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Gaussian continuous-variable isotropic state
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Inspired by the definition of the non-Gaussian two-parametric continuous-variable analog of an isotropic
state introduced by Mista et al. [Phys. Rev. A 65, 062315 (2002)], we propose to take the Gaussian part of
this state as an independent state by itself, which yields a simple, but with respect to the correlation structure
interesting, example of a two-mode Gaussian analog of an isotropic state. Unlike conventional isotropic states
which are defined as a convex combination of a thermal and an entangled density operator, the Gaussian version
studied here is defined by a convex combination of the corresponding covariance matrices and can be understood
as an entangled pure state with additional Gaussian noise controlled by a mixing probability. Using various
entanglement criteria and measures, we study the nonclassical correlations contained in this state. Unlike the
previously studied non-Gaussian two-parametric isotropic state, the Gaussian state considered here features a
finite threshold in the parameter space where entanglement sets in. In particular, it turns out that it exhibits an
analogous phenomenology as the finite-dimensional two-qubit isotropic state.

DOLI: 10.1103/PhysRevA.104.032423

I. INTRODUCTION

Entanglement is one of the most intriguing phenomena
in quantum physics and serves as a resource for many ap-
plications in quantum information processing, particularly in
quantum communications [1]. A bipartite system is defined
to be entangled if its joint quantum state is not separable. It
is well known and has been experimentally confirmed that
entangled systems exhibit quantum correlations which cannot
be explained in solely classical terms. What is less known is
that the opposite implication does not apply. In fact, it turned
out that also separable, i.e., nonentangled, states can exhibit
nonclassical correlations which are relevant, for instance, for
quantum computational tasks [2—4].

In order to understand the difference between the two types
of quantum correlations, it is useful to study simple bipartite
quantum systems which cross over from a nonclassical sepa-
rable state to an entangled state when a parameter is varied.
Examples of this type include so-called Werner states [5] and
isotropic states [6].

An isotropic state is defined as a convex combination of
a totally mixed and a fully entangled state. More specifically,
for a bipartite system consisting of two d-dimensional subsys-
tems A and B, the isotropic state is defined by
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with a mixing parameter p € [0, 1], where
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This state depends on a single parameter p € [0, 1] which
determines the balance between the mixed and the entan-
gled component. Varying this parameter, it turns out that the
isotropic state is separable below a certain finite threshold
Pe = ﬁ and entangled above [6]. In the range 0 < p < p.
the isotropic state offers an interesting example of a quan-
tum state with zero entanglement which nevertheless exhibits
quantum correlations that cannot be explained in classical
terms, as will be discussed below.

Werner states are closely related to isotropic states. While
isotropic states are defined to be invariant under local unitaries
of the form U ® U*, Werner states are invariant under U ® U.
Werner states in finite-dimensional systems are known to ex-
hibit properties similar to isotropic ones; in particular, there is
also a finite threshold for the control parameter where entan-
glement sets in. In the two-qubit case, Werner and isotropic
states are identical up to a local unitary transformation [6].

The most common measure for quantifying quantum cor-
relations in mixed states is the so-called entanglement of
formation (EOF) [7,8]. Here the statistical ensemble described
by the density matrix is decomposed into pure-state com-
ponents and the corresponding entanglement entropy is then
averaged according to the statistical weights. Since a mixed
quantum state represents an equivalence class of many statisti-
cal ensembles, the result has to be minimized over all possible
ensembles in this class, which is a technically difficult task.

Since the EOF vanishes on separable states, it is not suit-
able for quantifying the aforementioned quantum correlations
in the separable region of the isotropic state. Contrarily, the
so-called quantum discord (QD) is a measure that also re-
sponds to quantum correlations in the separable region. The
QD is defined as the difference between total and classical
correlations. Whereas the former are measured by the quan-
tum mutual information, the latter are extractable via quantum
measurement, where one has to perform an optimization over
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all possible quantum measurements [9,10]. In fact, for two-
qubit isotropic states, the QD was found to be nonzero for all
0<p<1[9]

In quantum information theory, besides systems with
finite-dimensional Hilbert spaces, infinite-dimensional sys-
tems with continuous variables (CVs) are studied frequently
[11,12]. Experimentally such systems arise naturally in quan-
tum optics where quantum states can be realized by light
modes. In this context, Gaussian states play a central role
since they are fully specified by a displacement vector and a
finite-dimensional covariance matrix [13,14]. From an exper-
imental point of view, Gaussian states are of great importance
because they can be created with simple optical tools: The
generation of squeezed states using optical parametric os-
cillators [15] or deterministic entanglement creation using
optical parametric amplifiers [16] are well known. More-
over, entangled Gaussian states are fundamental resources for
many CV quantum communication protocols such as telepor-
tation [17,18] or key distribution [19-22]. In addition, the
Gaussian CV setting is ideally suited for the generation of
large-scale entangled states, so-called cluster states, which are
highly relevant for measurement-based quantum computation
[23-25].

Given the importance of CV quantum systems in both the-
ory and experiment, the question arises whether it is possible
to define a continuous variant of isotropic and Werner states
with similar properties. The first attempt in this direction
was made by Mista et al., who introduced a two-parametric
CV analog as a convex combination of a two-mode ther-
mal state and a two-mode squeezed state [26]. However, this
CV isotropic state is generally non-Gaussian and therefore
the well-established formalism for Gaussian states cannot
be applied. Furthermore, it turns out that the suggested
two-parametric state does not feature a finite entanglement
threshold; instead it is entangled for all p > 0.

In this paper we propose to take the purely Gaussian part of
the non-Gaussian CV isotropic state and consider it as an inde-
pendent state in its own right. In contrast to the non-Gaussian
state introduced by Mista et al., which was defined as a convex
combination of two density matrices, the state proposed here
is defined as a convex combination of the covariance matrices
and hence it is Gaussian by construction. The analysis of
this state is therefore relatively simple since the well-known
results for Gaussian states can be directly applied. Unlike
the previously studied state, the Gaussian version exhibits a
finite threshold in the parameter space where entanglement
sets in. Furthermore, it turns out that it displays analogies to
the finite-dimensional two-qubit isotropic state. The aim of
the present work is to study the correlation structure of this
Gaussian CV isotropic state and to understand the quantum
nature of the correlations in the separable domain.

The paper is organized as follows. In the next section
we briefly review the common notation of CV systems.
Section III reviews the non-Gaussian isotropic state intro-
duced by Mista et al., while the Gaussian version studied here
is defined in Sec. IV. After analyzing various properties of this
state in Sec. V, various entanglement criteria and measures
of quantum correlations are applied in Secs. VI and VIIL. In
Sec. VIII we describe the Gaussian channel isomorphic to the
Gaussian isotropic state. Following the discussion in Sec. IX,

the corresponding density matrix is calculated explicitly in the
Appendix.
II. GAUSSIAN STATES

Before starting let us briefly recall some common notation
for CV systems. A quantum N-mode system is given by N
pairs of canonical observables

1 .
% P = ﬁ@z — &), 3)

with [ay, &f] = §y;. Arranging them in a vector

L) R2N)a (4)

they obey the commutation relations [Ry, R;] = i€2y;1, where

N
=P <—01 (1)) ©)
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denotes the symplectic matrix. Any quantum state p of such
a CV system can be expressed as an integral over all points

~

= —=@ + &),

R= &, p1,....%n. pn) = (R1, ..

F=(r,...,ron) = (x1, p1, ..., %N, pn) in phase space by
1 N L
p= oy /;OOd r x (F)D'(7), (6)

where D(F) = e~ @ is the displacement operator and
x (#) = Tr[pD(#)] is the characteristic function.

A quantum state p is called Gaussian if its characteristic
function can be written in the quadratic form

x5(F) = exp(ir " Qd — 17T QT y QF). (7

This means that a Gaussian state is completely determined
by its first two cumulants, namely, the displacement d = (R)
and the covariance matrix (CM) y with the components y;; =
(RiR; + RiRi) — 2(Ry)(Ry).

The uncertainty relation manifests itself in the fact that all
valid quantum states fulfill the condition [27]

y+iQ >0 (8)

in the sense that the matrix sum on the left-hand side has only
non-negative eigenvalues. For Gaussian states, this condition
is both necessary and sufficient for physicality.

When discussing correlation properties of Gaussian states,
the displacement d is usually not relevant, meaning that the
CM y alone characterizes the correlation structure of the state.
Moreover, for two-mode Gaussian states we can use local
symplectic transformations to convert a given CM into the
standard form [28,29]

a 0 ¢ O
10 a 0 o

Y=le, 0 b 0] a,b,ci,c0 €R. 9
0 (&) 0 b

If a = b, the two-mode Gaussian state is said to be symmet-
ric. In addition, according to the Williamson theorem [30], a
general N-mode CM can always be brought into the so-called
canonical or normal form

yo = diag(vy, v, ..., vy, vy) (10)
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by global symplectic transformations, where the v, > 1 are
the symplectic eigenvalues which can be obtained as eigenval-
ues of |iQ2y| (see [13] and references therein). In the case of
two-mode Gaussian states, these symplectic eigenvalues are
functions of the entries in Eq. (9). For two-mode Gaussian
states, all correlation properties, such as entanglement and
Gaussian quantum discord, can be fully discussed in terms of
these matrix entries or the symplectic eigenvalues [13,31].

III. NON-GAUSSIAN CV ISOTROPIC STATE

Let us briefly review the CV isotropic state introduced by
Mista et al. in Ref. [26]. In order to define a CV analog of the
isotropic state in Eq. (1), they proposed to consider a convex
combination of a two-mode squeezed state and a two-mode
thermal state

pe[0,1]. an

Here the entangled component prys is a pure two-mode
squeezed (TMS) vacuum state [32] which can be represented
in the Fock basis |m, n) = |m)4 ® |n)g of the two modes A
and B by

A = pbrms + (1 — p)prmr.

o
prvs = (1 =20 Y A" immy(n,nl,  (12)

m,n=0

where A; = tanh®  depends on the so-called squeezing pa-
rameter r € R. The physical meaning of this parameter is
that it controls the average particle number 7 = sinh? r. It is
important to note that prys itself is only partially entangled
and becomes fully entangled only in the limit » — oo, but this
limit is unphysical since then the particle number diverges and
the state is no longer normalizable. For this reason, one has to
keep r as a free parameter.

The separable mixed component pryt is a two-mode ther-
mal (TMT) state, given as product of two identical thermal
modes

oo
prvr = (1= 220> Y A5 m, n)(m, |, (13)

m,n=0

where A, = tanh? s is another parameter controlling the aver-
age particle number 7 = sinh? s.

Thus, the proposed state in Eq. (11) depends on three
parameters r, s, and p. However, in order to establish a close
analogy with the finite-dimensional case, it is sufficient to
restrict the analysis to the case r = s since then both com-
ponents, the TMT state and the TMS state, involve the same
average number of particles. Moreover, this choice ensures
that the TMT state is just twice the reduced TMS state, i.e.,

prvr = Trp[prvs] ® Tralprms], (14)

analogous to Eq. (1), where a similar relation holds. With this
restriction, the state is controlled by only two parameters r
and p. Note that in the following we will always refer to this
two-parametric version of the CV isotropic state.

In Ref. [26] Mista et al. showed that the two-parametric
CV isotropic state exhibits two important properties. First,
it is non-Gaussian for all 0 < p < 1, so it can no longer be
described in terms of the CM matrix alone. Second, the state

is entangled (nonseparable) for all p > 0 irrespective of r. At
first glance this is surprising since in the finite-dimensional
case one observes a finite threshold p > p. = H#d where en-
tanglement sets in. Yet the result is consistent if we recall
that a CV system involves infinitely many degrees of freedom,
which would correspond to taking the limit d — oo [26].

However, we should keep in mind that a direct anal-
ogy between the finite-dimensional and the CV case is only
valid in the limit »r — oo where pyvs becomes maximally
entangled and pryvt becomes maximally mixed. Neverthe-
less, pf° is entangled for all p > 0 independent of the
squeezing parameter r. This means that in contrast to the
finite-dimensional isotropic state, the two-parametric CV state
introduced by Mista et al. does not feature an extended region
in the parameter space where the state is nonentangled but
nevertheless nonclassical. If one is primarily interested in
understanding the quantumness of such nonentangled states
and the transition into the entangled regime, the CV isotropic
state defined in Eq. (11) is perhaps less interesting as the
finite-dimensional one.

To conclude this section, let us remark that further prop-
erties of the non-Gaussian CV isotropic state, including
nonclassical correlations beyond entanglement, have been
studied extensively in Refs. [33,34]. Furthermore, a special
variant of the state proposed by Mista et al. is investigated in
Ref. [35], which aims at elaborating possible advantages of
non-Gaussian states over their “closest” Gaussian version.

IV. GAUSSIAN ISOTROPIC STATE

Besides being of great interest in non-Gaussian CV quan-
tum information, the properties of the state introduced in
Ref. [26], i.e., non-Gaussianity and entanglement in the whole
parameter space, have to be considered as a drawback if one is
looking for a simple CV system to study nonclassical correla-
tions in the absence of entanglement. Here we would prefer a
two-mode Gaussian state since it is the simplest representative
of a bipartite CV quantum system. Therefore, we consider a
different kind of interpolation between pryvr and prms. The
idea is very simple: Instead of taking a convex combination of
the density matrices, we consider a convex combination of the
corresponding covariance matrices

Ya1 := pyrmms + (1 — p)yrmr (15)

and use this combination to define a Gaussian state pg; via
Egs. (6) and (7) that interpolates between a thermal and an
entangled squeezed state. Like pf°, this state depends on two
parameters, namely, the mixing parameter p € [0, 1] and the
squeezing parameter r € R.

To construct the CM yg, we note that yrys is al-
ready given in the standard form (9) with a = b = cosh(2r)
and ¢y = —c¢p = sinh(2r) [13,32]. Concerning yrmT, it is
known that an N-mode thermal state has a diagonal
CM of the form (10), where the symplectic eigenvalues
are related to the average number of mode excitations
via vy =2 +1 [36]. Since we consider two identi-
cal thermal states which are the reduced states of the
TMS state, we have v; = vy = 1 + 2sinh? r = cosh(2r).
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FIG. 1. Cartoon of the space of quantum states, illustrating the
difference between p7° and pg;.

Combining all contributions, we obtain the CM

cosh 2r 0 psinh 2r 0
. 0 cosh 2r 0 —psinh2r
var = psinh 2r 0 cosh 2r 0 ’
0 —psinh 2r 0 cosh2r
(16)
which in turn determines the full quantum state via
Par = L[ e~ a4 Dt () (17)
47?2

It can be checked easily that yg; fulfills the condition (8),
confirming that it represents a physically valid quantum state.
An explicit matrix representation of the density operator pgr
is given in the Appendix.

What is the difference between pf° and pg;? First, we note
that the CM of the previously studied state pr° is given by
exactly the same expression as in Eq. (16) [26], that is, both
states are characterized by the same CM. However, for 0 <
p < 1 the mixed state defined in Eq. (11) is non-Gaussian,
meaning that it involves also unknown higher cumulants,
while the state pgr is Gaussian by construction and, up to
possible local displacements, completely determined by yg;
alone. At this point, however, we should emphasize that it is
in principle possible to obtain pg; from n — oo many copies
of pf° by a Gaussification operation based on the quantum
central limit theorem as discussed in Refs. [37,38]. In fact, pg;
is simply the purely Gaussian part of o7, but here we consider
it as an independent state which is interesting in its own right,
as will be shown below. Note that a special variant of g,
where the thermal part is replaced by a two-mode vacuum, is
mentioned in Ref. [35] but investigated in another context.

Figure 1 illustrates the conceptual difference between pgr
and p7°. In this figure the drawing plane represents a cartoon
of the space of all density matrices of a two-mode CV system.
This space comprises three subspaces, containing separable
classical, separable nonclassical, and entangled states, respec-
tively. Both definitions p7° and pgp interpolate between the
two-mode thermal state pryt and the two-mode squeezed
state prms when p € [0, 1] is varied; however, they do so
along different paths. For the CV isotropic state introduced by
Mista et al., which is defined as a convex combination of its
ending points, the interpolation path is indicated as a black
straight line which lies entirely in the region of entangled
states. Contrarily, pg; connects the two ending points in a
different way, sketched here as a curved line. As we will see
below, this line crosses over from the separable nonclassical
domain into the entangled region at a finite threshold of p
marked by the arrow.

Any mixed Gaussian state can be thought of as being
composed of a pure Gaussian state with additional Gaus-
sian noise, i.€., Ymixed = Ypure T Ynoise- In Hilbert space, this
can be understood as convolution of a pure density operator
with a classical Gaussian probability distribution [39], which
suggests a variety of possibilities to generate such a state
in experiments. One of the simplest possibilities would be
to transmit each mode of a TMS through identical channels
exposed to thermal loss [40], interpreting ygr as a pure TMS
attenuated with two thermal-loss channels. More generally,
the influence of Gaussian noise is an unavoidable side effect in
most experimental realizations (see, e.g., Refs. [20,21,41,42]),
suggesting that the state ygr may appear in a wide range of
physical situations.

The state (16) may also play a role in the context of
quantum teleportation. For instance, in the Wigner represen-
tation, the output state of the quantum teleportation protocol
described in Ref. [43] is given by the convolution of a pure
input state with Gaussian noise. This is also the case for
measurement-based quantum computation where teleporta-
tion is part of the computation scheme [44]. However, in
order to control the parameter p, it would be necessary to
generalize these protocols from unity gain to the nonunity gain
regime, where the first moments of the teleported state are not
preserved.

V. GENERAL PROPERTIES

In the following we summarize some basic properties of
the proposed Gaussian isotropic state. The symplectic eigen-
values of the CM defined in (16) are

Vi=v =1, = \/coshz(Zr) — psinh®(2r) > 1,  (18)

so the purity of the state is given by (see [45])
1 1

= Tr 52 = —— = —, 19
’ el Vdetyg  v? (1

The Rényi entropy of the state can be expressed as [46]
5 — InTr[pg] _ Yy nFu() _ 2In Fav) 20)

l—« a—1 a—1

where

Fy(v) = (”;1> - (”gl> . 1)

In the limit o« — 1 the Rényi entropy tends to the usual von
Neumann entropy [45]

S =—Trlpailnparl = ) fw) =2f(),  (22)
k

where

v+1 v+1 v—1 v—1
= 1 — 1 .
o= (57 (57) - (57 (%)
(23)
Another special case is the Rényi entropy for « = 2, which

turns out to be related to the purity by

S, = —InTr[pg] =2Inv = —Inp. (24)
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The reduced density matrices ,bé’lB = Trp alpai] of the two
modes correspond to the reduced covariance matrices
A _ B _ (cosh(2r)

Y61 = Yo = < cosh(2r) (25)
independent of the control parameter p. Hence, without classi-
cal communication between the modes, this parameter has no
influence on local measurements. The corresponding Rényi

entropy of the reduced states reads

In[cosh?®(r) — sinh?*(r)]

s4 =58 =
o o Ol—l

, (26)

reducing to the von Neumann entropy for « — 1, i.e.,

§4 = §8 = 2 cosh?(r) In cosh(r) — 2 sinh?(r) In sinh(r).
(27)

VI. ENTANGLEMENT CRITERIA

A. Positive partial transpose criterion

In this section we investigate the correlation properties of
the state defined in Eqgs. (16) and (17). First, we apply the
Peres-Horodecki criterion [47], which is also known as the
positive partial transpose (PPT) criterion. This criterion has
been reformulated for CV systems in Ref. [28] and proven
to be necessary and sufficient for all bipartite (1 x N)-mode
Gaussian states in Refs. [48,49]. For states in standard form,
the PPT criterion yields a very simple expression, which in the
case of Eq. (16) reads

[cosh?(2r) — p? sinh?(2r)]* — 2[cosh?(2r) + p* sinh?(2r)]
+1>0. (28)

If this inequality holds for a given set of parameters (p, r),
the criterion tells us that the resulting state pgy is separable;
otherwise it is entangled. This inequality can be rewritten as

cosh(2r) — psinh(2r) > 1 & p < tanh(r), 29)

where the left-hand side is the smallest symplectic eigenvalue
of the partially transposed covariance matrix yg; [13]. Note
that this result for the entanglement threshold was already
obtained as a by-product in Ref. [26] when they considered the
squeezing behavior of the non-Gaussian CV isotropic state.

The separable domain with its boundary is shown in Fig. 2.
We limited the range of the squeezing parameter r to [0,2]
since experimentally reachable squeezing values are currently
limited to r ~ 1.7 (see [50-53]). Obviously, as r increases, the
larger p must be to obtain an entangled state. We will return to
this observation in the following section. In the limit r — oo,
the right-hand side of Eq. (29) equals 1, meaning that the state
becomes separable for all p.

We note that the inequality (29) has been derived before
in the literature in different forms. For example, for an ini-
tially pure TMS subjected to decoherence by Gaussian noise,
one can specify a temporal threshold where the entanglement
vanishes [29,41,54,55].

B. Steerability criterion

Quantum steering in a bipartite system p4p describes the
ability of subsystem A to influence the quantum state of sub-

N,

N Discord

~

steerable

"""" 30

0.8

0.6f entangled

(o}

0.4 separable 15

0 2 1.0

‘ 0.5

0 |
0 0.5 1 15 2,
r o
PPT Steering ----- CCNR

FIG. 2. Entanglement criteria in the parameter space. In addition,
quantum discord (see Sec. VII B) is shown as a heat map in order to
stress the appearance of nonclassical correlations in the separable
domain.

system B by performing local measurements exclusively on
its own subsystem (see [56] for a review). Clearly, steerability
requires that the joint quantum state is entangled. In the case
of Gaussian states, if one restricts the allowed measurements
to Gaussian measurements, it has been shown in [57,58] that
a state is steerable from A to B if and only if

y+i(04®R2p) >0 (30)

is positive definite. Here 0,4 is a zero matrix in the subspace of
A and Qp is the symplectic matrix for subsystem B. In the case
of yg1, we are then led to the symmetric steering condition

1

p > —1 .
V 1 + cosh(2r)

The corresponding region is shown in Fig. 2. As expected,
it is a subset of the entangled region. A related study of the
steerability of a two-mode Gaussian state in the presence of
thermal noise was carried out recently in [59].

€29

C. Realignment criterion

For completeness, let us compare the PPT criterion with
the computable cross norm or realignment (CCNR) criterion
[60,61]. The realignment criterion states that for any separable
state the trace norm of the realigned density matrix obeys the
inequality ||oR|| < 1. Conversely, ||p®| > 1 implies that the
state is entangled. Zhang et al. [62] reformulated the realign-
ment criterion for Gaussian states, showing that for two-mode
Gaussian states with a CM in the standard form (9) we have

1

"1 = : (32)
2,/ (Vab - e N(Vab — les)
so that
|21 = : e
2[cosh(2r) — psinh(2r)]
Consequently, this criterion tells us that the inequality
p > 1 coth(r) + 3 tanh(r) (34)
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FIG. 3. Entanglement of formation as a function of » and p. The
thick black solid line marks the boundary between separable and
entangled states which is given by p = tanh r.

implies that the state is entangled. As can be seen in Fig. 2,
the CCNR is compatible with the PPT criterion. However,
whereas the PPT criterion is necessary and sufficient for all
two-mode Gaussian states, the CCNR criterion is only neces-
sary for separability in this case and thus only detects a small
subregion of the entangled domain.

VII. MEASURES OF NONCLASSICAL CORRELATIONS

A. Entanglement of formation

To quantify the amount of entanglement contained in pgp,
we compute the EOF defined by [7]

p= Zpi|w,-><wi|},

(35)

Ep(p) = min [Zpisuwixw,-n

where S(|¢;){(y;]) is the local von Neumann entropy of the
pure-state components of the statistical ensemble yielding p.
The minimization has been explicitly solved for all symmetric
two-mode Gaussian states in Ref. [63]. In this case, the EOF
is given by the analytical expression

(1 +x)? |:(1+x)2:| (1 —x)? |:(1—x)2:|
In — In ,

Er(D) =
r(P) 4x 4x 4x 4x

(36)

with x = min[1, 7], where ¥ is the smallest symplectic eigen-
value of the partially transposed CM. For pgy, we have ¥ =
cosh(2r) — psinh(2r). Note that the PPT criterion (29) is
compatible with this measure.

Figure 3 shows Er(pgr) as a function of the parameters
r and p, where the latter controls the relative weight of the
entangled component and the thermal noise in Eq. (15). The
black solid line marks the boundary between separable and
entangled states according to Eq. (29).

In the figures we clearly see the competitive influence of
the two parameters: The larger the squeezing r is, the larger
the probability p must be to obtain an entangled state. At
first glance this behavior is counterintuitive since for stronger
squeezing the TMS component in our state becomes more

entangled and thus we would expect that more noise is needed
to destroy the entanglement, i.e., the values of p should de-
crease along the boundary with increasing r. Contrarily, the
figure suggests that the entanglement in a weakly entangled
TMS state is more robust against added noise as in a strongly
entangled TMS state. This apparent contradiction is resolved
by observing that also the intensity of added thermal noise
increases with » and that this increase dominates the parameter
dependence.

B. Quantum discord

Next we want to investigate pg; with respect to possible
quantum correlations beyond entanglement. To this end, we
analyze the quantum discord (QD) [9,10], a measure that is
known to detect correlations that are due to quantum physical
effects even in the absence of quantum entanglement. While
the EOF reflects the average correlations of pure-state compo-
nents in the statistical ensemble, minimizing over all possible
compositions of the ensemble, the QD is defined as the total
correlations given by the quantum mutual information minus
the classical correlations extractable via measurement, maxi-
mizing over all possible quantum measurements:

D(p) =8P — 548 4 inf Hin, (A|B). (37)

The last term denotes the average conditional entropy
of A after a generalized measurement {I1;} has been
performed on B.

A Gaussian version of the QD for all two-mode Gaussian
states was introduced in Refs. [31,64]. Here the authors im-
posed the restriction that the aforementioned maximization
is carried out over Gaussian measurements only, yielding a
closed formula in terms of the entries of the CM in Eq. (9).
In the case of g, this so-called Gaussian quantum discord is
given by

Dg(par) = f(cosh2r) + f(p* — (p* — 1) cosh 2r)

—2f(y/cosh?(2r) — p? sinh?(2r)), (38)

where f(v) is defined in Eq. (23).

While the EOF vanishes in an extended region of the pa-
rameter space, the QD is nonzero everywhere except for the
boundaries r = 0 and p = 0 (see Fig. 2). This is reasonable
because for r = 0 the CM yg; is simply the product of two
coherent states, while for p = 0 it is the product of two ther-
mal states. In fact, the QD is known to vanish only on product
states, as has been proven in Ref. [31] independently of the
restriction to Gaussian measurements.

The behavior of the QD for constant squeezing parameter
is shown in Fig. 4. As can be seen, the Gaussian QD increases
with p. In contrast to the EOF, the QD is nonzero in the separa-
ble region, responding to the quantumness of the correlations.
Thus, for a fixed value of r, the qualitative behavior of EOF
and QD is the same as in a two-qubit isotropic state [9].

Keeping instead p fixed and varying r, the Gaussian QD
first rises (see Fig. 2). For large values of r, however, it
behaves similarly to the EOF in the sense that it becomes
negligibly small except for probabilities close to one. For
experimentally achievable squeezing values, however, we can
always choose the probability parameter such that the EOF
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FIG. 4. Comparison of the entanglement of formation and the
Gaussian quantum discord for fixed values of r. The qualitative
behavior is the same as that of a two-qubit isotropic state [9].

is zero while QD has a considerable finite value. Therefore,
in contrast to the non-Gaussian CV isotropic state which
is entangled for all p > 0, the Gaussian version proposed
here can serve as an interesting test bed to study nonclas-
sical correlations in separable states within the Gaussian
setting.

Another analogy between pg; and the finite-dimensional
isotropic state is evident when comparing EOF and mutual
information which for Gaussian states can be calculated using
the expression for the von Neumann entropy [45]. In Fig. 5 we
demonstrate that for certain values of the parameters the EOF
exceeds half the mutual information 1), /2. This is probably an
artifact of the EOF if we accept the mutual information as a
proper measure of total correlations in a quantum state, as has
been discussed in detail for the finite-dimensional isotropic
and Werner states in Ref. [65].

VIII. GAUSSIAN CHANNEL

In Ref. [66] the class of all physical Gaussian operations
was characterized with the help of the isomorphism between
completely positive maps and bipartite states [67]. According
to Ref. [66], a map G is a Gaussian completely positive map if

0.65 i y %
entanglement of formation
o6ol quantum discord
-------- half the mutual information
N -
:§ 0.55}
Q
LﬁL 0.50 r=0.5
0.45
0.40t.-7"
0.90 0.92 0.94 0.96 0.98 1.00

p

FIG. 5. Entanglement of formation exceeds the Gaussian quan-
tum discord and half the mutual information in a certain parameter
range.

the bipartite state p isomorphic to G is determined by a proper
CM T [fulfilling the physicality condition (8)]. Conversely,
to each such Gaussian state p corresponds a Gaussian com-
pletely positive map G. Such a map acts on the CM y of a
Gaussian input state as [66]

y =y =T —Tp@n+y) T, (39)

~ ' T

b= (Fsz FZZ)
is the partial transpose of the CM describing the Gaussian
state isomorphic to the map G. Note that I" is twice as large as
y which characterizes the input state of the Gaussian channel
described by G.

Obviously, such a relation also holds for pgr [38] which is
isomorphic to the map Gg; that acts on single-mode Gaussian
systems. Computing the partial transpose of yg; [Eq. (16)] and
applying Eq. (39), we directly obtain the output mode of the
Gaussian channel described by Gg;. Taking as input a coherent
state with CM oo, = 15, the output reads

where

0l = PP Oeon + (1 — p*) cosh(2r)1,. (40)

This is a convex combination of the original CM and the
CM of a thermal mode. We therefore see another analogy
to the finite-dimensional isotropic state which is known to
be isomorphic to the depolarizing channel [6,68]. This chan-
nel maps a state p onto a convex combination of itself and
the maximally mixed state. However, we emphasize that the
expression in Eq. (40) is not a convex combination of two
density operators but of two CMs and the second term is a
partially mixed state, where the degree of mixedness depends
on the squeezing parameter r.

If the input is not a coherent mode but a thermal one,
the output does not display the clear superposition of the
original and the thermal CM. Rather, one can then observe
that, depending on r and p, the output mode can be less noisy
than the input mode. We assume that the action of the channel
described by Gg, adding or blocking of classical noise depen-
dent on r and p, is related to the correlation structure of the
state pgp isomorphic to Gg. However, figuring out the exact
relation requires further investigation.

IX. DISCUSSION

In this paper we have analyzed a Gaussian version of an
isotropic state which is controlled by a mixing parameter
0 < p < 1 and a squeezing parameter r > 0. Unlike the non-
Gaussian two-parametric isotropic state introduced by Mista
et al., the Gaussian version studied here features a finite
threshold p. = tanh r where entanglement sets in. Below this
threshold the state is separable but it still exhibits quantum
correlations, as can be detected by the quantum discord. It can
therefore serve as a simple bipartite test state to study non-
classical correlations in the absence of entanglement within
the Gaussian setting.

To understand the quantum nature in the separable region
0 < p < p., it is instructive to compare the situation with the
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two-qubit isotropic state [cf. Eq. (1)]
R 14
p1=p|+)(+|+(1—p)z, (41)
with |£) = L2(|OO) =+ |11)), where p. = %

Entanglement means that local operations on one of the
subsystems influence the other subsystem. In the fully entan-
gled case p = 1, where pr = |+)(+] is just a Bell state, any
local operation C on one side can be swapped to the other side
by means of

(CR®L)I+) =1 ®CT)|+). 42)

Decreasing p, this simple shift is replaced by the possibility
of quantum steering, describing the control of part B by local
operations in part A and vice versa, which is possible in the
range % < p < 1. Decreasing p further, there is a nonsteer-
able but entangled region % <p< % In this range one-sided
steering is no longer possible, but quantum correlations can
still be detected by two-sided local operations assisted by
classical communication. Finally, for p < % the state becomes
separable, i.e., it can be written in the form

o= plvi i @ v\l (“43)

with probabilities 0 < p; < 1 normalized by Zi pi=1.1f
such a representation is found, it provides a practical descrip-
tion how to generate the quantum state exclusively by local
operations and classical communication; hence it is clear that
it cannot be used for mutual quantum control. Nevertheless,
such a state can be nonclassical in the sense that the |¢) and
|¢B) are not necessarily orthogonal in the respective subsys-
tems. This is also reflected in the eigenvalue decomposition

. 1+3p 1- p|

pr=— I+) (] + o

+ 10)(10)). (44)

As can be seen, the decomposition involves the fully en-
tangled Bell states |4), but for small p they increasingly
compensate one another so that quantum communication of
both sides is no longer possible. However, the nonclassicality
is still detectable by means of the quantum discord.

The Gaussian CV isotropic state considered in this paper
exhibits completely analogous phenomenology (see Figs. 2
and 4) and provides an example where the onset of entan-
glement can be studied by similar means. In this context, it
would be interesting to find the separable representation in
the regime p < tanh r, as outlined in Ref. [69].

Regarding the fact that the output state of the teleportation
protocol adds Gaussian noise to a pure input state and that
the Gaussian CV isotropic state can be seen as a pure two-
mode squeezed state with additional thermal noise, it would
be interesting to ask if one can obtain this kind of state when
both modes of a two-mode squeezed state are taken as input to

J

1 —
)1+ —F o0 o1

(mvlpcilet) = e

% l/dzd efaa*[cosh(Zr)Jrl]/Zf;L*avLa*Ke+(p/2)(a/3+a*/3*)sinh(2r)-
T

the teleportation process. Moreover, a more detailed study of
the Gaussian channel isomorphic to the Gaussian CV isotropic
state, exhibiting another analogy to the finite-dimensional
isotropic state when a coherent state is considered as input,
could lead to further insights into the effects of the quantum
correlations contained in this state.
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APPENDIX: CALCULATION OF THE DENSITY MATRIX

In this Appendix we outline how the density matrix Py
in Eq. (17) can be computed explicitly. To this end, we first
determine the matrix elements (uv|pgi|«t) in the coherent
representation

luv) = [D(n) ® D(v)]]0, 0),

wl}gre A|0, 0) is the two-mode vacuum state and D(a) =
e*@ ~%"@ i5 the displacement operator for a single mode. With
o= %(M +ip;) and B8 = \/Li(xz + ipy) the density matrix

(17) can be written as

(AL)

1 L,
por = — d*a f d*p x(a, p)D'(a, B), (A2)

where we used the usual notation D(«, 8) = D(a) @ D(B)
and [d?a = [dx [dp. The desired matrix elements are
then given by

(uv|parleT)

(0, 01D" (i, v)paiD(k, 7)]0, 0)

%/dza/dzﬁ x(@, B)

x (0|D"(w)D"(@)D(x)|0)
x (0|D"(v)D'(B)D(1)|0).

(A3)

Inserting the CM (16) into (7) and setting d = 0, the charac-
teristic function reads

x(a, B) = exp |: — %(owt* + BB*) cosh(2r)

+ g(aﬂ + a*p*) sinh(2r)j|. (A4)

If we insert this expression into (A3) and apply the relations
D'(e) = D(—) and
(01D()D(B)D(y)|0) = e~ HPF Y= fety=fTy,

we get the expression

1

7(MM*+KK*+W*+II*)/2+M*K+v*r_/dZﬂ efﬁﬂ*[cosh(Zr)+1]/27v*,B+/3*r

(A5)
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The second integral over « is of Gaussian type and can be evaluated using the formula

/dz()t e—qaa*+aﬂ*_a*y _ zexp ( _ )/13*> (A6)
q

q

Inserting the result back into the remaining expression gives again a Gaussian integral over § which can be evaluated by similar

means. After some algebra, we arrive at the explicit expression

exp[— 3 (uu* + kK* +vv* + TT) 4wk + V¥ —

kp*  [v*—pktanh(r)][t—pp* tanh(r)] ]

A h’(r h?(r)—p? sinh? (r
(wviparlice) = cosh?(r)[cosh?(r) — p? s;;)tslzér))] EEE— (A7
For the special case p = 0 this expression reduces to
{(uv|pgilet) = m exp [—%(MM* + kv T+ (et + rv*)tanhz(r)], (A8)
while for p = 1 we get
(uv|pgilet) = ﬁz(r) exp |: - %(uu* + kv Tt + (WY + Kr)tanh(r)]. (A9)

For these special cases it is straightforward to arrive at the more common representation in the Fock basis. For p = 0 the state

factorizes into

Pc1 = Po ® Po,

where

1 2 2 1 % % " 2
= cosh2(r)n? [d M/d K|M><K|6XP|:— ST k) + « tanh r:|.

(A10)

(Al1)

In order to express pgr in the Fock basis, we have to perform a suitable basis transformation. For p = O this transformation can
be carried out separately in each tensor slot. Inserting |o) = e=%%"/2 > f |n), we get

1 |m)(n| ) / ) B .
— d d*k MmK*ne (up*+icic*) /24 ¥ i tanh? r (AlZ)
cosh?(r)m? mZ Jmn!
which can also be written using derivatives as
~ |m }’l| man 2 2 —(upt ik *) 24w i tanh? rpa i B
b — Z pon | d*u | dire” " g la=p0. (A13)
cosh (r)n o Jm'n!
Now the two integrals are of Gaussian type and can be carried out using Eq. (A6), giving 72e*# tanh’r "and hence
m)(n
ﬁo —— Z | | {8m[a tanh2(7‘)]n aﬁtanh r}| (A14)
cosh (r) m,n= 0

Carrying out the differentiation, one can see that only terms
with m = n contribute, leading us to the final result

(sinh?(r))"

o = ; WW(”L (A15)

which is a one-mode thermal state. As expected, for p = 0 we
have pgr = po ® po = Prmr-

For p = 1 the calculation follows similar lines, the differ-
ence being that the entangled state does not factorize; instead
we have to perform the basis transformation described above
for the bra and ket vector of pgi, respectively. Using the same
methods as outlined above, one can show that for p = 1 we
obtain

oo
par = [1 — tanh?(r)] Z tanh” " (r)|m, m)(n, n|, (A16)

m,n=0

that is, we get indeed pgr = Prms-
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