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How squeezed states both maximize and minimize the same notion of quantumness
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Beam splitters are routinely used for generating entanglement between modes in the optical and microwave
domains, requiring input states that are not convex combinations of coherent states. This leads to the ability
to generate entanglement at a beam splitter as a notion of quantumness. A similar, yet distinct, notion of
quantumness is the amount of entanglement generated by two-mode squeezers (i.e., four-wave mixers). We show
that squeezed-vacuum states, paradoxically, both minimize and maximize these notions of quantumness, with
the crucial resolution of the paradox hinging upon the relative phases between the input states and the devices.
Our notion of quantumness is intrinsically related to eigenvalue equations involving creation and annihilation
operators, governed by a set of inequalities that leads to generalized cat and squeezed-vacuum states.

DOI: 10.1103/PhysRevA.104.032425

I. INTRODUCTION

Many fundamental differences between quantum and clas-
sical mechanics involve quantum entanglement [1–5]. One
of the simplest methods for generating entanglement is by
impinging “nonclassical” states of light on a beam splitter
[6–25], where “classical” implies a convex mixture of co-
herent states [26–29]. This leads us to define a notion of
“quantumness” as the ability of an input state to generate
entangled outputs at a beam splitter. Here we answer the
question: What quantum states maximize and minimize this
notion?

Our framework applies to other elements that are rou-
tinely used for generating entanglement in the optical and
microwave domains, such as four-wave mixers that generate
two-mode squeezing. Moreover, it extends to other physical
scenarios such as cavity optomechanics [30,31], where the
distinction between a beam splitter and a two-mode squeezer
simply depends on the relationship between the laser-cavity
detuning and the mechanical frequency. We thus address the
more general question: What quantum states maximize and
minimize the amount of entanglement generated at an arbi-
trary element?

It is well known that, when one of the two states input to
a beam splitter is the vacuum state, any state in the second
mode that is not a convex combination of coherent states will
generate entanglement. This led to the notion of entanglement
potential [14], which measures the amount of entanglement
generated by a single nonvacuum state input to a beam splitter.
However, when both input modes are not in their vacuum
states, there are nonclassical, non-Gaussian, and mixed states
that generate no entanglement at beam splitters [8,9,17,24]. A
further notion of quantumness is thus the amount of entangle-
ment generated by a general two-mode state impinging on a

beam splitter. In light of recent work [32], we seek states that
extremize this notion, in order to constrain the possibilities
allowed by quantum theory.

Discussions regarding the entanglement generated by beam
splitters inevitably raise questions about the nature of mode
entanglement versus particle entanglement. Mathematically,
all entanglement is created equally while, physically, only
certain types of entanglement may be useful [33–38]. This has
been extensively explored in the literature [39–49], especially
some time ago in the context of single-photon entangle-
ment with the vacuum [6,50–63]; our current focus is not
to readdress those questions but to simply ask how much
entanglement a state can generate while reserving judgment
about the usefulness of such entanglement.

Further, we can circumvent distinctions between various
types of entanglement by considering other elements known
to generate useful entanglement, such as two-mode squeezers.
Coherent states again minimize the amount of entanglement
generated at two-mode squeezers, leading to a definition of
quantumness as the amount of entanglement generated there-
with, which shows the reach of our notion of quantumness
beyond particular types of entanglement.

Our resulting most and least quantum states satisfy the
eigenvalue equation

â|�〉 = ηâ†|�〉, (1)

where â is the annihilation operator for a bosonic mode and η

is a complex-valued constant. Equation (1) is one of the defin-
ing relationships of squeezed-vacuum states [64–68]. It turns
out that the relationship between the phases of the squeezed
states input to an optical element and the phase applied by
the optical element governs the transition from generating
the most entanglement to generating the least entanglement,
which we find to broadly hold for a variety of optical elements.
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Here, and in the rest of this work, we mainly refer to optical
elements, but our results broadly extend to the microwave
domain and beyond.

In exploring this notion of quantumness, we look for states
satisfying the generalized eigenvalue equation

âk|�〉 = ηâ†l |�〉 (2)

for any pair of integers k and l with k � l , which was very
recently explored in the case of k = l and η = 1 [69]. This
leads us to a set of generalized squeezed-vacuum states, whose
peculiar phase-space properties we investigate in detail. We
also detail how our inequalities involving creation and anni-
hilation operators lead to the generalizations of cat states [70]
to compass states [71]. Finally, we discuss the usefulness of
these generalized states for tasks such as metrology and the
ease with which they may be generated using nonlinear optical
devices.

II. USING BEAM SPLITTERS
TO GENERATE ENTANGLEMENT

We begin by considering two orthogonal modes annihilated
by bosonic operators â and b̂. These modes can be, for exam-
ple, two spatial or two polarization modes of light. A generic
beam splitter can be represented by an SU(2) operator Û that
enacts [72]

Û †

(
â
b̂

)
Û =

(
e−i φ+ψ

2 cos θ
2 −e−i φ−ψ

2 sin θ
2

ei φ−ψ

2 sin θ
2 ei φ+ψ

2 cos θ
2

)(
â
b̂

)
. (3)

We define separable pure states as those that can be decom-
posed via the tensor product∣∣�(a,b)

sep

〉 = |� (a)〉a ⊗ |� (b)〉b (4)

and entangled pure states as those that cannot. We will discard
the tensor product symbol ⊗ and mode subscripts in what
follows unless required for clarity. These definitions make it
clear that the two-mode coherent states

|α〉|β〉 = eαâ†−α∗â|0〉eβb̂†−β∗b̂|0〉 (5)

remain separable following a beam-splitter transformation:

Û |α〉|β〉 =
∣∣∣∣e−i φ+ψ

2 cos
θ

2
α + ei φ−ψ

2 sin
θ

2
β

〉

⊗
∣∣∣∣−e−i φ−ψ

2 sin
θ

2
α + ei φ+ψ

2 cos
θ

2
β

〉
. (6)

Since separable mixed states are defined as convex combi-
nations of separable pure states, and entangled mixed states
as those without such a decomposition, convex combina-
tions of two-mode coherent states, which are the only states
whose Glauber-Sudarshan P-functions are positive every-
where [26,27], are seen to generate no entanglement at beam
splitters. This yields a necessary but not sufficient condition
for generating entanglement: the input states must not be
convex combinations of coherent states. That the condition is
not sufficient can be seen using squeezed states of light: the
state ∣∣�(a,b)

sep

〉 = Ŝa(ra, ϕa)|0〉Ŝb(ra, ϕa + 2ψ )|0〉, (7)

where we have defined the single-mode squeezing operator

Ŝa(ra, ϕa) = exp

(
ra

e−iϕa â2 − eiϕa â†2

2

)
(8)

and similarly for mode b, will remain separable after under-
going the beam-splitter transformation Û . We note here the
crucial dependence of the input states’ relative phase on the
beam splitter phase ψ . All other separable pure states will
generate entanglement via Û .

There are even more separable two-mode mixed states that
do not generate entanglement via Û [24]. This significantly
differs from the single-mode case, in which P-function nega-
tivity is necessary and sufficient for characterizing the present
notion of quantumness, and motivates a study of the potential
for two-mode states to generate entanglement using beam
splitters.

III. EXTREMIZING THE ENTANGLEMENT GENERATED
BY OPTICAL DEVICES

A. Weak beam splitters

To search for states with the most and least quantumness,
we first seek states that are the most and least able to generate
entanglement at weakly reflecting (or, equivalently, weakly
transmitting) beam splitters. These states require the minimal
amount of assistance from beam splitters in order to demon-
strate their quantumness. Weakly reflecting beam splitters are
represented by transformations of the form of Eq. (3) with
small θ and have the same entanglement properties as weakly
transmitting beam splitters with small π − θ .

We quantify the amount of entanglement generated by a
transformation Û using the linear entropy

H
(
�(a,b)

sep

) = 1 − Tr[(Tra ρ̂)2] = 1 − Tr[(Trb ρ̂ )2], (9)

where

ρ̂ = Û
∣∣�(a,b)

sep

〉〈
�(a,b)

sep

∣∣Û † (10)

and Trc is the partial trace with respect to mode c ∈ (a, b).
A linear entropy H (�(a,b)

sep ) = 0 implies that the initial state
|�(a,b)

sep 〉 generates no entanglement via the beam-splitter trans-
formation Û ; H monotonically increases to 1 with increasing
entanglement of the output state.

We calculate the linear entropy for this transformation and
generalize it to other transformations in the Appendix. The
final result, to order O(θ2), is

H
(
�(a,b)

sep

) = θ2

{
A + B

2
+ AB − Re[e−2iψ Var(â†) Var(b̂)]

}
.

(11)

Here, we have defined the terms

A = 〈â†â〉 − |〈â〉|2, B = 〈b̂†b̂〉 − |〈b̂〉|2, (12)

and Var(X̂ ) = 〈X̂ 2〉 − 〈X̂ 〉2, where the expectation values
defining functions of â and â† can be taken with respect to
|�(a,b)

sep 〉 or |� (a)〉 and those defining functions of b̂ and b̂† can
be taken with respect to |�(a,b)

sep 〉 or |� (b)〉.
The amount of entanglement generated by a separable state

increases with θ ; this is why we choose small θ , to isolate the
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entanglement-generating properties of the input states from
those attributed to the beam splitter itself. Since the terms
A and B are always positive, the amount of entanglement
generated seems to increase with decreasing magnitudes of
〈â〉 and 〈b̂〉. Indeed, for a fixed total input energy, which is
proportional to N = 〈â†â + b̂†b̂〉 and remains unchanged by
Û , the amount of entanglement generated does increase as the
expectation values of â and b̂ decrease in magnitude. Coherent
states satisfy the eigenvalue equation â|α〉 = α|α〉 [73], from
which it is apparent that H (α, β ) = 0. In this sense we can say
that the two-mode coherent states have the least quantumness.

The pair of single-mode squeezed states discussed earlier
in Eq. (7) also minimizes this notion of quantumness. This is
because such states satisfy 〈â〉 = 0, 〈b̂〉 = 0, and

f (A, B) ≡ A + B

2
+ AB = Re[e−2iψ Var(â†) Var(b̂)]. (13)

A peculiar, particular arrangement between the phases of two
squeezed states with equal squeezing strength and the relative
phase imparted by the beam splitter prevents these supposedly
nonclassical states from generating entanglement.

We can similarly find the states that generate the most
entanglement for a given total input energy. To begin, we
notice that A, B � 0, with equality if and only if modes a and
b house coherent states, implying that the function f (A, B)
obeys the inequality

f (A, B) � 0, (14)

with equality if and only if both modes a and b are occupied
by coherent states. The function f (A, B) is maximized by
〈â〉 = 〈b̂〉 = 0. Recalling that we have fixed the total energy,
the maximum value of f (A, B) only depends on the initial
energy difference between the two modes, proportional to
〈â†â − b̂†b̂〉, achieving the maximum value when A = B =
N/2:

fmax(A, B; N ) = N

2

(N

2
+ 1

)
. (15)

Next, we aim to maximize − Re[e−2iψ Var(â†) Var(b̂)].
Since the variances in question deal only with the creation
operator from one mode paired with the annihilation operator
from the other, changing the relative phase between the input
states will change the absolute phase of Var(â†) Var(b̂). We
can thus independently find the optimal phase and find the
maximum value of

g
(
�(a,b)

sep ; N
) = | Var(â†) Var(b̂)|. (16)

By again setting 〈â〉 = 〈b̂〉 = 0, we find

g
(
�(a,b)

sep ; N
) = |〈â2〉||〈b̂2〉|. (17)

We thus seek to maximize |〈â2〉| and |〈b̂2〉| while hoping this
to accord with the requirements for fmax.

One avenue that does not fully solve the problem is to
consider the Cauchy-Schwarz inequality

|〈â2〉| �
√

〈â†â†ââ〉 =
√

Var (â†â) + 〈â†â〉2 − 〈â†â〉. (18)

This inequality is saturated by states satisfying the eigenvalue
equation

â2|� (a)〉 ∝ |� (a)〉, (19)

which is achieved by the cat or Yurke-Stoler states [70,74]

∣∣� (a)
〉 = |cat〉 ≡ |α〉 + eiϕa |−α〉

N , (20)

where N is some normalization constant that depends on α

and the relative phase ϕa. However, these states do not maxi-
mize the value of |〈â2〉| for a fixed 〈â†â〉, only maximizing the
former for certain values of the latter and Var(â†â).

We can instead solve the problem by considering another
Cauchy-Schwarz inequality:

|〈â2〉| �
√

〈â†â〉〈ââ†〉 =
√

〈â†â〉(〈â†â〉 + 1). (21)

The upper bound of the inequality depends only on the energy
of the state 〈â†â〉 and is saturated by states satisfying the
eigenvalue equation mentioned earlier in Eq. (1). Since that
eigenvalue equation defines squeezed states, the latter saturate
the bound for a fixed energy. One can then calculate using
properties of squeezed states that

gmax
(
�(a,b)

sep ; N
) = N

2

(
N

2
+ 1

)
. (22)

Finally, we adjust the phase of Var(â†) Var(b̂) by adjusting
the relative phases ϕa and ϕb of the squeezing operators for
the two input modes. Choosing exp[i(ϕb − ϕa − 2ψ )] = −1,
we see that the required relative phase is π different from that
required for the states generating no entanglement. We arrive
at the conclusion that the pair of single-mode squeezed states∣∣�(a,b)

sep

〉 = Ŝa(ra, ϕa)|0〉Ŝb(ra, ϕa + 2ψ + π )|0〉 (23)

generates the maximum amount of entanglement at a beam
splitter for a fixed input energy N .

Equations (7) and (23) are very similar, differing only by
the extra relative phase of π between the two input squeezed
states. A given pair of squeezed states with equal squeez-
ing strength ra = rb will thus generate the most amount of
entanglement for beam splitters with certain phases and the
least amount of entanglement for others. In a phase-space
picture, this means that the angle required to rotate the phase-
space distribution of one input squeezed state such that it
completely overlaps with the phase-space distribution of the
other input state determines how much entanglement the pair
of states will generate. When this rotation angle is 2ψ , they
will generate no entanglement and, when this rotation angle
is increase to 2ψ + π , the amount of entanglement generated
will monotonically increase to its maximum value,

Hmax
(
�(a,b)

sep ; N
)

θ2
= N

(
N

2
+ 1

)
. (24)

B. Weak two-mode squeezers

All of the above calculations for entanglement generation
at beam splitters can similarly be performed for entangle-
ment generation by other optical devices. As shown in the
Appendix, we can consider optical devices such as two-mode
squeezers represented by the unitary operators

Û = exp

(
r

e−iψ âb̂ − eiψ â†b̂†

2

)
. (25)
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A separable state input to such a two-mode squeezer with
squeezing strength r and phase ψ will yield the linear entropy
up until O(r2):

2HÛ (�)

r2
≈ 2AB + A + B + 1 − 2 Re[e−2iψ Var(â) Var(b̂)].

(26)

The extra constant term 1 and the replacement of Var(â†)
in Eq. (11) with Var(â) here showcase the differences be-
tween how beam splitters and two-mode squeezers generate
entanglement. All of the previous calculations are still rele-
vant, with two-mode coherent states generating the minimum
amount of entanglement, two single-mode squeezed states
with equal squeezing strengths and a particular phase rela-
tionship generating the minimum amount of entanglement,
and two single-mode squeezed states with equal squeezing
strengths and another particular phase relationship generating
the maximum amount of entanglement. We again see that
squeezed states both minimize and maximize the same notion
of quantumness.

Our observation that entanglement generation crucially de-
pends on the phases of the input states again holds. Here,
in contrast to the beam splitter condition, we have a condi-
tion for the sum of the phases of the input squeezed states:
minimal entanglement is generated when the phase sum sat-
isfies ϕa + ϕb = 2ψ and maximal entanglement is generated
when it obeys ϕa + ϕb = 2ψ + π . We observe the general
principle that changing the phase relationship between the
input squeezed states and the optical element can tune the
entanglement generated from its minimum to its maximum
value. These results expand on the crucial phase relationship
between the squeezing of a signal field and of a local oscillator
mode when doing homodyne measurement [9]. Of further
note, the extra constant term 1 in Eq. (26) implies that all states
will generate some entanglement at a two-mode squeezer, in
contrast to a beam splitter that allows certain states to generate
zero entanglement.

C. General observations

In all cases, only the least quantum states, viz., the
two-mode coherent states, do not have their entanglement
generation depend on the phase of the optical element in
question. Squeezed states, which are the most quantum states
according this notion because they generate the most en-
tanglement at these optical elements, are the opposite: their
entanglement generation is the most sensitive to the phase
of the optical element. This could be used as an alternative
notion of quantumness: the most (least) quantum states are
those whose entanglement generated at a beam splitter or
two-mode squeezer is the most (least) sensitive to the phase
of said optical element.

How useful is this entanglement that is generated? This
entanglement can be generated even with lossy beam split-
ters via diffraction [75,76]. It is clear that not all entangled
states can be generated by impinging a separable state onto
a beam splitter [77], while the ability to make post-selective
measurements would add significant advantages [78]. Some
of the entangled states that can be created by beam splitters
are useful, such as squeezed-state inputs in the context of
providing quantum enhancements to phase sensing [79], while

other input states, such as the Fock states |N〉|0〉, provide no
quantum enhancements in the context of phase sensing. When
the optical element in question performs two-mode squeez-
ing, the entanglement generated is considered to be much
more useful, with applications such as SU(1,1) interferometry
[80,81], quantum bar-code reading [82], quantum-enhanced
radar [83], and quantum-enhanced spectroscopy [84]. In fact,
since single-mode squeezing facilitates photonic quantum
computing [85], it is likely that so too would the entanglement
generated by two-mode squeezing. Our investigation of the
states generating the most and least entanglement may thus
be considered in an device-agnostic manner, with particular
implementations being more useful for particular tasks.

IV. EXTENSIONS OF QUANTUMNESS INDICATOR LEAD
TO GENERALIZED CAT AND SQUEEZED STATES

The inequalities in Eqs. (18) and (21) have generalizations
that are important for investigating quantumness. What states
maximize the magnitude of the expectation value of arbi-
trary powers of annihilation operators |〈ân〉|2? Each type of
inequality leads to different results that we study in turn.

A. Generalized cat states

We first consider extending Eq. (18) to

|〈ân〉|2 � 〈â†nân〉. (27)

This inequality is saturated by the higher-order cat (HOC)
states

|HOC〉 ∝
n∑

k=1

∣∣αe
2π ik

n
〉
. (28)

These states are unchanged by rotations of 2π/n in phase
space, as exemplified by the Wigner quasiprobability distri-
bution

W� (x, p) = 1

2π

∫ ∞

−∞
dτ e−ipτ

〈
x − τ

2

∣∣∣�〉 〈
�

∣∣∣x + τ

2

〉
; (29)

we display some such distributions in Fig. 1.
Peculiarly, there are some optical devices with which cat

states generate the least entanglement. Suppose we have a
highly nonlinear optical element represented by the unitary
operator Û = exp(r e−iψ â†mb̂n−eiψ âmb̂†n

2 ) for integers m and n
greater than unity. The general calculations in the Appendix
dictate that the simultaneous eigenstates of âm and b̂n will
generate the least entanglement with this highly nonlinear
device. As such, two high-order cat states

|2 HOC〉 ∝
m∑

k=1

∣∣αe
2π ik

m
〉 n∑

l=1

∣∣βe
2π il

n
〉
, (30)

which by most standards would be considered highly quan-
tum, combined with a highly nonlinear optical element, which
would readily generate entanglement with most input states,
somehow lead to no entanglement being generated. This, at
the very least, shows how intricate the ability to generate
entanglement is.

The generalized cat states, also known as compass states
[71], are useful for metrological tasks such as sensing
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FIG. 1. Wigner quasiprobability distributions for higher-order cat states with α = 5 and n = 2, 5, and 8. These states saturate the inequality
of Eq. (27) and can be considered to maximize that form of quantumness. The x and y axes correspond to the dimensionless x and p quadratures
of a harmonic oscillator, such as an electromagnetic field, in units where [x̂, p̂] = i. The Wigner functions are large near the values αe2π ik/n

and display their rotational symmetries. They also display their oscillatory structure wherein different coherent states interfere and the Wigner
functions take negative values. All figures were created using QUTIP [86,87].

displacements in arbitrary directions [32,88,89], which has
been used as another indicator of quantumness [32], among
other quantum information tasks including quantum error cor-
rection [7,90–93]. As well, there exist numerous proposals
for their experimental generation [88,94–96] and they have
indeed been generated up until n = 4 [97,98].

Cat states are known to be highly sensitive to their prepa-
ration and measurement procedures [99,100]. For example,
their generation requires precise control over the phase of the
optical element in question [100], which may be intimately
connected to the sensitivity of the amount of entanglement
generated by optical elements to the phases of the input states.
This extreme sensitivity to phase relationships seems to be a
hallmark of quantum states that is certainly less pronounced
for less quantum states such as two-mode coherent states.

B. Generalized squeezed states

The upper bound of the inequality in Eq. (27) depends on
more than just 〈â†â〉. This means that saturating the inequal-
ity does not guarantee the maximization of |〈ân〉|. We are
prompted to consider other inequalities for maximizing |〈ân〉|.
A number of generalizations of Eq. (21) are given by

|〈ân〉|2 � 〈â†kâk〉〈âl â†l〉, k + l = n, (31)

where we allow any pair of integers k and l satisfying k � l
(i.e., k � n/2). These inequalities are saturated by states with

the form given in Eq. (2) and include the higher-order cat
states in the case of l = 0.

What are the states satisfying the eigenvalue equation of
Eq. (2), which saturate the inequality of Eq. (31)? The eigen-
value equation determines a recursion relation for the set of
coefficients {�m} in the expansion of the state in the photon-
number basis:

|�〉 =
∑

m

�m|m〉. (32)

The recursion relation is

�m+k

√
(m + k)!

m!
= η�m−l

√
m!

(m − l )!
. (33)

By the ratio test, the series converges for all k > l and all η,
as well as for k = l with |η| � 1. There are l independent
solutions for a given value of η, each determined by speci-
fying which of the coefficients {�0, �1, . . . , �l−1} should be
nonzero. Superpositions of these states will also satisfy the
eigenvalue equation in Eq. (2), providing additional freedom
for finding the states that maximize the upper bound in the
inequality of Eq. (31).

A closed-form solution for the states satisfying the recur-
sion relation in Eq. (33) can be obtained for any choice of
k and l , but it becomes impractical for large l . Choosing the
nonzero initial coefficient to be �0 and setting the next l − 1
coefficients to zero, the resulting state can be written as

|�〉 ∝
∞∑
j=0

| jn〉η j
√

( jn)!
j∏

i=0

(in + l )!

(in + n)!
=

∞∑
j=0

| jn〉η j
√

( jn)!
1

( jn)!(n)[ j(n − 1)]!(n) · · · [ j(k + 1)]!(n)
, (34)

where j!(n) = j( j − n)( j − 2n) · · · is the nth factorial. One
may use the property ( jn)!(n) = j!nn to recover the standard
definition of single-mode squeezed states. The most notewor-
thy part of Eq. (34) is that it only involves coefficients that
differ by n. This property holds true regardless of the initial
coefficient chosen to be nonzero, implying that all of the

resultant states are unchanged via rotations by 2π/n in phase
space, just like the higher-order cat states. The present states
look like they have been squeezed from n directions, which
is another manner in which they generalize squeezed states.
We depict an exemplary array of generalized states satisfying
Eq. (2) in Fig. 2.
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FIG. 2. Wigner quasiprobability distributions for the generalized states satisfying the eigenvalue equation of Eq. (2) and saturating the
inequality of Eq. (31) for values of k and l ranging from 1 to 4 and various values of η (0.2, 1.0, and 5.0 for k > l and 0.2, 0.5, and 1.0 for
k = l). The states display squeezing from n = k + l directions, with the strength of the squeezing increasing with |η|. Changing the phase of
η will rigidly rotate these distributions about the origin. Some negative values of the Wigner function are visible at the n locations where the
squeezing occurs, becoming more negative with increasing |η|. Subplots (c) and (l) cover a larger area than the rest to fully showcase all of the
relevant phase-space structures.
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The eigenvalue equation of Eq. (2) with k = l and η = 1
was recently investigated by Ref. [69]. There, the resultant
states were deemed generalized coherent states because they
were generated by the generalized squeezing operators of the
form

Ŝ (r, ϕ) = exp

(
r

e−iϕ âk − eiϕ â†k

2

)
≈ 1 + r

e−iϕ âk − eiϕ â†k

2

(35)

in the r � 1 limit. Such states could thus be generated by
optically pumping a crystal with a weak kth order nonlin-
earity. The states we find here broadly generalize Ref. [69]’s
generalization to allow for k �= l and η �= 1 in Eq. (2).

The generalized squeezed states that we discuss here max-
imize the present notion of quantumness. Moreover, they
are maximally sensitive to estimating arbitrary phase-space
displacements for n = k + l > 2, because they satisfy 〈â〉 =
Var(â) = 0 [32], thereby extremizing another notion of quan-
tumness. This shows the power of inequalities such as Eq. (31)
for determining the quantumness of a given quantum state.

V. DISCUSSION

Optical devices that cause two input modes to interact are
generally useful for creating entangled output modes. Since
many such devices generate the least entanglement when the
input states are coherent states, we defined a notion of quan-
tumness as the amount of entanglement a state will generate
with such an optical device.

One common device for entanglement generation is a beam
splitter. We showed that the unique type of state that generates
the most entanglement at a beam splitter comprises a pair of
single-mode squeezed states with equal squeezing, so long as
the two squeezed states and the beam splitter obey a particular
phase relationship. When the two squeezed states obey the
opposite phase relationship, they generate no entanglement.
Beyond being a peculiar result for our notion of quantumness,
this could help define new notions: squeezed states maximize
the amount of entanglement generated when maximized over
all beam splitter phases, squeezed states maximize the differ-
ence between the amounts of entanglement generated by the
optimal and worst beam splitter phases, and squeezed states
may have their amounts of entanglement generated be the
most sensitive to the beam splitter phase for some quantifier of
sensitivity. All of these results follow because squeezed states
uniquely satisfy the eigenvalue equation of Eq. (1).

The entanglement generated by beam splitters is more
useful in some circumstances than others. For example, the
entanglement generated by a single photon impinging on a
beam splitter can only be taken advantage of if one can distin-
guish between the vacuum and a single photon, giving rise to
Hanbury Brown and Twiss effects. Squeezed input states can
lead to entanglement that is useful for phase sensing, which
is considered to be a scenario where no entanglement needs
to be provided to arrive at a quantum advantage [101]. Other
input states, such as Fock states in one mode and the vacuum
in the other, provide no such advantage for phase sensing. We
have thus focused exclusively on the ability of an input state to

generate entanglement without considering its usefulness for
a particular task.

Another common device for entanglement generation is a
two-mode squeezer. With such a device, all input states gener-
ate at least some entanglement. Again, as with beam splitters,
a pair of single-mode squeezed states can generate both the
most and the least entanglement, depending on the phase
relationship between the squeezed states and the two-mode
squeezer. This helped us realize the general principle that
the amount of entanglement generated by an optical device
is highly dependent on the phase relationships between the
input states and the device, which could again lead to a new
notion of quantumness as the sensitivity of the amount of
entanglement generated to changes in the phase of the device.

There are many circumstances in which the entanglement
generated by a two-mode squeezer is useful. In fact, in most
of those circumstances, nothing more than a vacuum-state
input is necessary to provide some quantum advantage. This
distinction is apparent in resource theories of optical non-
classicality, in which beam splitters are considered to be free
operations but two-mode squeezers are not [102]. The ability
of a pair of single-mode squeezed states to generate even
more entanglement with a two-mode squeezer could lead to
further enhancements in all of these tasks that use two-mode-
squeezed-vacuum states.

These results are reminiscent of continuous-variable quan-
tum key distribution [103], in which the best collective attack
performed by an eavesdropper uses Gaussian transformations
such as beam splitters and squeezers [104–106]. Gaussian at-
tacks are optimal because Gaussian states extremize strongly
superadditive continuous functions that are invariant under
local unitaries [107]. However, the scenario is different here:
local unitaries do affect the entanglement that a state gener-
ates at an optical device, so it does not immediately follow
that Gaussian states such as coherent and squeezed-vacuum
states will extremize the entanglement generated. There may
therefore be deeper reasons why Gaussian states are extremal
in these variegated scenarios.

These results are also directly applicable to coherent per-
fect absorption of quantum light. In Refs. [108,109], for
example, it was shown that equally squeezed states input to
a setup that classically leads to coherent perfect absorption
of light are absorbed or not absorbed and become entangled
or not entangled depending on the same phase relationships
studied here. This further showcases the power of phase
relationships in optical interactions and the peculiarity of
squeezed states in these contexts.

Investigating the mathematics underlying this entangle-
ment generation problem led us to consider states saturating
the inequalities of Eqs. (27) and (31) as extremizing some
notion of quantumness. The first inequality led to cat states
and compass states, which have already been proved to be
useful in quantum information tasks such as metrology and er-
ror correction. The second led to a generalization of squeezed
states, reminiscent of the so-called intelligent states [110,111],
as those satisfying the eigenvalue equation of Eq. (2). Such an
equation dictates that losing k photons from a state is in some
sense equivalent to gaining l photons, which could potentially
have applications in quantum error correction. These states
have remarkable phase-space properties as depicted in Fig. 2
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that, at the very least, make them useful for sensing phase-
space displacements in arbitrary directions, which could be
applicable to tasks such as force sensing [88]. There already
exist schemes and proofs of principle for generating the cat
and compass states and a scheme for creating some of the
generalized squeezed states with k = l and η = 1. Future
work could investigate schemes for creating states that satisfy
Eq. (2) for arbitrary k and l .

The ability of a state to generate entanglement at an op-
tical device underlies a deep notion of quantumness and is
intimately tied to many tasks in quantum information. We
have restricted our attention to the entanglement between
two modes with continuous-variable (i.e., Heisenberg-Weyl)
phase spaces; it would be intriguing to study these phenom-
ena in other phase spaces to better understand entanglement
between and among spin systems, light, many-body systems,
and beyond.
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APPENDIX: ENTANGLEMENT GENERATED BY BEAM
SPLITTERS, TWO-MODE SQUEEZERS, AND MANY

OTHER DEVICES

Beam splitters are represented by unitary operators Û =
exp[−iθ (e−iψ â†b̂ + eiψ âb̂†)/2] [the extra phase φ in Eq. (3)
does not affect the final entanglement properties]. We can
generalize these linear operators to other, potentially nonlinear
unitary operators, represented by

Û = exp

(
r

e−iψ Ô†
aÔb − eiψ ÔaÔ†

b

2

)
, r � 0. (A1)

This form includes beam splitters, with Ôa = â, Ôb = b̂,
r = θ , and the replacement ψ ↔ ψ + π/2; it also includes
the single-mode squeezing operators from Eq. (8), two-mode
squeezing operators with Ôa = â† and Ôb = b̂, and more. We
can investigate the amount of entanglement generated by these
operators in the limit of small r, in order to find the states
that are the most and least poised to generate entanglement
with optical devices represented by unitaries of the form of
Eq. (A1). In what follows, we make the assumption that Ôa

and Ôb act on different systems such that they and their
Hermitian adjoints commute, precluding Eq. (A1) from de-
scribing single-mode squeezing.

An initially separable state |�(a,b)
sep 〉 = |� (a)〉|� (b)〉 evolves under Eq. (A1) to

|�′〉 = Û
∣∣�(a,b)

sep

〉
=

(
1 + r

e−iψ Ô†
aÔb − eiψ ÔaÔ†

b

2
+ r2 e−2iψ Ô†

a
2Ô2

b + e2iψ Ô2
aÔ†

b
2 − Ô†

aÔaÔbÔ†
b − ÔaÔ†

aÔ†
bÔb

8

)∣∣�(a,b)
sep

〉 + O(r3). (A2)

Defining σ̂ = |� (a)〉〈� (a)|, we can trace out mode b from |�′〉 to find ρ̂a ≡ Trb(|�′〉〈�′|):

ρ̂a = σ̂ + r
e−iψ 〈Ôb〉(Ô†

aσ̂ − σ̂ Ô†
a) + eiψ 〈Ô†

b〉(σ̂ Ôa − Ôaσ̂ )

2

+ r2 〈Ô†
bÔb〉Ô†

aσ̂ Ôa + 〈ÔbÔ†
b〉Ôaσ̂ Ô†

a − e−2iψ
〈
Ô2

b

〉
Ô†

aσ̂ Ô†
a − e2iψ

〈
Ô†

b
2
〉
Ôaσ̂ Ôa

4

+ r2 e−2iψ
〈
Ô2

b

〉
Ô†

a
2σ̂ + e2iψ

〈
Ô†

b
2
〉
Ô2

aσ̂ + e−2iψ
〈
Ô2

b

〉
σ̂ Ô†

a
2 + e2iψ

〈
Ô†

b
2
〉
σ̂ Ô2

a

8

− r2 〈ÔbÔ†
b〉Ô†

aÔaσ̂ + 〈Ô†
bÔb〉ÔaÔ†

aσ̂ + 〈ÔbÔ†
b〉σ̂ Ô†

aÔa + 〈Ô†
bÔb〉σ̂ ÔaÔ†

a

8
+ O(r3). (A3)

Squaring this quantity, taking the trace, and collecting like terms yields

Tr(ρ̂2
a ) = 1 − r2

2
(〈ÔaÔ†

a〉 − |〈Ô†
a〉|2)(〈Ô†

bÔb〉 − |〈Ôb〉|2) − r2

2
(〈Ô†

aÔa〉 − |〈Ô†
a〉|2)(〈ÔbÔ†

b〉 − |〈Ôb〉|2)

+ r2 Re[e−2iψ Var(Ô†
a) Var(Ôb)] + O(r3), (A4)

where all of the expectation values are taken with respect to the initial state |�(a,b)
sep 〉, or, equivalently, with respect to |� (a)〉 and

|� (b)〉. The linear entropy thus becomes

2HÛ
(
�(a,b)

sep

)
r2

= (〈ÔaÔ†
a〉 − |〈Ô†

a〉|2)(〈Ô†
bÔb〉 − |〈Ôb〉|2) + (〈Ô†

aÔa〉 − |〈Ôa〉|2)(〈ÔbÔ†
b〉 − |〈Ôb〉|2)

− 2 Re[e−2iψ Var(Ô†
a) Var(Ôb)] + O(r). (A5)
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We repeatedly use this result in the main text. We further note
that, for arbitrary Ôa and Ôb, a sufficient condition for gener-
ating the minimum amount of entanglement given by Eq. (A5)
is to be an eigenstate of Ôa and Ôb or to be an eigenstate of Ô†

a

and Ô†
b.

For beam splitters, with Ôa = â and Ôb = b̂ each sat-
isfying bosonic commutation relations, we simply use that
ââ† = â†â + 1 and b̂b̂† = b̂†b̂ + 1 to achieve the final result
of Eq. (11). For two-mode squeezing operators, with Ôa = â†

and Ôb = b̂, this commutation relation yields a result slightly
different from Eq. (11):

2Htwo-mode squeezing
(
�(a,b)

sep

)
r2

= 2AB+A + B + 1 − 2 Re[e−2iψ Var(â) Var(b̂)] + O(r),

(A6)

where we have again defined A = 〈â†â〉 − |〈â〉|2 � 0 and B =
〈b̂†b̂〉 − |〈b̂〉|2 � 0. We discuss this in further detail in the
main text.

More general observations also follow. Just like for beam
splitters and two-mode squeezers, the entanglement generated
is only maximized when 〈Ôa〉 = 〈Ôb〉 = 0. In that case, we
can express the linear entropy as

2HÛ
(
�(a,b)

sep

)
r2

= 〈ÔaÔ†
a〉〈Ô†

bÔb〉 + 〈Ô†
aÔa〉〈ÔbÔ†

b〉
− 2 cos �

∣∣〈Ô2
b

〉∣∣∣∣〈Ô2
a

〉∣∣ + O(r), (A7)

where we have defined the phase

� = arg[Var(Ôb)] − arg[Var(Ô†
a)] − 2ψ. (A8)

If we find states saturating the inequalities∣∣〈Ô2
a

〉∣∣ � √
〈ÔaÔ†

a〉〈Ô†
aÔa〉 and

∣∣〈Ô2
b

〉∣∣ � √
〈Ô†

bÔb〉〈ÔbÔ†
b〉, (A9)

which generalize Eq. (21) and are saturated by states satisfy-
ing the Eq. (1)-like eigenvalue equations

Ôa

∣∣(�(a,b)
sep

)〉 ∝ Ô†
a

∣∣(�(a,b)
sep

)〉
and

Ôb

∣∣(�(a,b)
sep

)〉 ∝ Ô†
b

∣∣(�(a,b)
sep

)〉
, s (A10)

we can express the linear entropy in the compact form

2HÛ
(
�(a,b)

sep

)
r2

= |
√

〈ÔaÔ†
a〉〈Ô†

bÔb〉

− ei�
√

〈Ô†
aÔa〉〈ÔbÔ†

b〉|2 + O(r). (A11)

Just like for beam splitters and two-mode squeezers, the en-
tanglement generated depends quite strongly on the phase
relationship between the two input states and the optical
element, characterized by �. The commutation relations
[Ôa, Ô†

a] and [Ôb, Ô†
b] are important to the final result, and

the ability to find states that satisfy Eq. (A10) for general-
ized operators such as Ôa = â†k is crucial to finding states
that extremize the entanglement generated by arbitrary optical
elements.

[1] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete?, Phys. Rev. 47, 777 (1935).

[2] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1,
195 (1964).

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Teleporting an Unknown Quantum State via
Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.
Rev. Lett. 70, 1895 (1993).

[4] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A.
Zeilinger, Quantum Cryptography with Entangled Photons,
Phys. Rev. Lett. 84, 4729 (2000).

[5] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrol-
ogy, Phys. Rev. Lett. 96, 010401 (2006).

[6] S. M. Tan, D. F. Walls, and M. J. Collett, Nonlocality of a
Single Photon, Phys. Rev. Lett. 66, 252 (1991).

[7] B. C. Sanders, Entangled coherent states, Phys. Rev. A 45,
6811 (1992).

[8] H. Huang and G. S. Agarwal, General linear transformations
and entangled states, Phys. Rev. A 49, 52 (1994).

[9] M. S. Kim and B. C. Sanders, Squeezing and antisqueezing in
homodyne measurements, Phys. Rev. A 53, 3694 (1996).

[10] M. G. A. Paris, Entanglement and visibility at the output of a
Mach-Zehnder interferometer, Phys. Rev. A 59, 1615 (1999).

[11] M. S. Kim, W. Son, V. Bužek, and P. L. Knight, Entanglement
by a beam splitter: Nonclassicality as a prerequisite for entan-
glement, Phys. Rev. A 65, 032323 (2002).

[12] X.-B. Wang, Theorem for the beam-splitter entangler, Phys.
Rev. A 66, 024303 (2002).

[13] M. M. Wolf, J. Eisert, and M. B. Plenio, Entangling Power
of Passive Optical Elements, Phys. Rev. Lett. 90, 047904
(2003).

[14] J. K. Asbóth, J. Calsamiglia, and H. Ritsch, Computable Mea-
sure of Nonclassicality for Light, Phys. Rev. Lett. 94, 173602
(2005).

[15] R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, Entanglement
of Gaussian states using a beam splitter, Phys. Rev. A 79,
023816 (2009).

[16] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P.
Horodecki, and A. Winter, All Nonclassical Correlations Can
Be Activated into Distillable Entanglement, Phys. Rev. Lett.
106, 220403 (2011).

[17] Z. Jiang, M. D. Lang, and C. M. Caves, Mixing nonclassical
pure states in a linear-optical network almost always generates
modal entanglement, Phys. Rev. A 88, 044301 (2013).

[18] N. Killoran, M. Cramer, and M. B. Plenio, Extracting Entan-
glement from Identical Particles, Phys. Rev. Lett. 112, 150501
(2014).

[19] W. Vogel and J. Sperling, Unified quantification of non-
classicality and entanglement, Phys. Rev. A 89, 052302
(2014).

[20] W. Ge, M. E. Tasgin, and M. S. Zubairy, Conservation relation
of nonclassicality and entanglement for Gaussian states in a
beam splitter, Phys. Rev. A 92, 052328 (2015).

032425-9

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.66.252
https://doi.org/10.1103/PhysRevA.45.6811
https://doi.org/10.1103/PhysRevA.49.52
https://doi.org/10.1103/PhysRevA.53.3694
https://doi.org/10.1103/PhysRevA.59.1615
https://doi.org/10.1103/PhysRevA.65.032323
https://doi.org/10.1103/PhysRevA.66.024303
https://doi.org/10.1103/PhysRevLett.90.047904
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1103/PhysRevA.79.023816
https://doi.org/10.1103/PhysRevLett.106.220403
https://doi.org/10.1103/PhysRevA.88.044301
https://doi.org/10.1103/PhysRevLett.112.150501
https://doi.org/10.1103/PhysRevA.89.052302
https://doi.org/10.1103/PhysRevA.92.052328


AARON Z. GOLDBERG AND KHABAT HESHAMI PHYSICAL REVIEW A 104, 032425 (2021)

[21] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G.
Adesso, Measuring Quantum Coherence with Entanglement,
Phys. Rev. Lett. 115, 020403 (2015).

[22] H. Gholipour and F. Shahandeh, Entanglement and nonclas-
sicality: A mutual impression, Phys. Rev. A 93, 062318
(2016).

[23] J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Convert-
ing Coherence to Quantum Correlations, Phys. Rev. Lett. 116,
160407 (2016).

[24] A. Z. Goldberg and D. F. V. James, Nonclassical mixed states
that generate zero entanglement with a beam splitter, J. Phys.
A: Math. Theor. 51, 385303 (2018).

[25] S. Fu, S. Luo, and Y. Zhang, Converting nonclassicality to
quantum correlations via beamsplitters, EPL (Europhysics
Letters) 128, 30003 (2020).

[26] E. C. G. Sudarshan, Equivalence of Semiclassical and Quan-
tum Mechanical Descriptions of Statistical Light Beams, Phys.
Rev. Lett. 10, 277 (1963).

[27] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[28] A. Bach and U. Lüxmann-Ellinghaus, The simplex structure
of the classical states of the quantum harmonic oscillator,
Commun. Math. Phys. 107, 553 (1986).

[29] J. Sperling, Characterizing maximally singular phase-space
distributions, Phys. Rev. A 94, 013814 (2016).

[30] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A.
Regal, Strong Optomechanical Squeezing of Light, Phys. Rev.
X 3, 031012 (2013).

[31] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[32] A. Z. Goldberg, A. B. Klimov, M. Grassl, G. Leuchs, and L. L.
Sánchez-Soto, Extremal quantum states, AVS Quantum Sci. 2,
044701 (2020).

[33] G. Ghirardi, L. Marinatto, and T. Weber, Entanglement and
properties of composite quantum systems: A conceptual and
mathematical analysis, J. Stat. Phys. 108, 49 (2002).

[34] P. Zanardi, D. A. Lidar, and S. Lloyd, Quantum Tensor Prod-
uct Structures are Observable Induced, Phys. Rev. Lett. 92,
060402 (2004).

[35] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola,
A Subsystem-Independent Generalization of Entanglement,
Phys. Rev. Lett. 92, 107902 (2004).

[36] N. L. Harshman and S. Wickramasekara, Tensor product struc-
tures, entanglement, and particle scattering, Open Syst. Inf.
Dyn. 14, 341 (2007).

[37] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[38] E. Karimi and R. W. Boyd, Classical entanglement?, Science
350, 1172 (2015).

[39] R. Paškauskas and L. You, Quantum correlations in two-boson
wave functions, Phys. Rev. A 64, 042310 (2001).

[40] Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, Entanglement
in a two-identical-particle system, Phys. Rev. A 64, 054302
(2001).

[41] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Quan-
tum correlations in systems of indistinguishable particles,
Ann. Phys. (NY) 299, 88 (2002).

[42] H. M. Wiseman and J. A. Vaccaro, Entanglement of Indistin-
guishable Particles Shared between Two Parties, Phys. Rev.
Lett. 91, 097902 (2003).

[43] G. C. Ghirardi and L. Marinatto, General criterion for the
entanglement of two indistinguishable particles, Phys. Rev. A
70, 012109 (2004).

[44] X. Wang and B. C. Sanders, Canonical entanglement for two
indistinguishable particles, J. Phys. A: Math. Gen. 38, L67
(2005).

[45] F. Iemini, T. Debarba, and R. O. Vianna, Quantumness of
correlations in indistinguishable particles, Phys. Rev. A 89,
032324 (2014).

[46] A. Reusch, J. Sperling, and W. Vogel, Entanglement wit-
nesses for indistinguishable particles, Phys. Rev. A 91, 042324
(2015).

[47] F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino, Re-
marks on entanglement and identical particles, Open Sys. Inf.
Dyn. 24, 1740004 (2017).

[48] B. Morris, B. sYadin, M. Fadel, T. Zibold, P. Treutlein, and
G. Adesso, Entanglement between Identical Particles Is a
Useful and Consistent Resource, Phys. Rev. X 10, 041012
(2020).

[49] F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino, En-
tanglement in indistinguishable particle systems, Phys. Rep.
878, 1 (2020).

[50] C. C. Gerry, Nonlocality of a single photon in cavity QED,
Phys. Rev. A 53, 4583 (1996).

[51] G. Björk, P. Jonsson, and L. L. Sánchez-Soto, Single-particle
nonlocality and entanglement with the vacuum, Phys. Rev. A
64, 042106 (2001).

[52] E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, Tele-
portation of a Vacuum–One-Photon Qubit, Phys. Rev. Lett. 88,
070402 (2002).

[53] J.-W. Lee, E. K. Lee, Y. W. Chung, H.-W. Lee, and J. Kim,
Quantum cryptography using single-particle entanglement,
Phys. Rev. A 68, 012324 (2003).

[54] B. Hessmo, P. Usachev, H. Heydari, and G. Björk, Experimen-
tal Demonstration of Single Photon Nonlocality, Phys. Rev.
Lett. 92, 180401 (2004).

[55] S. A. Babichev, J. Appel, and A. I. Lvovsky, Homodyne To-
mography Characterization and Nonlocality of a Dual-Mode
Optical Qubit, Phys. Rev. Lett. 92, 193601 (2004).

[56] S. J. van Enk, Single-particle entanglement, Phys. Rev. A 72,
064306 (2005).

[57] M. Pawłowski and M. Czachor, Degree of entanglement as a
physically ill-posed problem: The case of entanglement with
vacuum, Phys. Rev. A 73, 042111 (2006).

[58] A. Drezet, Comment on “Single-particle entanglement”, Phys.
Rev. A 74, 026301 (2006).

[59] S. J. van Enk, Reply to “Comment on ‘Single-particle entan-
glement”’, Phys. Rev. A 74, 026302 (2006).

[60] C. Di Fidio and W. Vogel, Entanglement signature in the mode
structure of a single photon, Phys. Rev. A 79, 050303(R)
(2009).

[61] D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann,
B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas,
and H. Zbinden, Purification of Single-Photon Entanglement,
Phys. Rev. Lett. 104, 180504 (2010).

[62] G. Leuchs, Getting used to quantum optics, ICO Newsletter
106, 1 (2016).

[63] T. Das, M. Karczewski, A. Mandarino, M. Markiewicz, B.
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