy). As a result, no leveling
off is observed. However, an increase in qubits does not translate to an overall lower error. This is believed to be
indicative of the increasing length of chains required for the mapping to real numbers and the ensuing limitations
of hardware.
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I. INTRODUCTION

In computational physics, the mathematical description of
the problem of interest relies on the solution of partial differ-
ential equations (PDEs) restricted to boundary conditions and
initial conditions. Most of the techniques are based on dis-
cretization methods, in which the physical domain is divided
into cells or volumes. When implicit methods are chosen, the
discrete set of coupled equations to be solved is cast as a
system of linear equations of the form Ax = b, where A is
generally an N × N sparse matrix and the vector b is known,
while the vector x is the sought solution to the problem. The
largest fraction of computational time is spent on the solution
of the linear systems.

After the advent of the Harrow-Hassidim-Lloyd (HHL)
algorithm [1] to solve the linear quantum problem, subse-
quent works implemented it as subroutine to solve ordinary
or partial differential equations [2–9]. However, the solutions
for the differential equations were presented in the form of a
vector state, restricted to the calculation of global properties
of the system of interest; otherwise, the cost to obtain each
amplitude of the quantum state would render the quantum
approach too expensive. Clader et al. [3] argue that an expo-
nential speedup can be achieved by using the HHL algorithm
to solve the electromagnetic scattering cross-section problem
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via the finite-element method. However, Montanaro and Pal-
lister [6] showed that the relation between the size of the
system of linear equations and the accuracy of the solution
was missed, which implies that the speedup can be reduced
or even eliminated. A thorough analysis of the resources
needed to solve the electromagnetic scattering cross section
of a two-dimensional (2D) target was made by Scherer et al.
[10], who concluded that the number of resources must be
reduced by many orders of magnitude for the algorithm to
become practical. There are other issues concerning quantum
state preparation and the necessity of an oracle to encode the
coefficients of the matrix A. For reasons like these, it is not
yet clear whether exponential speedups have been achieved
by quantum algorithms using the linear quantum problem as a
subroutine. Recently, Linden et al. [11] showed that HHL-like
algorithms used to solve the heat equation are never faster
than the best classical algorithms. However, a quantum al-
ternative which uses amplitude amplification can accelerate
the process, achieving at most a quadratic speedup. Although
this a very encouraging result, the gate model of quantum
computing requires advances to approach large problems.
Following this reasoning, quantum annealers can be more
attractive at the current stage of quantum computing due to
their large number of qubits and increased connectivity. For
instance, a graph-coloring-based methodology to solve dif-
ferential equations through quantum annealers was proposed
in [12].
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An alternative method for solving the linear system of
equations by quantum annealing was presented by O’Malley
and Vesselinov [13] and Rogers and Singleton [14]. An analy-
sis of the resources employed for this task was made by Borle
and Lomonaco [15], who showed that in some circumstances
it is possible to gain an advantage over traditional algorithms
for the least-squares problem. The linear system is encoded
in a quadratic unconstrained binary optimization (QUBO)
problem [16] through a well-defined protocol, whose ground
state is the solution to the problem. As opposed to a HHL-type
algorithm, the final solution of the linear system of equations
is a classical state codifying the vector x.

In this work we solve the steady-state 2D heat equa-
tion with a hybrid classical-quantum algorithm. Applying the
finite-difference method to the partial differential equation
yields a system of coupled linear equations. In order to enable
the solution of larger linear systems of equations, we use the
block Gauss-Seidel method and solve the full system itera-
tively, where the smaller subsystems of equations are solved
on the quantum processing units (QPUs). The quantum algo-
rithm is implemented in the 2000Q and Advantage systems of
D-Wave Systems Inc.

This paper is divided as follows. In Sec. II we introduce
the D-Wave quantum annealing methodology, review the ap-
proach of Rogers and Singleton [14] to solve the linear system
of equations, present the block Gauss-Seidel method, and
elaborate on quantum resources required to implement the al-
gorithm. The results are presented in Sec. III and are followed
by conclusions and perspectives in Sec. IV.

II. METHODS

As described above, the basic idea of our hybrid approach
is to replace a classical subroutine to solve the system of
linear equations that results from the discretization of partial
differential equations by a quantum algorithm. In the proposed
method the system of linear equations is solved using quantum
annealing, in which the final Hamiltonian encodes a QUBO
problem [14]. In the following we briefly review the quantum
annealing followed by the QUBO problem.

A. D-Wave quantum annealing

D-Wave quantum annealing is based on the adiabatic quan-
tum evolution of the transverse Ising Hamiltonian with the
system in thermal equilibrium at a very low temperature [17].
The goal of the computation is to minimize an objective func-
tion (energy) for which the solution to the desired problem
is approximately encoded in its ground state [18]. In order to
achieve the ground state of the system with a high success
rate, the quantum fluctuations must be dominant over thermal
fluctuations [17].

The idea behind this model is the preparation of the system
as the ground state of an easy-to-prepare Hamiltonian, for
instance (h̄ω = 1),

H (0) = −
n∑

i=1

σ i
x, (1)

where σ i
x is the Pauli matrix in the x direction for the ith

particle and its ground state is |ψ (0)〉 = |+〉⊗n, which con-

tains the equally distributed superposition of all states in the
computational basis. By choosing the final Hamiltonian H (1)
as the operator whose ground state contains the solution to the
desired problem, it is possible to interpolate between these
two Hamiltonians with a schedule function f (s), subject to
f (0) = 0 and f (1) = 1, resulting in

H (s) = [1 − f (s)]H (0) + f (s)H (1), (2)

where s = t/T (0 � s � 1) is the dimensionless time, t is
the current time, and T is the total time of the computation.
The final Hamiltonian implemented by D-Wave is the Ising
Hamiltonian,

H (1) = HIsing =
∑

i

αiσ
i
z +

∑
i, j

βi jσ
i
zσ

j
z , (3)

with the parameters αi and βi j being chosen to encode the
solution to the problem and σ i

z being the Pauli matrix in the z
direction for particle i.

According to the adiabatic theorem [19], if the evolution is
performed adiabatically, then the ground state of the problem
Hamiltonian H (1) is found with high probability, provided
that the evolution time T from the initial Hamiltonian H (0) to
H (1) is proportional to g−2

min, where gmin = E1 − E0 is the min-
imum energy gap between the ground and first excited states
[19,20]. It is important to observe that a suitable choice for the
schedule function may result in completely different evolution
times [20–22]. Therefore, the final Hamiltonian H (1) must
contain the solution to the linear system of equations [14].
Next, we show how to build H (1), thus casting the system of
linear equations into a QUBO problem.

B. QUBO algorithm to solve linear systems of equations

O’Malley and Vesselinov [13] and Rogers and Singleton
[14] showed how to map the problem of solving a linear
system of equations into a QUBO problem [16]. Also, in
Chang et al. [23] the linear system of equations was obtained
as a particular case of a nonlinear system of equations. Given
a linear system Ax = b, the solution x can be found by mini-
mizing the function

H (x) = (Ax − b)T (Ax − b). (4)

We can approximate each component xi (i = 1, . . . , N) of
the vector x by its binary representation in a given interval
[−di, 2ci − di ), with R bits, as

xi = ci

R−1∑
r=0

qi
r2−r − di, (5)

where each qi
r ∈ {0, 1} is the rth bit in the binary representa-

tion of xi. If di > 0 and ci > di/2, the domain of xi contains
positive and negative real values. This can easily be general-
ized to complex variables [14]. After substituting (5) into (4)
and dropping the positive constant term, the equation becomes

H (q) =
R−1∑
r=0

N−1∑
i=0

hi
rqi

r +
R−1∑
r,s=0

N−1∑
i, j=0

Ji j
rs qi

rq j
s , (6)
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where the coefficients are given by

hi
r = −2

⎛
⎝ N−1∑

j,k=0

AkiAk jcid j +
N−1∑
j=0

Ajicib j

⎞
⎠2−r, (7)

Ji j
rs =

(
N−1∑
k=0

AkiAk jcic j

)
2−(r+s). (8)

Here, Ai j are coefficients of the matrix A, and bi are compo-
nents of the vector b.

In quantum annealers, the physical qubits are indexed by
a one-dimensional linear index � [see Eq. (3)], while the
logical qubits are indexed by two-dimensional indices i and r,
where i = 0, 1, . . . , N − 1 and r = 0, 1, . . . , R − 1, as shown
in Eq. (6). The mapping between the logical and physical
indices is given by

�(i, r) = iR + r, � = 0, . . . , NR − 1, (9)

such that the inverse mapping is

i� = ��/R�,
r� = � mod R. (10)

The mapping from q� → σ� is σ� = 2q� − 1, with σ� =
{+1,−1}.

Finally, the quantization of the QUBO problem is made
through q̂�|q〉 = q�|q〉, where the operators are such that
q̂2

� = q̂�, with eigenvalues q� ∈ {0, 1} and |q〉 = |q0〉 ⊗ · · · ⊗
|qNR−1〉. In order to solve the system of linear equations,
the coefficients hi

r → h� and Ji j
rs → J�κ , described in Eqs. (7)

and (8), must be provided to the D-Wave OCEAN software
[24], the interface that communicates with the quantum
hardware.

The readout of the quantum algorithm is a bit string
q0q1 . . . qNR−1 of NR qubits that returns to the classical al-
gorithm for further processing. In principle, the qubits must
be fully connected. However, in situations where the matrix
A is sparse, several coefficients Ji j

rs are set to zero; hence,
not all connections between the qubits are necessary. With
knowledge of the above, if the full linear system of equa-
tions is solved directly, the number of required qubits NR
for equivalent floating-point accuracy of classical algorithms
makes this implementation prohibitive at the current stage of
technological development. However, the linear system can
be divided into subsystems, and the full linear system can be
solved iteratively in a hybrid quantum-classical approach, as
detailed next.

C. Iterative QUBO method for solving linear systems

The block Gauss-Seidel method consists of solving the
linear system Ax = b iteratively by applying the Gauss-
Seidel method to the original system divided into blocks
[25]. Suppose, for simplicity, that the size of the sys-
tem is an even number N and we divide it into two
subsystems, [

A11 A12

A21 A22

][
x1

x2

]
=

[
b1

b2

]
. (11)

This translates to

A11x1 + A12x2 = b1, (12)

A21x1 + A22x2 = b2. (13)

In the iterative method we make an initial guess for x2,
such as x(0)

2 = 0, where the upper index of the block vector
x(0)

2 defines the step of the iteration process. Rearrangement of
Eqs. (12) and (13) allow us to set up an iterative process where
the initial guess is updated by solving two linear systems of
size N/2:

A11x(1)
1 = b1 − A12x(0)

2 , (14)

A22x(1)
2 = b2 − A21x(1)

1 . (15)

At the kth step,

A11x(k)
1 = b1 − A12x(k−1)

2 , (16)

A22x(k)
2 = b2 − A21x(k)

1 . (17)

The iteration above can be written in the form

Mx(k) = b − Ux(k−1), (18)

with

M =
[

A11 0
A21 A22

]
, U =

[
0 A12

0 0

]
,

b =
[

b1

b2

]
, x =

[
x1

x2

]
.

By subtracting Mx = b − Ux from Eq. (18),

Me(k) = −Ue(k−1), (19)

e(k) = (M−1U )(k)e(0), (20)

where e(k) = x(k) − x is the error at the kth iteration. Hence,
a sufficient condition for convergence is that the spectral
radius of the iteration matrix M−1U is less than unity, i.e.,
ρ(M−1U ) < 1.

The generalization of the method is possible by dividing
the original linear system into several blocks. If the sys-
tem is divided into D blocks, each smaller system has size
N/D × N/D. The number of required iterations is not known
beforehand but is defined by a convergence criterion. A typical
criterion depends on the normalized residual r̂ (k), defined by

r̂ (k) ≡ ||Ax(k) − b||
||b|| , (21)

where x(k) is the solution of the system of linear equations
after k iteration steps. A solution is considered to be converged
when r̂ (k) meets a specified tolerance τ , such that r̂ (k) � τ .
Here, we instead monitor the relative error of the solution
vector at the kth iteration x(k), given as

ê(k) ≡ ||x(k) − x||
||x|| , (22)

where the reference solution x is obtained by direct matrix in-
version. It can be shown that ê(k) and r̂ (k) are related according
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to

ê(k) � κ (A)r̂ (k), (23)

where κ (A) is the condition number of the coefficient matrix
A. Preconditioning techniques should be used when A is ill
conditioned. In this work we do not pursue this issue further
since it is relevant for classical and quantum algorithms alike.

Scaling of the method

The representation of a vector x with N components re-
quires NR qubits, where R is the number of qubits that gives
the desired accuracy of floating-point numerical representa-
tion ε of each variable xi. However, as stated above, it is
possible to solve smaller subsystems of size N/D by parti-
tioning the full system into D parts. In this case the number
of qubits scales as (N/D)R. In order to reduce the number
of qubits required in the computation for a given floating-
point accuracy of xi, one possibility is to shrink the interval
[−di, 2ci − di] at each iteration, which we adopt here. Any
reduction in the number of required qubits is significant in the
era of noisy intermediate-scale quantum computers, where at
most a few thousand qubits are available. Even more dramatic
is the number of connections necessary to solve the QUBO
problems. In the worst case, every logical qubit must be fully
connected [see the coefficient Ji j

rs in Eq. (7)]. The block Gauss-
Seidel method can reduce the number of connections among
qubits from N2R2 to N2R2/D2. Additionally, when A is sparse,
connectivity is reduced considerably.

If ε is a bound for the accuracy of the floating-point nu-
merical representation of a physical variable xi, for a solution
represented with R qubits, then

2ci

2R
� ε

since 2ci is the length of the open interval [−di, 2ci − di )
where the solution is represented and 2R is the number of
different points that can be represented with R bits inside
the aforementioned interval. From the expression above, the
number of qubits required to represent one variable with
floating-point accuracy ε scales as

R � log2 (2ci/ε).

Since the total computing time T depends on the energy
gap between the ground and first excited states of the system,
it is hard to obtain precise estimates of T . As noted by Amin
and Choi [26], the task of analytically extracting the minimum
gap scaling has been extremely difficult in practice, except for
a few special cases, such as for Deutsch-Jozsa [27] and Grover
[21,28] algorithms.

In Table I we summarize the consuming quantum resources
used in the iterative and noniterative QUBO algorithms to
solve the linear system of equations.

III. RESULTS AND DISCUSSION:
TWO-DIMENSIONAL HEAT EQUATION

In order to assess the viability and performance of the pro-
posed method, we solve the heat equation for a square plate of
length L subject to fixed temperature at its edges and multiple
heat sources and sinks within the domain. The steady-state

TABLE I. Comparison between original QUBO and iterative
QUBO methods. TN,R indicates the time to run one QUBO algorithm
for a linear system of size N and R qubits for representing the
solution, while TN/D,R is the time to solve a system of size N/D. niter

is the number of iterations in the case of the iterative QUBO method.
Both times TN,R and TN/D,R depend on the annealing time and the
number of runs to sample solutions of the problem.

Method No. qubits Time

Original QUBO NR TN,R

Iterative QUBO (N/D)R TN/D,RDniter

solution T (x, y) is then determined by the following PDE and
boundary conditions,

k

[
∂2T

∂x2
+ ∂2T

∂y2

]
+ q̇ = 0, (24)

T (x, 0) = 0 ◦C, x ∈ [0, L],

T (x, L) = x

L
× 100 ◦C, x ∈ [0, L],

T (0, y) = 0 ◦C, y ∈ [0, L],

T (L, y) = y

L
× 100 ◦C, y ∈ [0, L], (25)

where q̇(x, y) is the heat-source function and k is the thermal
conductivity of the material (we use k = 1 W/m K).

The problem is solved numerically by the finite-difference
method. The domain is divided into m segments of equal
length, with nodes located at positions xi = (L/m)i and y j =
(L/m) j, where i, j = 0, . . . , m. The points (xi, y j ) of the grid
corresponding to i = 0, i = m, j = 0, or j = m form the
boundary of the plate and are determined by the boundary
conditions (25). The points inside the grid are the unknowns,
and the partial derivatives can be written as

∂2T

∂x2
(xi, y j ) = T (xi+1, y j ) − 2T (xi, y j ) + T (xi−1, y j )

(L/m)2

+ (L/m)2

12

∂4T

∂x4
(x∗

i , y j ),

∂2T

∂y2
(xi, y j ) = T (xi, y j+1) − 2T (xi, y j ) + T (xi, y j−1)

(L/m)2

+ (L/m)2

12

∂4T

∂y4
(xi, y∗

j ) (26)

for some x∗
i ∈ [xi−1, xi+1] and y∗

j ∈ [y j−1, y j+1]. Ignoring
terms proportional to (L/m)2 or higher orders, the PDE is
approximated by

k[T (xi+1, y j ) − 4T (xi, y j ) + T (xi−1, y j ) + T (xi, y j+1)

+ T (xi, y j−1)] + Q(xi, y j ) = 0, (27)

where i, j = 1, 2, . . . , m − 1 and Q = (L/m)2q̇. Equation
(27) can be written in the form of a linear system Ax = b,
where A is a sparse matrix with few nonzero entries and b is
defined by the boundary conditions and eventual source terms.

The spatial discretization forms a 9 × 9 matrix (m = 11),
resulting in a system of coupled linear equations with 81
unknown variables, which is solved by the iterative QUBO
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FIG. 1. Temperature distribution in the square plate.

algorithm on the Advantage (Advantage_system1.1) and D-
Wave 2000Q (DW_2000Q_6) systems [29]. Each result
comes from the lowest-energy state obtained after a user-
defined number of 1000 repetitions (samples) of the annealing
process on the QPUs. The parameters hi

r (bias) and Ji j
rs (cou-

pling) were computed in order to fit in the range of the
physical system according to Eqs. (7) and (8). The minor
embedding, the process through which the logical qubits
given in Eq. (6) are mapped to physical qubits on quantum
hardware, was obtained automatically through the EMBED-
DINGCOMPOSITE function available from the D-Wave OCEAN

software package. A sample solution of the problem is shown
in Fig. 1, where a random distribution of heat sources and
sinks was implemented according to Fig. 2. The PYTHON code
used to generate all results presented here is publicly available
[30].

This approach enables us to solve larger linear systems
of equations, circumventing the limited number of qubits in
the D-Wave quantum processing units. In this work we use
at most 7 precision qubits and blocks of size 9 × 9, which
demand at most 63 logical qubits to describe all 9 unknown
variables in the block Gauss-Seidel approach, while 567
would be required to solve the full system of linear equations

FIG. 2. Distribution of random heat sources and sinks.

FIG. 3. The relative error ê(k) as a function of the number of
iterations k of the block Gauss-Seidel method for different numbers
of qubits used in the numerical representation of the solution x.
The solutions obtained by the 2000Q and Advantage systems are
compared with the classic Gauss-Seidel implementation.

with 7 precision qubits. This choice of block size and number
of qubits was a result of preliminary tests for which a possible
minor embedding on the D-Wave quantum computers was
found. We will see that the number of logical qubits is much
smaller than the number of physical qubits in both D-Wave
systems because of the limited connectivity between physical
qubits.

In Fig. 3 the dependence of the relative error defined in
Eq. (22) is shown as a function of the number of iterations
of the block Gauss-Seidel method for different numbers of
qubits used in the numerical representation of the unknown
variables. In this example, the smallest error is found using
three qubits in the Advantage system. We also notice that the
error does not continually decrease, as would be expected in a
classical algorithm. This occurs in part because of the limited
floating-point accuracy of the variables xi, such that after a
certain number of iterations, an improvement of the solution
is not possible. Another observation is that the increase in
qubits does not necessarily translate into smaller errors. This
result was not expected. However, it can be related to the
appearance of more noise in the system since there are more
qubits involved in the numerical representation of a given
variable xi, which in turn increases the probability of chain
breaks. This subject will be discussed in the following. In gen-
eral, the Advantage system performs marginally better than
2000Q.

In order to create a logical qubit, generally more than
one physical qubit is necessary. This is a consequence of
the limited number of couplers (connections) between qubits.
In the D-Wave quantum processing units, a set of physical
qubits that describe a vertex of a graph forms a chain. For
this chain to behave as a basic quantum processing unit, all of
its physical qubits must be in the same state. When this does
not occur, the chain is broken, and the state is determined by
a majority vote. In Fig. 4 we plot the average chain break
fraction as a function of the number of iterations and the
number of qubits used to represent each value of temperature.
The average chain break fraction for each number of precision
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FIG. 4. Average chain break fraction as a function of the number
of iterations k in the block Gauss-Seidel method for different num-
bers of precision qubits.

qubits is greater in the 2000Q than in the Advantage system
and is, on average, independent of the iteration number. This
result is expected since in the Chimera topology of the 2000Q
system each qubit is connected to 6 other qubits, while in the
Pegasus topology of the Advantage system, each qubit con-
nects to 15 other qubits. Furthermore, the Advantage system
has 5000+ qubits compared to 2000+ qubits in the 2000Q
system. These features allow for more compact chains that
are less susceptible to noise [31].

A significant improvement in the relative error of Fig. 3
can be obtained by reducing the length of the interval 2ci

represented by a given number of qubits at each iteration.
The iterative QUBO algorithm is modified by shrinking the
interval by factor of γ = 0.8 at each iteration; that is, the
interval for estimating the solution at the kth iteration is given
by [xk−1

i − ciγ
k−1, xk−1

i + ciγ
k−1], where xk−1

i is the estimate
for xi at the (k − 1)th iteration. This procedure increases the
capacity of the QUBO solver to represent the solution of
the system with a fixed number R of qubits, as can be seen
in Fig. 5. The implementation of this updated search inter-
val length brings the quantum solvers on par with the error
obtained on classical hardware. It must be noted, however,
that the update of the right-hand sides of Eqs. (16) and (17)
during the Gauss-Seidel iterations is performed on a clas-
sical computer, with double precision, even in the quantum
algorithm.

A comparison of Figs. 3 and 5 shows that the 2000Q
performs slightly better than the Advantage system when
the update of the search interval length is incorporated into
the algorithm. There is not a clear interpretation why this
occurs since the Advantage system is an improved version
of the 2000Q system, where the chains are more compact
and less susceptible to noise [31]. However, Zaborniak and
de Sousa [32] suggest that the DW_2000Q_6 QPU presents
a lower level of Hamiltonian noise compared to Advan-
tage_system1.1. This noise originates mainly from the flux
noise of the bias field. The results obtained from Figs. 3 and
5 also suggest that a greater number of precision qubits does
not necessarily translate to a smaller error, as noted earlier.

FIG. 5. The relative error ê(k) as a function of the number of
iterations k of the block Gauss-Seidel method, with a shrink factor
of 0.8 of the search domain at each iteration, for different numbers
of qubits used in the numerical representation of the solution x.
The solutions obtained by the 2000Q and Advantage systems are
compared with the classic Gauss-Seidel implementation.

IV. CONCLUSIONS AND PERSPECTIVES

The hybrid classical-quantum algorithm we have de-
veloped solves partial differential equations by the finite-
difference method, yielding a system of coupled linear
equations. This technique was tested with success for the 2D
steady-state heat equation but, in principle, can be applied to
any partial differential equation, encompassing a large array of
applications for solution by quantum annealers. The method
with updated search interval length allows us to obtain accu-
racy comparable to a classical algorithm with double precision
using three qubits to numerically represent each variable.
The main limitation of the quantum hardware is the reduced
connectivity between qubits, although great strides have been
made to increase the number of couplers for each qubit. The
iterative algorithm allows for a significant reduction in the
number of logical qubits, from NR to NR/D, at the expense
of an increase in the number of required iterations for a given
accuracy.

It is our understanding that there are good prospects for the
iterative QUBO algorithm and that there is room for further
improvements, such as robust heuristics to update the search
interval length. Another improvement can be obtained by us-
ing an application-oriented hardware design, as many linear
systems typical of finite-difference and finite-volume methods
are characterized by sparseness of the coefficient matrix A.
This could have the advantage of requiring fewer couplers
than the present platforms. Owing to our limited access to the
D-Wave QPUs, we believe that more tests are required to fully
benchmark the performance of 2000Q and Advantage systems
for the solution of systems of linear equations.
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