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Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the
context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion,
which can be used as a preconditioner for solving quantum linear systems. The key idea of fast inversion is
to directly block encode a matrix inverse through a quantum circuit implementing the inversion of eigenvalues
via classical arithmetics. We demonstrate the application of preconditioned linear system solvers for computing
single-particle Green’s functions of quantum many-body systems, which are widely used in quantum physics,
chemistry, and materials science. We analyze the complexities in three scenarios: the Hubbard model, the
quantum many-body Hamiltonian in the plane-wave-dual basis, and the Schwinger model. We also provide
a method for performing Green’s function calculation in second quantization within a fixed-particle manifold
and note that this approach may be valuable for simulation more broadly. Aside from solving linear systems,
fast inversion also allows us to develop fast algorithms for computing matrix functions, such as the efficient
preparation of Gibbs states. We introduce two efficient approaches for such a task, based on the contour-integral
formulation and the inverse transform, respectively.
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I. INTRODUCTION

Linear systems appear ubiquitously in scientific and engi-
neering computations. Accelerated solution of linear systems
on quantum computers, or the quantum linear system problem
(QLSP), has received a significant amount of attention in the
past decade [1–12]. Solving QLSP means finding a solution
vector |x〉 stored as a quantum state (up to a normalization
constant), so that |x〉 = A−1 |b〉 /‖A−1 |b〉 ‖. The main advan-
tage provided by a quantum computer is that the number of the
qubits needed to store the matrix and the solution vector only
scales logarithmically with respect to the matrix dimension,
thus overcoming the curse of dimensionality on a classical
computer. On the other hand, the cost of a quantum algorithm
for solving a generic QLSP scales at least as �(κ (A)) [8],
where κ (A) := ‖A‖‖A−1‖ is the condition number of A.1 This
can be expensive if the linear system is ill conditioned. It is
therefore of great interest if we can exploit certain special
structures of QLSPs to reduce the cost.

For a classical iterative algorithm such as the conjugate-
gradient (CG) method, the most effective way to accelerate the
solution of ill-conditioned linear systems is to find a precon-

1Throughout the paper ‖A‖ ≡ ‖A‖2 is the 2-norm (or the operator
norm) of an operator A, and ‖u‖ ≡ ‖u‖2 is the 2-norm of a vector u.

ditioner M so that (1) κ (MA) � κ (A), (2) the matrix-vector
multiplication M |ψ〉 is easily accessible, and in particular its
cost is independent of κ (M ) [13]. On a classical computer, the
condition (2) can be satisfied, for instance, if M is a diagonal
matrix or can be easily diagonalized, or if M is obtained by
a sparse direct method such as the incomplete Cholesky fac-
torization [14–16]. Then, the cost for solving the transformed
equation MA |x〉 = M |b〉 is determined by κ (MA) instead of
κ (A). The same strategy can be used to reduce the complexity
of a quantum linear solver [17].

In this paper, we focus on a QLSP of the form

|x〉 = (A+ B)−1 |b〉 /‖(A+ B)−1 |b〉 ‖, (1)

where A,B ∈ CN×N , and N = 2n. Throughout the paper, un-
less stated otherwise, we assume ‖A‖ can be very large, while
‖B‖, ‖A−1‖, ‖(A+ B)−1‖ = O(1). Therefore, the condition
numbers κ (A), κ (A+ B) = �(‖A‖). Such a scenario occurs
frequently in scientific computing, e.g., if A is obtained by
discretizing an unbounded operator, such as the Laplace op-
erator in a confined domain (see Sec. II B), or if A represents
a term in a quantum many-body Hamiltonian that is signif-
icantly larger than other terms (see Sec. IV C). We would
like to obtain a quantum linear system solver, of which the
cost is independent of ‖A‖. In particular, we will illustrate in
detail the computation of single-particle Green’s functions of
a quantum many-body system. It is worth pointing out that
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although many efforts have been made to efficiently solve the
QLSP, suitable applications of QLSP solvers remain scarce,
as it is often difficult to efficiently load classical data into
the quantum circuit, and to output useful information using
a limited number of measurements. We demonstrate that the
problem of computing Green’s functions does not not suffer
from such problems, and can be a suitable end-to-end appli-
cation of QLSP solvers.

A closely related, and more general, problem is to evaluate
matrix functions of the form f (A+ B), where f (·) is a smooth
function defined on the spectrum of H = A+ B [18]. Here
for simplicity we assume A,B are Hermitian matrices, so the
spectrum of H is on the real line. Under similar assumptions
above, we would like to obtain quantum algorithms of which
the cost is independent of ‖A‖. This obviously depends on the
choice of the function f . We will focus, for concreteness, on
the function f (x) = e−x. This choice is motivated in part by
the importance of preparing Gibbs states in quantum simula-
tion [19], machine learning [20], and quantum algorithms for
semidefinite programming [21].

A. Overview of the results and related works

Quantum linear system solver. Starting from the ground-
breaking work of [8], in the past decade, several quantum
algorithms have been developed to improve the performance
of generic QLSP solvers [1,2,6,7,9,10]. We review these meth-
ods in Appendix A.

Recently, quantum-inspired classical algorithms based on
certain �2-norm sampling assumptions [22,23] have been de-
veloped that are only up to polynomially slower than quantum
linear system solvers. However, it is unclear whether the clas-
sical �2-norm sampling can be achieved efficiently without
access to a quantum computer in the setting of this work. The
quantum-inspired classical algorithms also suffer from many
practical issues making their application limited to highly
specialized problems [24]. Most importantly, the assumption
of low rankness is crucial in these algorithms. The methods
presented in this work assume a block-encoding model, which
could be used to efficiently represent low-rank as well as
full-rank matrices on a quantum computer.

Preconditioned quantum linear system solver. Solving the
quantum linear system problem using preconditioning to deal
with large condition number has been discussed in works such
as [17,25]. The idea of [17] is to use the sparse approximate
inverse (SPAI) preconditioner [26,27], which uses a d-sparse
matrix as a preconditioner. The SPAI, denoted by M, can be
constructed by solving a least-squares procedure for each row
of the matrix A. However, for many problems, an efficient
preconditioner in the form of SPAI may not exist, and the
work of [17] did not provide an efficient quantum imple-
mentation to construct SPAI nor its performance analysis. In
[25], the preconditioner M is taken to be a circulant matrix
that can be efficiently diagonalized using a quantum Fourier
transform (QFT). However, the complexity of the algorithm
in [25] can depend on κ (M ), which should not be expected to
be smaller than κ (A). Furthermore, neither work provides an
upper bound for κ (MA), which is a key quantity determining,
e.g., the circuit depth.

In this paper, we propose a different mechanism for con-
structing efficient preconditioners, called fast inversion. The
inspiration of fast inversion is that any invertible, 1-sparse ma-
trix A can be efficiently implemented on a quantum computer
via classical arithmetics. In particular, the cost of constructing
a block encoding of A−1 is independent of κ (A). Note that
fast inversion does not violate the complexity lower bound for
solving QLSP, which is a statement of the efficiency of QLSP
solvers [8] applied to general matrices. This is in parallel to the
fast-forwarding process of 1-sparse matrices in Hamiltonian
simulation [28,29], which does not violate the theorem of
“no-fast-forwarding” [30]. Furthermore, if A can be unitarily
diagonalized, so that both the diagonalization procedure and
the encoding of eigenvalues can be efficiently implemented on
a quantum computer, then A can be fast inverted. Fast inver-
sion can be viewed as a quantum primitive for a wide range of
tasks. For example, we describe an efficient implementation of
inverting certain normal matrices, such as circulant matrices.

We introduce a parameter ξ = ‖A−1 |b〉 ‖, and without loss
of generality rescale A so that ‖A−1‖ = 1. As will be analyzed
in Sec. II, if we consider ξ and κ (A) as two independent
parameters, the immediate benefit of the fast inversion is
that unlike any other methods in the literature, the cost of
solving the QLSP depends only on ξ . The value of ξ is
bounded from below by 1/κ (A). Therefore, in the worst case
when ξ = 1/κ (A), the cost for solving the QLSP still de-
pends linearly on κ (A). However, we will demonstrate in
Remark 5 that such dependence through ξ already reaches
the complexity lower bound, and cannot be improved by any
QLSP solver. Furthermore, such a bound for ξ is usually not
tight for many examples of practical interest. This is demon-
strated via a concrete example of using fast inversion to solve
a translational-invariant elliptic partial differential equation
(PDE) in Sec. II B.

Now for the linear system (1), assuming A can be fast
inverted so that M = A−1, the cost for solving the the pre-
conditioned linear system of Eq. (1) depends on κ (M(A+
B)) = κ (I + A−1B), which can be bounded in terms of
‖B‖, ‖A−1‖, ‖(A+ B)−1‖ (or, more accurately, their block-
encoding factors, see Lemma 1). This is in contrast to other
QLSP preconditioning techniques where no such bound is
known. We introduce a parameter ξ = ‖(A+ B)−1 |b〉 ‖where
|b〉 is the normalized quantum state corresponding to the
right-hand side. Using quantum singular value thresholding
(QSVT), we obtain a gate-based implementation of a pre-
conditioned linear system solver, and its cost is independent
of ‖A‖, but only depends on ξ , and several block-encoding
subnormalization factors which are upper bounds of the norms
‖B‖, ‖A−1‖, and ‖(A+ B)−1‖ (Theorem 1 and Corollary 1).
In the worst case the query complexity of the preconditioned
linear system solver can depend superlinearly on ‖B‖ (or the
corresponding block-encoding factor αB). However, in some
cases the worst case estimate can be significantly improved
and the scaling with respect to ‖B‖ can be linear. We discuss
such implications in Remarks 6 and 7. Throughout the paper
we adopt the worst-case estimate of ‖(I + A−1B)−1‖, which
is responsible for the superlinear scaling with respect to αB in
Tables I and II below.

Computing single-particle Green’s functions of quantum
many-body systems. As an application of the preconditioned
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TABLE I. Comparison of the number of queries to the ground state and relevant block encodings needed using different algorithms
for computing an entry of the single-particle Green’s function G(z) of a quantum many-body Hamiltonian of the form Ĥ = Â+ B̂, where
|z| � η. The operators Â, B̂, and Ĥ are given in their block encodings with subnormalization factors αA, αB, and αH , respectively, satisfying
αH ∼ αA ∼ ‖Â‖ � αB. σ̃min is defined in Theorem 2 and σ̃min = �(η/αB ). The error comes from three parts: preparing the ground state,
block encoding of the matrix inverse, and the Hadamard test with amplitude estimation. The latter two are controlled by ε while the first is
controlled by ς . For simplicity we assume the ground energy is known exactly here. The error as a result of inexact ground energy is included
in Theorem 2.

Algorithm Queries to U Queries to block encodings Error

w.o. preconditioner HHL O
(

1
η
√

pε ln
(

1
ς

))
Õ

( |z|+αH
η3ε2

)
ε + O

(
ς

η

)
LCU/QSVT O

(
1

η
√

pε ln
(

1
ς

))
Õ

( |z|+αH
η2ε

)
ε + O

(
ς

η

)
w. preconditioner This work O

(
1

σ̃min
√

pε ln
(

1
ς

))
Õ

(
αB

σ̃ 2
minε

)
ε + O

(
ς

σ̃min

)
linear system solver, we consider the problem of computing
the one-particle Green’s function of a quantum many-body
system, which is a standalone linear system problem in high
dimensions. Most of the literature on quantum simulation thus
far focus on estimating the ground-state energy and preparing
the ground state. However, once the ground state is found,
one may further evaluate the single-particle Green’s func-
tion, which carries important spectroscopic information and
is widely used in quantum physics, chemistry, and materials
science [31,32]. Calculation of Green’s functions is compu-
tationally challenging. Previous works [33,34] focused on
evaluating Green’s functions in the time domain via Hamil-
tonian simulation. Reference [35] computes the response
function, which is closely related to the Green’s function, in
the frequency domain. Here we will provide a preconditioned
linear system method for direct computation of the Green’s
function in the frequency domain.

The setup of the problem is as follows. Suppose we are
given a Hamiltonian Ĥ = Â+ B̂, so that zÎ + Â can be fast
inverted for some properly chosen z ∈ C. We assume we

TABLE II. Comparison of the performance of different algo-
rithms for preparing the state e−H |b〉 /ξ , where ξ = ‖e−H |b〉 ‖ and
H = A+ B 
 0. We assume A, B, and H are given in their block en-
codings with subnormalization factors αA, αB, and αH , respectively,
and αH ∼ αA ∼ ‖A‖ � αB. σ̃ ′min and σ̃min are defined in Theorems
3 and 6, respectively. σ̃ ′min = �(1/αB ) and σ̃min = �[1/(1+ ‖(A+
B)−1‖‖B‖)]. Reference [38], which uses phase estimation to prepare
Gibbs state, estimates the number of queries to time evolution, in-
stead of block encodings of the Hamiltonians. In this table we assume
the time evolution is done using Hamiltonian simulation methods
such as in Ref. [40], which simulates time evolution for time t with
Õ(αHt ) queries to UH . It also uses O( ln( 1

ξε
)) qubits in the “energy

register.”

Algorithm Query complexities

w.o. preconditioner Phase estimation [38] Õ
(
αH
ξε

)
LCU [39] Õ

(
αH
ξ

ln
(

1
ε

))
w. preconditioner This work Õ

(
αB

ξ σ̃ ′2min
ln

(
1
ε

))
(contour integral) w

This work Õ
(

αB
ξ σ̃ 2

min

[
ln

(
1
ε

)]5)
(inverse transformation)

have an (αH ,mH , 0) block encoding of Ĥ , as well as the
oracles introduced in Sec. IV B. We also assume there is
an oracle available to construct the ground state |0〉 of the
Hamiltonian to precision ς in terms of trace-norm distance
with probability at least p, and we denote this oracle by
U . The goal is to compute the Green’s function G(+)

i j (z) =
〈0|âi(z − Ĥ + E0)−1â†

j |0〉 as defined in Sec. IV A (and a
corresponding G(−)) for z satisfying | Im z| � η > 0.

This task can be accomplished using either Harrow-
Hassidim-Lloyd (HHL) (based on phase estimation), linear
combination of unitaries (LCU), or quantum singular value
transformation (QSVT), to construct a block encoding of
(z − Ĥ + E0)−1. We then apply the nonunitary Hadamard test
described in Appendix D to estimate the expectation value.
The analysis in Appendix F shows that the number of queries
to U scales linearly with the block-encoding subnormaliza-
tion factor of (z − Ĥ + E0)−1, which is upper bounded by
1/η, and the number of queries to the block encoding of Ĥ
scales linearly with the product of the above subnormalization
factor and the number of queries used in the block encoding of
the matrix inverse, with the latter scaling linearly with the con-
dition number. Here the condition number scales linearly with
|z| + αH ∼ |z| + ‖Â‖. Using our preconditioning technique
we can remove this dependence on z + ‖Â‖. The detailed
analysis can be found in Sec. IV B. We also provide a few
concrete examples such as the Hubbard model, the quantum
many-body Hamiltonian in a plane-wave dual basis set, and
the Schwinger model in Sec. IV C.

In this application, the outputs are the matrix elements of
the Green’s function Gi j (z), rather than a quantum state repre-
senting the solution to a QLSP. Therefore, the complexity does
not involve the parameter ξ as in the setting of the precondi-
tioned QLSP. As a consequence, the speedup we discussed in
the previous paragraph depends only on the structure of the
Hamiltonian.

Fast algorithm for evaluating matrix functions. The method
of solving QLSP (1) is a special case of computing matrix
functions f (A+ B) |b〉 with f (x) = x−1. Here for simplicity
we restrict A,B to be Hermitian matrices. In parallel to solving
QLSP, the evaluation of a general matrix function can also
be performed using the phase estimation algorithm, similar to
its use in the HHL algorithm [8]. Similarly, LCU [6,36], and
QSP/QSVT [7,37] can also be used to evaluate matrix func-
tions, and achieve better dependence on various parameters,
especially the desired precision ε.
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The cost of each method depends on the actual form of
f (·). Here for concreteness we consider f (x) = e−x, which
is directly related to the problem of preparing Gibbs state s
in quantum physics. Without loss of generality we assume
H = A+ B 
 0, so that | f | � 1 evaluated on the spectrum
of H . The costs of preparing the state e−H |b〉 /ξ where ξ =
‖e−H |b〉 ‖, using phase estimation and LCU, are given in
Table II, and they all depend directly on the subnormalization
factor in the block encoding of H denoted by αH . Naturally we
have αH � ‖H‖ ∼ ‖A‖. We note that the Gibbs state prepa-
ration is a special case of the task discussed above. We can
simply set |b〉 to be the maximally entangled state to obtain a
purified Gibbs state. In this particular case ξ = √N/Z where
N is the Hilbert space dimension and Z = Tr(e−H ) is the
partition function. This will be discussed in Sec. V C. For
simplicity and in order to be consistent with other works such
as Ref. [39] we omit the dependence on temperature in the
Table II, and this dependence will be discussed in Sec. V C as
well.

We propose two methods to evaluate e−H given the ability
of fast inversion of A. The first method is based on the Cauchy
contour-integral formulation

f (x) = 1

2π i

∮
C

f (z)

z − x
dz, (2)

where C is a simple closed curve and f (·) is analytic on a
region containing C and its interior, and x is inside C. After
proper discretization, the evaluation of the matrix function
f (A+ B) becomes solving a series of preconditioned quan-
tum linear system problems, which can be combined together
using LCU. Our second method is based on a simple inverse
transformation, namely,

f (x) = f (y−1 − a), (3)

where y = (x + a)−1 for some a ∈ C. When A+ B is invert-
ible, we may simply take a = 0. Again we use preconditioned
quantum linear system solver, combined with a standard
LCU/QSVT procedure, to evaluate f (A+ B). The cost of the
two methods to prepare e−(A+B) is given in Table II, which is
independent of ‖A‖.

There is a class of algorithms based on quantum walks
and Metropolis sampling to prepare the Gibbs state [41–43],
which can be seen as a special case of implementing the ma-
trix function e−H . The complexity typically depends mainly
on the gap of the transition matrix of the Markov chain,
and thus the complexity estimate involves a different set of
parameters. Therefore, we do not compare the complexities
of these algorithms with our methods. For example, Ref. [44]
uses LCU to prepare the Gibbs state, but it uses a different
input model of the Hamiltonian from the block encoding we
use in this work.

B. Notations

A matrix A ∈ C2n×2n
is referred to as an n-qubit matrix

or n-qubit operator. Unless otherwise explained, we use the
notation N = 2n, and [N] = {0, . . . ,N − 1}. We will exten-
sively use the technique of block encoding, which is a way
of embedding an arbitrary matrix as a submatrix of a larger
unitary matrix. Here using a unitary matrix UA to encode A

as a submatrix means that there exists a normalizing constant
α > 0 such that

UA =
[

A/α ∗
∗ ∗

]
, (4)

where ∗ denotes arbitrary matrix blocks of proper sizes. In
general, the matrix that we block encode may only approx-
imate A/α. We use the following notation to describe such
encodings.

Definition 1 (Block encoding [45]). An (m+ n)-qubit uni-
tary operator UA is called an (α,m, ε) block encoding of an
n-qubit operator A, if ‖A− α(〈0m| ⊗ In)UA(|0m〉 ⊗ In)‖ � ε.

Here m is the number of ancilla qubits for block encoding,
and α is called the block-encoding factor, or the subnormaliza-
tion factor. The block encoding has long been explicitly used
in algorithms such as the quantum linear systems algorithm
[8]. The block encoding is a powerful and versatile model,
which can be used to efficiently encode density operators,
Gram matrices, positive-operator valued measure (POVM),
sparse-access matrices, as well as addition and multiplication
of block-encoded matrices (we refer to [45] for a detailed
illustration of such constructions).

Remark 1. For simplicity of discussion, we may often as-
sume the given block encodings are error free, e.g., we may
assume UA is an (α,m, 0) block encoding of A. The error due
to the given block encodings can often be taken into account
without much technical difficulties, but may complicate the
presentation of results. We can then focus on the error intro-
duced by other parts of the algorithm, such as that due to the
polynomial approximation of smooth functions.

We also use the following notations throughout the paper:
The block encoding of a matrix A is generally denoted by
UA. Since the 2-norm of a unitary matrix UA is 1, it is guar-
anteed that the 2-norm of A/α, which is a submatrix of UA,
is upper bounded by 1. This implies ‖A‖ � α. Therefore, in
this work we usually bound the norm of a matrix in terms
of its block-encoding subnormalization factor, which in many
cases is known a priori, for example, in the case of d-sparse
matrices [6,45]. Since this paper uses the inverse of matri-
ces extensively, we may use U ′

A := UA−1 to denote the block
encoding of A−1. For convenience, we use αA,mA to denote
the subnormalization factor and the number of ancilla qubits
for A, respectively, and use α′A,m′A to denote those for A−1.
Throughout the paper we also frequently use σ̃min to denote a
lower bound of the smallest singular value of a matrix of the
form I + A−1B.

To simplify the notation, we may omit the normalization
factor in the QLSP problem |x〉 = A−1 |b〉 /‖A−1 |b〉 ‖, and
write |x〉 ∝ A−1 |b〉 or A |x〉 ∝ |b〉. However, the normalization
factor is not arbitrarily chosen, and the resulting state |x〉 is
well defined. Although the phase factor in |x〉 is often not
important, this allows us to define the distance between an ap-
proximate solution to QLSP |̃x〉 and the true solution directly
via the vector 2-norm ‖ |̃x〉 − |x〉 ‖. In this paper we mostly
use the vector 2-norm to quantify error, with the exception in
Theorem 2 where we use trace distance to quantify the error of
ground-state preparation. When we say a target quantum state
|φ〉 is prepared to precision ε, it means that we prepare a quan-
tum state |ψ〉 such that ‖ |φ〉 − |ψ〉 ‖ � ε. The relationship
between the 2-norm distance and the more commonly used
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fidelity and trace distance is as follows: if for two pure states
|φ〉 and |ψ〉, ‖ |φ〉 − |ψ〉 ‖ = ε, then the fidelity F satisfies

F := | 〈φ|ψ〉 |2 � (1− ε2/2)2,

and the trace distance between the two density matrices ρφ =
|φ〉 〈φ| and ρψ = |ψ〉 〈ψ | satisfies

T (ρφ, ρψ ) := 1

2
Tr

[√
(ρφ − ρψ )†(ρφ − ρψ )

]
=

√
1− | 〈φ|ψ〉 |2 �

√
1− (1− ε2/2)2

= ε
√

1− ε2/4.

Additionally, we use the following asymptotic notations
aside from the usual O notation throughout the paper: we write
f = �(g) if g= O( f ); f = �(g) if f = O(g) and g= O( f );
f = Õ(g) if f = O(g polylog(g)). We denote by Cm(I ) set of
functions on an interval I, which is differentiable m times and
the mth derivative is continuous. Correspondingly, C∞(I ) is
the set of infinitely differentiable functions on I (also called
smooth functions).

Remark 2. (Dilation of a non-Hermitian matrix). When
solving QLSP, it is often assumed that A is a Hermitian matrix
[6,8]. This is because a non-Hermitian matrix can be dilated
into a Hermitian matrix using one ancilla qubit

Ã =
[

0 A

A† 0

]
. (5)

When A is given by its block encoding UA, the dilated Her-
mitian matrix Ã can be obtained through UÃ = |0〉 〈1| ⊗UA +
|1〉 〈0| ⊗U †

A with subnormalization factor 1. Note that this re-
quires the controlled version of UA,U

†
A . The quantum singular

value transformation technique in Appendix B can directly
solve QLSP for non-Hermitian matrices without requiring a
dilation step. In this paper, we assume A ∈ CN×N is a general
square matrix, and will explicitly specify when A is taken to
be a Hermitian matrix.

C. Organization of this paper

The rest of the paper is organized as follows. In Sec. II we
discuss certain matrices we can fast invert on a quantum com-
puter. This enables us to precondition linear systems, which
is discussed in Sec. III. We then discuss two applications
of the preconditioning technique we developed: computing
the many-body Green’s function in Sec. IV, and evaluating
matrix function e−βH in Sec. V. Conclusion and discussion
are given in Sec. VI. A brief review of quantum singular value
transformation for solving QLSP, together with certain details
of proofs and constructions, is given in the Appendices.

II. FAST INVERSION

Our preconditioning method relies on fast inverting a cer-
tain class of matrices efficiently.

Definition 2 (Fast-invertible matrices). A matrix A is
fast invertible if, after rescaling A so that ‖A−1‖ = 1, a
(�(1),m, ε) block encoding of A−1 can be obtained, and the
number of queries to the oracles that determine A is indepen-
dent of the condition number κ (A).

In this definition, the oracles are not restricted to yield a
direct block encoding of A. This can be seen in the examples
of the unitarily diagonalizable matrices (Sec. II B) and the 1-
sparse matrices (Sec. II A and Appendix C).

Before further discussion, we first clarify the relation be-
tween the notion of fast-invertible matrices we propose here
and the notion of fast-forwardable matrices. The two concepts
are clearly closely related. In particular, if A is a nonsingular,
Hermitian matrix A that can be unitarily diagonalized effi-
ciently, then A is both fast invertible and fast forwardable,
in the sense that the circuit depth for constructing the block
encoding of A−1 and eiAt can be independent of κ (A) and t ,
respectively. However, there is also an important difference: if
A is fast forwardable, then the query complexity for preparing
the state eiAt |b〉 can be independent of t for any |b〉. On the
other hand, if a matrix A is fast invertible, then to prepare a
normalized state that is parallel to A−1 |b〉, the query complex-
ity still depends on ‖A−1 |b〉 ‖, which in the worst case is lower
bounded by 1/κ (A), if we rescale A so that ‖A−1‖ = 1. How-
ever, this lower bound is often not tight, as can be seen in the
d-dimensional elliptic PDE example we discuss in Proposi-
tion 3, and leads to vast overestimation of the cost. Therefore,
we take ‖A−1 |b〉 ‖ as an independent parameter rather than
using the worst-case bound 1/κ (A). There are also instances
in which the goal is not to prepare a quantum state but to read
out a scalar value, as in Green’s-function evaluation discussed
in Sec. IV. For these instances ‖A−1 |b〉 ‖ can be irrelevant and
the number of queries to A can be completely independent
of κ (A).

A. Fast inversion of diagonal and general 1-sparse matrices

We first consider a diagonal matrix D ∈ CN×N . Note that
‖D‖ = maxi |Dii|, and ‖D−1‖ = (mini |Dii|)−1. The condition
number is then κ (D) = maxi |Dii|/mini |Dii|. Our goal is to
solve the QLSP, i.e., to obtain a normalized state

|x〉 ∝ D−1|b〉, (6)

where

|b〉 =
∑
i∈[N]

bi|i〉.

Now assume that the diagonal entry of D is accessible via
an oracle

OD|i〉|0l〉 = |i〉|Dii〉, i ∈ [N], (7)

where |Dii〉 is a binary representation of the diagonal entry Dii

(for simplicity assume the l-bit approximation of Dii is exact).
Remark 3. We assume each diagonal entry of D can be

efficiently computed using a classical Boolean circuit of size
O(polylog(N )) with m = O(polylog(N )) ancilla bits. In this
case we can construct a quantum circuit with O(polylog(N )+
l ) gates and O(polylog(N )+ l ) ancilla qubits to implement
this oracle OD [46, Lemma 10.10]. For simplicity we omit
these ancilla qubits in Eq. (7) since after reversing these quan-
tum gates, their values will return to |0m〉 at the end of the
computation.
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|b〉
OD O†

D∣∣0l
〉

INV|0〉

FIG. 1. Quantum circuit for fast inversion.

The circuit for the block encoding of D−1, denoted by UD−1 ,
is as in Fig. 1. Here the inversion circuit INV satisfies

INV|ζ 〉|0〉 = |ζ 〉
⎛⎝ 1

α′Dζ
|0〉 +

√
1−

∣∣∣∣ 1

α′Dζ

∣∣∣∣2

|1〉
⎞⎠, (8)

where |ζ 〉 is an l-qubit state representing an l-bit number ζ .
This circuit is also used in the HHL algorithm [8]. Here α′D �
(mini |Dii|)−1 = ‖D−1‖. The output of the circuit is

U ′
D|b〉|0l〉|0〉 =

∑
i

(α′DDii )
−1bi|i〉|0l〉|0〉

+
∑

i

√
1− |(α′DDii )−1|2bi|i〉|0l〉|1〉.

Running the circuit and measuring the ancilla registers (i.e.,
the last two registers), and upon getting all zero output,
which we take as a success, we will have a quantum state
proportional to D−1|b〉 in the first register. Hence, U ′

D is
an (α′D,m′D, 0) block encoding of D−1 (recall U ′

D ≡ UD−1 )
and m′D = O(l + polylog(N )) when we take into account
the ancilla qubits that have been omitted as mentioned in
Remark 3.

Proposition 1 (Fast inversion for diagonal matrices).
For a diagonal matrix D whose diagonal entries can be
accessed through the oracle OD given in Eq. (7), and
α′D � 1/mini{|Dii|}, we can construct an (α′D,m′D, 0) block
encoding of D−1, given in Fig. 1, using OD and O†

D both
exactly once. Here m′D = O(l + polylog(N )) if OD uses
O(l + polylog(N )) ancilla qubits.

For simplicity of discussion here, we assume α′D =
‖D−1‖. The success probability of the above procedure is
(‖D−1|b〉‖/α′D)2. Denote by ξ = ‖D−1|b〉‖ (consistent with
that in Appendix B). With amplitude amplification [47] we
can boost the success probability to be greater than 1

2 by
repeating the above process O(α′D/ξ ) times. Hence, the suc-
cess probability depends on both the operator D as well as
the state |b〉. In the worst case 〈i|b〉 vanishes everywhere
else other than i = arg maxk |Dkk|. Then ξ = ‖D‖−1, and the
number of repetitions becomes O(‖D−1‖‖D‖) = O(κ (D)).
On the other hand, if |〈 j|b〉| is lower bounded by a constant
for j = arg mini |Dii|, then ξ = �(‖D−1‖), and the success
probability of the fast inversion is (ξ/α′D)2 = �(1). In this
case, the cost of the fast inversion is O(1) and is independent
of κ (D).

The cost of a QLSP solver may be reduced, if the effective
condition number is much smaller than the condition num-
ber. Here the effective condition number refers to the ratio
between the largest and the smallest singular values, whose
corresponding singular vectors have a nonzero overlap with
the right-hand side |b〉. Note that this is not the reason of the

speedup we discuss above. In the above discussion we do not
require 〈 j|b〉 to vanish anywhere, and therefore our method
does not rely on the effective condition number being smaller
than κ (D).

Let us now contrast the results above with the standard
QSVT method for solving linear systems (briefly reviewed
in Appendix B). Start from an (αD,mD, 0) block encoding of
D denoted by UD, we may take αD = ‖D‖. Applying Theo-
rem 7, using QSVT we can solve the QLSP (6) and obtain
the solution to precision ε with probability at least 1

2 , using
O((κ (D)2/‖D‖ξ ) ln[κ (D)/(‖D‖ξε)]) queries to UD and U †

D.
The circuit depth for block encoding the matrix inversion is
O(κ (D) ln[κ (D)/(‖D‖ξε)]), and this circuit and its inverse
are repeated O(κ (D)/‖D‖ξ ) times in the amplitude amplifi-
cation [47] procedure. So the fast inversion is always more
efficient in terms of the circuit depth for block encoding the
matrix inversion. Considering the entire procedure for solving
the QLSP, we need to take the value of ξ into account. Since
ξ ∈ [1/‖D‖, ‖D−1‖], in the worst case when ξ = 1/‖D‖, the
fast-inversion method results in a quadratic speedup with re-
spect to κ (D). In the best case when ξ = ‖D−1‖ = κ (D)/‖D‖,
the cost of QSVT is still Õ(κ ) while the cost of the fast
inversion is O(1).

To illustrate how fast inversion works, let us consider a
concrete example:

D =
n∑

j=1

Zj + (n+ 1)In, (9)

where Zj is the Pauli-Z matrix on the jth qubit, and In is the n-
qubit identity operator. Then ‖D‖ = 2n+ 1, ‖D−1‖ = 1, and
κ (D) = 2n+ 1. We may construct a (1,m, ε) block encoding
of D−1 as follows. Given a state |i〉 ≡ |s1 . . . sn〉 with i ∈ [N]
represented by a binary string and s j ∈ {0, 1}, we may first use
take OD to be a quantum adder circuit, i.e.,

OD|i〉|0l〉 = |i〉|Dii〉, Dii =
(

2
n∑

j=1

s j

)
+ 1,

which can be implemented using a quantum adder circuit that
uses l = �ln n� + 2 ancilla qubits. We then find a (1, l + 1, 0)
block encoding of U ′

D as in Fig. 1. If the right-hand side vector
|b〉 = |0n〉, then the number of repetitions needed to achieve
�(1) success probability is O(κ (D)) = O(n). On the other
hand, if |b〉 = |1n〉, only O(1) repetitions are sufficient for the
fast-inversion method to succeed.

For 1-sparse matrices that are not necessarily diagonal,
we consider two different access models. In the first case,
given a general invertible, 1-sparse matrix A ∈ CN×N , it can
be written as A = �D, where � is a permutation matrix,
and D is a diagonal matrix. We assume that we have direct
access to the permutation �. Then A is invertible if and only
if D is invertible. Given the availability of an (1,m′�, 0) block
encoding of the unitary matrix �−1 denoted by U ′

�, as well as
an (α′D,m′D, ε) block encoding of D−1 denoted by U ′

D, we ob-
tain an (α′D,m′D + m′�, ε) block encoding of A−1 = D−1�−1

via multiplication of block-encoded matrices [7]. The whole
circuit takes three oracle queries in total.

In the second case, we only assume we have query access
to the column of the single nonzero element in each row (since
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the matrix is 1-sparse), as well as to the value of the each
element. The details for constructing the fast inversion in this
case are given in Appendix C.

B. Fast inversion of normal matrices

If A ∈ CN×N is a normal matrix, i.e., AA† = A†A, then A
can be unitarily diagonalized as A = V DV †, where V ∈ CN×N

is a unitary matrix and D ∈ CN×N is a diagonal matrix. There-
fore, A is invertible if and only if D is invertible. Using the
fast-inversion routine, we obtain an efficient block encoding
of A−1 as

U ′
A = (V ⊗ Il+1)U ′

D(V † ⊗ Il+1). (10)

Therefore, we have the following proposition:
Proposition 2 (Fast inversion for normal matrices).

Suppose the eigenvalues of a normal matrix A = V DV †,
where V is unitary and D is diagonal, can be accessed
through the oracle OD given in Eq. (7), and V can be
efficiently implemented in a quantum circuit. Also, let
α′D � 1/mini{|Dii|}, then we can construct an (α′D,m′D, 0)
block encoding of A−1, using OD, O†

D, V , and V † each
exactly once. Here m′D = O(l + polylog(N )) if OD uses
O(l + polylog(N )) ancilla qubits.

Let us now consider another example of solving a
linear system via fast inversion. Consider the following
d-dimensional elliptic equation with periodic boundary con-
ditions:

−�u(r)+ u(r) = b(r), r ∈ � = [0, 1]d . (11)

Using a plane-wave basis set, we may expand u, b as

u(r) =
∑
G∈G

û(G) exp(iG · r),

b(r) =
∑
G∈G

b̂(G) exp(iG · r),

where the plane-wave index set is

G = {
G = 2π (g1, . . . , gd )

∣∣ gi ∈ Z, i = 1, . . . , d
}
.

The solution can then be readily written in the Fourier space
as

û(G) = 1

|G|2 + 1
b̂(G), G ∈ G.

We now use a finite number of N plane waves to approxi-
mate the solution to Eq. (11). For simplicity we assume N =
2n = 2dn, so that there are h−1 := N1/d = 2n plane waves per
dimension. We further assume here h can be viewed as an ef-
fective mesh size. Then, the plane-wave indices are restricted
to

Gh =
{

G = 2π (g1, . . . , gd ) | − 1

2h
� gi <

1

2h
,

gi ∈ Z, i = 1, . . . , d

}
, (12)

with the cardinality |Gh| = N , and the resulting discretized
QLSP can be written as A|u〉 ∝ |b〉. We may write A = V DV †,
where V is the d-dimensional quantum Fourier transform

(QFT) [48], and the diagonal entries of D are known and
labeled by G as

D(G) = |G|2 + 1, G ∈ Gh.

Hence, the largest singular value of A is

‖A‖ = σmax = d
(2π )2

(2h)2
+ 1 = dπ2

h2
+ 1,

which grows as h−2 as the number of plane waves increases.
The smallest singular value of A is 1/‖A−1‖ = σmin = 1.
Therefore, the condition number κ (A) = O(dh−2). A block
encoding of D−1 can be explicitly constructed using classical
arithmetics, and therefore we may fast invert the matrix A.

Let us consider d = 1 first, where n = n and V is the stan-
dard QFT for n qubits, denoted by Fn. The implementation of
Fn costs O(n2) gates. In the d-dimensional setting, V can be
constructed by d copies of Fn as

V = Fn ⊗ · · · ⊗ Fn.

So the total cost is Õ(nd ) = Õ(n/d ). Therefore, the circuit
depth for block encoding A−1 is independent of the condition
number κ (A).

To consider the query complexity, we first note that the
norm of the solution∫

|u(r)|2dr =
∑
G∈G

|û(G)|2 =
∑
G∈G

1

(|G|2 + 1)2
|b̂(G)|2

(13)
is well defined as long as the Fourier coefficients of the right-
hand side b̂(G) decay rapidly enough as |G| → ∞ (e.g., when
b(r) is a smooth function). Therefore, with a finite truncation∑

G∈Gh

1

(|G|2 + 1)2
|b̂(G)|2 = �(1),

and the quantity

ξ = ‖A−1|b〉‖ = �(1).

This is asymptotically the best scenario for solving QLSP as
discussed in Sec. II B and Appendix B. Combining the results
of our bound on the complexity of the linear systems problem
(given in Appendix B as Theorem 7) and Proposition 2, we
have the following proposition for the cost of solving the
elliptic equation (11).

Proposition 3. In order to solve the d-dimensional elliptic
equation (11) with a smooth right-hand side b(r) on the d-
dimensional torus with precision ε and success probability
larger than 1

2 , using a plane-wave discretization (12) with grid
size h along each direction, the circuit depth of the quantum
singular value transformation is O(dh−2 ln(1/ε)). The total
number of queries to UA,U

†
A is O(dh−2 ln(1/ε)), and the

number of queries to Ub is O(1). The circuit depth, number of
queries to OD, O†

D, V , V †, Ub are all O(1) using fast inversion.
In the example above, A is a Hermitian matrix. If we

replace A by a normal matrix A′ = A− zI with z ∈ C so that
|z| � ‖A‖ and A′ is invertible, the conclusion still holds. This
is the case in the contour-integral formulation of computing
matrix functions in Sec. V, and in the computation of Green’s
functions in Sec. IV.
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Remark 4. In the context of solving the d-dimensional
Poisson equation, the fast-inversion method is different from
the method in [4] using the HHL algorithm, which employs
the Hamiltonian simulation of the form e−iAt . This requires
�( ln(1/ε)) ancilla qubits to store the eigenvalues, and if the
Hamiltonian simulation is implemented directly, the circuit
depth is �(‖A‖t ). On the other hand, Eq. (10) is based on
the direct access of oracles OD and U ′

D, and the QFT part is
decoupled from the inversion part. Neither the circuit depth
nor the number of ancilla qubits needed depends on ‖A‖ or
the accuracy ε.

Remark 5 (Complexity lower bound with respect to ξ ). As
can be seen in the above discussion, when A is fast invertible,
solving A|x〉 ∝ |b〉 can still have a 1/ξ dependence, where
ξ = ‖A−1|b〉‖, and we assume for simplicity ‖A−1‖ = 1.
This dependence is in fact the best we can get. Consider the
following simple example constructed from the unstructured
search problem with n bits and N = 2n: let Uw be the oracle
for the unstructured search problem marking the target
element w through

Uw|s〉 =
{|s〉, s �= w

−|s〉, s = w.

Now we let

A =
√

N − 1

2
Uw +

√
N + 1

2
I,

and this is a diagonal matrix whose diagonal entries are effi-
ciently computable, and therefore fast invertible. Solving the
QLSP A|x〉 ∝ |u〉, where |u〉 is the uniform superposition of
all n-bit strings, results in a solution

|x〉 =
√

N√
2N − 1

|w〉 + 1√
2N − 1

∑
s �=w

|s〉

with

ξ = ‖A−1|u〉‖ =
∥∥∥∥ 1√

N
|w〉 + 1

N

∑
s �=w

|s〉
∥∥∥∥ = �(N−1/2).

If the QLSP with this A can be solved with o(1/ξ ) queries
to A, then it means we can obtain |x〉 with o(

√
N ) queries

to Uw. Measuring all qubits with the state |x〉 yields w with
probability around 1

2 . Therefore, we would be able to solve the
unstructured search problem with query complexity o(

√
N ),

which is impossible. We therefore think the name “fast in-
version” for our method to deal with this kind of QLSP
is appropriate because it cannot be asymptotically improved
without further assumptions.

III. PRECONDITIONED QLSP SOLVER

We consider the following linear system (1), with a large
condition number κ (A+ B), where A and B are n-qubit ma-
trices. We are primarily interested in the following scenario:
we assume A+ B is rescaled so that ‖(A+ B)−1‖ = �(1) and
‖A‖ � ‖B‖, ‖(A+ B)−1‖, ‖A−1‖ (if needed we may replace
A and B with A− zI and B+ zI for some z ∈ C). The condi-
tion number κ := κ (A+ B) = �(‖A‖). The linear system is
therefore ill conditioned mainly as a result of the large ‖A‖.

We make the following assumptions regarding the query
access in this problem. We assume we have U ′

A, an (α′A,m′A, 0)
block encoding of A−1 prepared by the fast-inversion pro-
cedure, and UB, an (αB,mB, 0) block encoding of B. For
simplicity of presentation we assume these given block en-
codings are error free (see Remark 1). The right-hand side b
is accessed through a quantum circuit Ub, i.e., |b〉 = Ub|0n〉.

In the algorithm we need multiple ancilla registers, and
will refer to the register in which |b〉 is prepared and |x〉 is
produced as the main register (also called the system register).

A. Preconditioning the linear system

It is possible to reduce the condition number of the linear
system by considering the following equivalent formulation:

(I + A−1B)|x〉 ∝ A−1|b〉. (14)

Lemma 1 explains why this linear system might have a much
smaller condition number than the linear system (1).

Lemma 1. Define W = I + A−1B, then the smallest singu-
lar value σmin and largest singular value σmax of W satisfy

1/σmin � 1+ ‖(A+ B)−1‖ ‖B‖ =: CAB,

σmax � 1+ ‖A−1‖ ‖B‖ =: C′AB.

Hence, the condition number of W can be upper bounded as

κ (W ) � [1+ ‖(A+ B)−1‖ ‖B‖](1+ ‖A−1‖ ‖B‖) = CABC′AB.

(15)

Proof. Let W |x〉 = |y〉. Then we have

(A+ B)|x〉 = A|y〉,
therefore,

(A+ B)(|x〉 − |y〉) = −B|y〉,
A(|x〉 − |y〉) = −B|x〉,

and these two equalities lead to

‖|x〉‖�‖|y〉‖+‖|x〉−|y〉‖�[1+ ‖(A+ B)−1‖ ‖B‖]‖|y〉‖,
‖|y〉‖ � ‖|x〉‖ + ‖|x〉 − |y〉‖ � (1+ ‖A−1‖ ‖B‖)‖|x〉‖.

These two inequalities then give a lower bound for the small-
est singular value, and an upper bound for the largest singular
value, as stated in the lemma. �

Remark 6. The upper bound of κ (W ) does not depend on
‖A‖ which we assume to be the main reason why the linear
system (1) is ill conditioned. For a given pair of A and B
we can always rescale A and B, and possibly shifting by a
multiple of identity, i.e., consider instead A− μI and B+ μI ,
so that the smallest singular values of A+ B and A are �(1).
Equation (15) then gives us a bound for the condition number
of W that is independent of ‖A‖. When ‖B‖2 � A, we have
κ (W ) � κ (A+ B).

Our bound of 1/σmin scales linearly with respect to ‖B‖. So
κ (W ) may scale quadratically with respect to ‖B‖, leading to
an undesirable polynomial dependence on the block-encoding
subnormalization factor of B in later applications. How-
ever, such estimate can be overly pessimistic in practice.
In Fig. 2 we plot the smallest singular value of the ma-
trix W corresponding to discretizing a differential operator
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FIG. 2. The smallest singular value of W = I + A−1B where A
and B come from discretizing the differential operator −�+ γ [3+
cos(5x)] with periodic boundary condition in 1D. A = −�h + I
where �h is the discrete Laplacian operator, and B = γV − I where
V is the diagonal matrix whose diagonal elements contain the
potential.

−�+ γ [3+ cos(5x)] with periodic boundary condition in
1D. In this example ‖A‖ dominates because the Laplacian op-
erator is unbounded in the L2 norm. We can see that instead of
going to 0 as γ increases, σmin actually increases. Therefore,
1/σmin in this example can be bounded by a constant that does
not depend on ‖B‖ for γ bounded away from 0.

In Secs. IV A and IV B, we will see this procedure can
be applied to many linear systems of practical interest. Next
we consider how to construct a quantum circuit to solve the
preconditioned linear system (14).

B. Quantum circuit construction

We want to construct a quantum circuit to block encode
W−1 and thereby solve the preconditioned linear system. This
is done by using QSVT (see Appendix B). In the following,
we first construct a block encoding for W . We then use QSVT
to obtain a block encoding of W−1 to solve the linear system.

For the first step, since we can first apply the multi-
plication of block encodings [45, Lemma 30] to obtain an
(α′AαB,m′A + mB, 0) block encoding of A−1B, then apply the
linear combination of block encodings [7, Lemma 29] to ob-
tain an (α′AαB + 1,m′A + mB + 1, 0) block encoding of W =
I + A−1B, which we denote by UW .

Following [45, Corollary 69], we may construct an odd
polynomial P(x) of degree O( 1

δ
ln( 1

ε′ )) that satisfies∣∣∣∣P(x)− 3δ

4x

∣∣∣∣ � ε′, x ∈ [−1,−δ] ∪ [δ, 1].

Suppose the smallest singular value of W is lower bounded
by σ̃min. By Lemma 1 we can choose σ̃min = 1/CAB. We will
apply the polynomial to implement [P�(W/(α′AαB + 1))]†,
where P�(·) denotes the generalized matrix function as de-
fined in Definition 4. We intend to use this to approximate
(W/(α′AαB + 1))−1. Therefore, we need to ensure the singular
values of W/(α′AαB + 1) lie in the interval [δ, 1]. Recall that a
lower bound of the smallest singular value of W is σ̃min. For
this purpose we choose

δ = σ̃min/(α′AαB + 1).

With this odd polynomial P(x), we use QSVT [7, Corollary
11] to construct a circuit to block encode the matrix obtained
by applying P(x) to singular values of W/(α′AαB + 1), using
only one extra ancilla qubit (see Appendix B and Fig. 4 for
the circuit). This is a (1,m′A + mB + 2, 0) block encoding of
P�(W/(α′AαB + 1)). We denote the Hermitian conjugate [see
Eq. (B5) in Appendix B] of the block encoding constructed
in this way by U ′

W . U ′
W is therefore a ( 4

3σ̃min
,m′A + mB + 2, ε′′)

block encoding of W−1, where

ε′′ = 4ε′

3σ̃min
.

In other words,∥∥∥∥ 4

3σ̃min
(〈0l | ⊗ I )U ′

W (|0l〉|y〉)−W−1|y〉
∥∥∥∥ � ε′′,

where the first register contains l = m′A + mB + 2 ancilla
qubits, and the second register is the main register.

From the above analysis we have obtained a block encod-
ing of W−1. Note that (A+ B)−1 =W−1A−1 is a product of
two block-encoded matrices. Therefore, by the multiplication
of block encodings [7, Lemma 30] we have a ( 4α′A

3σ̃min
, 2m′A +

mB + 3, α′Aε
′′) block encoding of (A+ B)−1. This only uses

U ′
A one extra time. We want the block-encoding error to be

α′Aε
′′ = δ′, then we need to choose

ε′ = 3δ′σ̃min

4α′A
(16)

and the polynomial degree can then be expressed with respect
to δ′ as

O

(
1

δ
ln

(
1

ε′

))
= O

(
α′AαB

σ̃min
ln

(
α′A

δ′σ̃min

))
.

The cost of applying QSVT scales linearly with the poly-
nomial degree. We can then summarize the result in the
following theorem:

Theorem 1 (Block encoding of preconditioned matrix in-
verse). Let U ′

A be an (α′A,m′A, 0) block encoding of A−1

implemented via fast inversion, UB be an (αB,mB, 0) block
encoding of B. Let σ̃min be a lower bound for the small-
est singular value of I + A−1B, which can be chosen to be
1/[1+ ‖(A+ B)−1‖‖B‖] as discussed in Lemma 1. Then for
any δ′ > 0 there exists a ( 4α′A

3σ̃min
, 2m′A + mB + 3, δ′) block en-

coding of (A+ B)−1 using O( α
′
AαB

σ̃min
ln( α′A

δ′σ̃min
)) applications of

U ′
A, UB, their controlled versions, their inverses, and other

primitive gates.
There are many parameters involved in the above dis-

cussion which can be confusing to readers. Here we briefly
summarize their relations. The complexity depends directly
on two parameters: δ, which is how far the singular values
of W/(α′AαB + 1) are bounded away from 0, and ε′, which is
the error of polynomial approximation. In the block encoding
of W−1, the polynomial approximation error is amplified into
the block-encoding error ε′′, which is then amplified into the
final block-encoding error δ′ through the multiplication of two
block-encoded matrices. We assume δ′ is chosen a priori and
therefore it requires us to choose ε′ according to Eq. (16).
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Next, we want to solve the linear system |x〉 ∝ (A+
B)−1|b〉 where |x〉 is the normalized solution to the linear
system. We denote the block encoding of (A+ B)−1 in the
above theorem by U . We denote

|w〉 = 4α′A
3σ̃min

(〈0l ′ | ⊗ I )U (|0l ′ 〉 ⊗ |b〉),

where l ′ = 2m′A + mB + 3. Therefore, |w〉/‖|w〉‖ is the out-
put state after applying the block encoding. Also, we denote
|y〉 = (A+ B)−1|b〉, ζ = ‖|w〉‖, and ξ = ‖|y〉‖. Thus, the nor-
malized solution |x〉 = |y〉/‖|y〉‖. Then we have

‖|w〉 − |y〉‖ � δ′, |ζ − ξ | � δ′.

This leads to∥∥∥∥ |w〉ζ − |y〉
ξ

∥∥∥∥ � ζ‖|w〉 − |y〉‖ + |ζ − ξ |‖|w〉‖
ζ ξ

� 2δ′

ξ
.

Therefore, in order to make sure the output normalized quan-
tum state |w〉/‖|w〉‖ is ε close to |x〉 in terms of 2-norm
distance, we need δ′ = ξε/2. The success probability is

‖(〈0l ′ | ⊗ I )U (|0l ′ 〉 ⊗ |b〉)‖2

= 9‖|w〉‖2σ̃ 2
min

16α′A
2 � 9ξ 2(1− ε/2)2σ̃ 2

min

16α′A
2 .

We can boost the success probability to be greater than 1
2

by amplitude amplification, using O(α′A/ξ σ̃min) repetitions.
Therefore, we have the following corollary:

Corollary 1 (Preconditioned linear system solver).
Under the same assumptions as Theorem 1, for the
QLSP (1), an ε-close solution vector can be obtained

with O( α
′
A

2
αB

ξ σ̃ 2
min

ln( α′A
σ̃minξε

)) applications of U ′
A, UB, their

controlled versions, their inverses, and other primitive gates,
in addition to O( α′A

σ̃minξ
) applications of Ub and its inverse,

where ξ = ‖(A+ B)−1|b〉‖. As in Theorem 1, σ̃min can be
chosen to be 1/[1+ ‖(A+ B)−1‖ ‖B‖].

Below we compare the dependence on the condition num-
ber of our preconditioning method against the dependence
of directly using QSVT. Let us consider the scenario we
proposed at the beginning of Sec. III. We assume a rescaling
is applied to A+ B so that ‖(A+ B)−1‖ = �(1), ‖A‖ → ∞,
and ‖A−1‖, ‖B‖ = O(1). As discussed before if ‖A−1‖ is large
we can always replace it with A− zI for some z ∈ C that
is away from the spectrum of A. Furthermore, we assume
α′A and αB are not much larger than ‖A−1‖ and ‖B‖, i.e.,
α′A, αB = O(1). We also assume ε = �(1) so that we do not
need to consider the dependence on ε. This is because both
methods have a logarithmic dependence on 1/ε and are there-
fore similar in this aspect.

Under these assumptions we have

κ (A+ B) = ‖A+B‖‖(A+ B)−1‖=�(‖A+B‖)= �(‖A‖).
(17)

The smallest singular value of W = I + A−1B is lower
bounded by

σ̃min = 1/[1+ ‖(A+ B)−1‖ ‖B‖] = �(1).

From Corollary 1, we can see that the number of queries
to all oracles become O( 1

ξ
ln( 1

ξ
)). This is no longer directly

dependent on κ (A+ B), though such dependence can exist
indirectly through the dependence of ξ on κ (A+ B). We con-
sider the following two cases:

(1) In the worst case, the following inequality be-
comes an equality: ξ = ‖(A+ B)−1|b〉‖ � ‖A+ B‖−1 =
�[1/κ (A+ B)] by Eq. (17). Therefore, we have O(κ (A+
B) ln[κ (A+ B)]) query complexity for U ′

A, UB, and O(κ (A+
B)) query complexity for Ub.

(2) In the best case, |b〉 has �(1) overlap with the left
singular vectors of A+ B corresponding to small singular
values, and therefore ξ can be as large as �(1), giving us
a query complexity of O(1) for all oracles. For a concrete
example of this scenario, see Proposition 3.

In both cases we can compare with direct application of
QSVT as discussed in Appendix B. The worst and best sce-
narios are discussed for QSVT without preconditioning in
Appendix B. In the worst case, under the assumption that
the block encoding of A+ B, denoted by UA+B, entails a
subnormalization factor ‖A+ B‖, direct application of QSVT
will need to query UA+B and its inverse O(κ (A+ B)2 ln[κ (A+
B)]) times, and Ub and its inverse O(κ (A+ B)) times. The
preconditioning method results in a quadratic improvement.
In the best case, i.e., |b〉 has �(1) overlap with the left singu-
lar vectors of A+ B corresponding to small singular values,
under the same assumption, the number of queries to UA+B

is O(κ (A+ B)) and the number of queries to Ub is O(1).
This improvement comes from the fact that the large overlap
makes the success probability of applying the QSVT bounded
away from zero by a constant. The improvement of using
preconditioning in this case is more significant, as we can
dispense with this linear dependence on the condition number
altogether.

We remark that the speedup in our method does not
come from a reduced effective condition number. Consider
the following simple example: let |umin〉 and |umax〉 be the
left-singular vectors of A+ B associated with the smallest
and largest singular values, respectively. Then for the QLSP
(A+ B)|x〉 ∝ |b〉 where |b〉 = 1√

2
(|umin〉 + |umax〉), we have

ξ = �(1), and in the scenario discussed above solving the
QLSP only requires O(1) queries to all oracles. The effective
condition number of this problem is, however, the same as the
condition number of A+ B, which is �(‖A‖).

Remark 7. The above procedure assumes we know the
constants such as CAB = 1+ ‖(A+ B)‖−1‖B‖ and ξ . The al-
gorithm still works if upper bounds to these constants are
known. In Theorem 1 and Corollary 1, a superlinear depen-
dence on the block-encoding factor αB (or alternatively the
matrix norm ‖B‖) will arise if we use the bound in Lemma 1,
letting σ̃min = 1/CAB. However, according to the discussion in
Remark 6, it is possible that σ̃min can be independent of αB.
In this case, the preconditioned linear system solver can scale
linearly with respect to αB.

IV. EVALUATING GREEN’S FUNCTIONS
OF QUANTUM MANY-BODY SYSTEMS

We first give a short introduction of the representation
of fermionic systems. We consider here a second-quantized
representation wherein each state is referred to as an orbital.
The Pauli exclusion principle forbids two electrons from being

032422-10



FAST INVERSION, PRECONDITIONED QUANTUM … PHYSICAL REVIEW A 104, 032422 (2021)

in the same spin state and spatial state simultaneously. Since
spin for an electron can either be up or down, there are four
possible occupation states for each orbital. This means that
two qubits are needed to represent a given configuration of an
orbital. For example, the qubit states |00〉, |01〉, |10〉, |11〉 are
taken to represent an orbital containing no electrons, no spin
down and one spin up, one spin down and no spin up, and one
spin up and down electron, respectively.

Since an orbital is naturally expressed as a pair of qubits in
quantum computing, it is natural to further divide an orbital
into two spin orbitals which correspond to both the quantum
states for both the spin and spatial degrees of freedom. In this
notation, we can describe the occupation and dynamics of a
set of spin orbitals using creation and annihilation operators
such that a spin orbital corresponding to spin state σ and
spatial orbital ν is given by the state â†

ν,σ |0〉ν,σ = |1〉ν,σ where
â†
ν,σ is a fermionic (anticommuting) creation operator acting

on the spin orbital. Similarly, â†
ν,σ |1〉ν,σ = 0. This leads us to

the number operator n̂ν,σ = â†
ν,σ âν,σ , which has the property

that n̂ν,σ â†
ν,σ |0〉ν,σ = â†

ν,σ |0〉ν,σ and n̂ν,σ |0〉ν,σ = 0. Thus, this
operator is often called a number operator because it counts
the number of electrons in a spin orbital.

We may also use a single index i to represent the multi-
index (ν, σ ). Then the creation and annihilation operators
â†

i , âi can be expressed using the Pauli operator via, e.g., the
Jordan-Wigner transform [32] as

âi = Z⊗(i−1) ⊗ 1
2 (X + iY )⊗ I⊗(N−i),

â†
i = Z⊗(i−1) ⊗ 1

2 (X − iY )⊗ I⊗(N−i). (18)

Correspondingly, the number operator can be represented as

n̂i = 1
2 (I − Zi ). (19)

Here X,Y,Z, I are single-qubit Pauli matrices. Note that
Eqs. (18) and (19) naturally provide a (1,1,0) block encoding
of âi, â†

i , n̂i.
As a practical application of the preconditioned linear

system solver, we consider the evaluation of the single-
particle Green’s function in quantum many-body systems. The
fermionic Hamiltonian (in the spin-orbital formulation [32])
can be naturally separated into the sum of two terms as

Ĥ = Ĥ0 + Ĥ1.

Here Ĥ0, Ĥ1 are the noninteracting part and interacting part of
the Hamiltonian, respectively:

Ĥ0 =
N∑

i j=1

Ti j â
†
i â j, Ĥ1 =

N∑
i jkl=1

Vi jkl â
†
i â†

j âl âk . (20)

In this section, N is the number of spin orbitals used to dis-
cretize the continuous Hamiltonian, and the dimension of the
Hamiltonian matrix Ĥ is 2N .

We denote by |0〉 the ground state of Ĥ with Ne electrons
(Ne � 2N), and E0 is the corresponding ground-state energy.
We assume that the ground state |0〉 can be prepared by an
oracle with error ς and success probability at least p, and E0

is known to some error ς ′. We will provide examples of the
realization of Ĥ0, Ĥ1 in Sec. IV C.

Remark 8 (Complexity of solving the ground-state prob-
lem). The above assumptions are, in general, unlikely to be

satisfied for generic fermionic systems. This assumption is
of course very strong because if it were true in general then
QMA ⊆ BQP, which is widely believed to be false. Even the
problem of deciding whether the ground-state energy is above
or below a threshold (within a fixed promise gap) is known
to be in QMA hard [49–52]. Nonetheless, it is reasonable to
make these assumptions for systems where an ansatz can be
constructed that has polynomial overlap with the ground state,
and where the spectral gap of the Hamiltonian can be bounded
from below. These are the assumptions made in, e.g.. [53,54],
and is believed to occur for a wide range of realistic systems
in physics and chemistry.

A. Single-particle Green’s function

The single-particle Green’s function is a matrix-valued
function (formally mapping C �→ CN×N matrix) that we de-
note G(z). Here the input z can often be interpreted to be an
energy shift and G(z) is defined provided E0 + z is not an
eigenvalue of H . Also, note that the dimension of the underly-
ing Hilbert space for the problem is 2N , the matrix is relatively
small compared to the dimension of the Hamiltonian. We first
define the advanced and retarded Green’s function [denoted
by G(+)(z) and G(−)(z), respectively] as

G(+)
i j (z) := 〈0|âi(z − [Ĥ − E0])−1â†

j |0〉,
G(−)

i j (z) := 〈0|â†
j (z + [Ĥ − E0])−1âi|0〉. (21)

Then the time-ordered single-particle Green’s function, or
Green’s function for short, is the sum of the two components

G(z) = G(+)(z)+ G(−)(z).

We assume | Im(z)| � η. The value of η is often referred to
as the broadening parameter, and determines the resolution of
Green’s functions along the energy spectrum.

Below we demonstrate a procedure that allows us
to directly compute G(±)

i j (z). Now suppose we have an
(α(+),m(+), ε (+) ) block encoding of the matrix inverse (z −
[Ĥ − E0])−1 denoted by U (+), then using the Jordan-Wigner
transformation (18) and the block encoding of product of
matrices [7, Lemma 30], we can construct an (α(+),m(+) +
2, ε (+) ) block encoding of âi(z − [Ĥ − E0])−1â†

j , which we

denote by Ũ (+). Then, the Hadamard test for nonunitary ma-
trices in Appendix D tells us how to estimate G(+)(z). The
same procedure can be applied to obtain G(−)(z).

We remark that if we are only interested in the imaginary
part of the Green’s function [or, more accurately, the anti-
Hermitian part of the Green’s function defined as �(±) :=
1
2i (G

(±) − G(±)†)], then we can directly use amplitude esti-
mation without using the Hadamard test, which saves us one
control qubit. �(±) is related to the spectral functions of the
many-body system. The details of computing �(±) are dis-
cussed in Appendix E.

B. Preconditioned Green’s-function solver

As can be seen from the above discussion, matrix inversion
is a crucial part of evaluating Green’s function. In this section,
we use the preconditioning technique developed in Sec. III to
efficiently perform the matrix inversion. Unlike in the QLSP
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setting in Corollary 1, the performance of Green’s-function
solvers does not depend on the amplitude ξ = ‖A−1|b〉‖.

It now only remains to determine the block encoding of
(z − Ĥ + E0)−1. Since | Im z| � η, the smallest singular value
of z − Ĥ + E0 is bounded from below by η, and ‖(z − Ĥ +
E0)−1‖ � η−1. If ‖Ĥ0‖ and ‖Ĥ1‖ are comparable, it is natural
to consider constructing this block encoding using existing
QLSP solvers such as HHL or the ones based on LCU or
QSVT. The complexities of these direct approaches are in
Table I, and for completeness the analysis is in Appendix
F. Direct block encoding the matrix inverse (z − Ĥ + E0)−1

using LCU or QSVT results in a linear dependence on ‖Ĥ‖
in the query complexity (here we assume the block-encoding
factor of z − Ĥ + E0 is comparable to ‖Ĥ‖), as shown in
Table I. However, in certain physical settings, we may have
‖Ĥ0‖ � ‖Ĥ1‖ or ‖Ĥ1‖ � ‖Ĥ0‖ (see Sec. IV C). Then we may
reduce the complexity through preconditioned linear system
solvers in Theorem 1. As shown in Table I, our method en-
ables us to replace the dependence on ‖Ĥ‖ with a dependence
on the smaller one between ‖Ĥ0‖ and ‖Ĥ1‖.

According to Remark 8, we assume the ground energy is
known to a precision ς ′, and the ground state can be prepared
to within trace-distance error ς with probability at least p by
some circuit U . In the analysis below we first ignore the
error of the ground energy for simplicity, but add back its
contribution at the end.

Without loss of generality, we repartition the Hamiltonian
as Ĥ = Â+ B̂, where ‖Â‖ � ‖B̂‖, and Â can be efficiently
unitarily diagonalized as in Proposition 2. In order to use the
preconditioning technique in Sec. III, we first split z − Ĥ +
E0 into the sum of z + i − Â+ E0 and B̂− i for Im(z) > 0, or
z − i − Â+ E0 and B̂+ i for Im(z) < 0. An extra shift ±i is
introduced to so that ‖(z ± i − Â+ E0)−1‖ � 1, and z ± i −
Â+ E0 is still a normal matrix and can be fast inverted.

For simplicity we first assume Im(z) > 0. We can construct
an (1,m′A, 0) block encoding of (z + i − Â+ E0)−1 using the
fast inversion of unitarily diagonalizable matrix technique in
Proposition 2, which we denote by U ′

A, for | Im(z)| � η. We
also construct an (αB + 1,mB + 1, 0) block encoding for B̂−
i (assuming we have (αB,mB, 0) block encoding of B̂), which
can be constructed using [7, Lemma 29], and we denote it by
UB. When Im(z) < 0 we only need to flip the sign of the extra
shift.

Let σ̃min be a lower bound of the smallest singular value
of I + (z + i − Â+ E0)−1(B̂− i). By Theorem 1, the smallest
singular value is lower bounded 1/CAB, where CAB = 1+
‖(A+ B)−1‖ ‖B‖, and it is easy to check CAB � 1+ αB+1

η
.

Thus, a choice for σ̃min can be

σ̃min = η

η + αB + 1
,

which works for all Â and B̂. However, larger values for
σ̃min might be possible given more information about Â
and B̂, as discussed in Remark 7. We can then construct a
( 4

3σ̃min
, 2m′A + mB + 3, ε′′) block encoding of (z − Ĥ + E0)−1,

which uses U ′
A, UB, and other primitive gates for a total of

O( αB
σ̃min

ln( 1
ε′′σ̃min

)) times.
Now we determine the complexity of Green’s-function

evaluation using this preconditioned solver. We apply the

Hadamard test for nonunitary matrices described in Ap-
pendix D, and specifically Lemma 7, to the matrix (z − Ĥ +
E0)−1, for which we have constructed a block encoding using
the preconditioning technique. Because amplitude estimation
[47] is used in Lemma 7, we have an 1/ε dependence on
the precision rather than the 1/ε2 often seen in Monte Carlo
type methods. We also repeat amplitude estimation multiple
times and take the median to exponentially reduce the failure
probability of amplitude estimation, which is discussed in
more detail in Appendix D.

Compared to Lemma 7, there is a further source of error
due to the inexact ground energy. Suppose instead of the exact
ground energy E0 we have an approximate Ẽ0. Then

‖(z − Ĥ + E0)−1 − (z − Ĥ + Ẽ0)−1‖
= |Ẽ0 − E0|‖(z − Ĥ + E0)−1(z − Ĥ + Ẽ0)−1‖.

Since

‖(z − Ĥ + E0)−1‖ � 1

η
, ‖(z − Ĥ + Ẽ0)−1‖ � 1

η
,

when |Ẽ0 − E0| � ς ′ as assumed at the beginning of this
section, the error that comes from the inexact ground energy
is upper bounded by ς ′/η2.

After taking into account both the error due to the block
encoding of (z − Ĥ + E0)−1 and the ground energy, we set
ε′′ = ηε/2 in the above analysis, and arrive at the following
theorem:

Theorem 2. Given a unitary circuit U to prepare the
N-particle ground state |0〉 to trace-norm error ς with prob-
ability at least p, a (1/η,m′A, 0) block encoding U ′

A of (z +
i − Â+ E0)−1, an (αB + 1,mB + 1, 0) block encoding UB of
B̂− i for Im(z) � η > 0, a lower bound σ̃min for the smallest
singular value of I + (z + i − Â+ E0)−1(B̂− i), and an esti-
mate of the ground energy that has an error upper bounded by
ς ′, we can evaluate Gi j (z) = 〈0|âi(z − Ĥ + E0)−1â†

j |0〉 to

precision 8
3σ̃min

ς + ς ′
η2 + ε with probability δ using

(1) O( αB

σ̃ 2
minε

ln( 1
εσ̃min

) ln( 1
δ
)) applications of U ′

A and UB,

(2) O( 1
σ̃min

√
pε ln( 1

ς
) ln( 1

δ
)) applications of U ,

(3) other primitive gates whose number is proportional to
the sum of the two numbers above.

In the absence of a tighter bound, σ̃min can be chosen to
be η/(1+ αB + η). When Im(z) � −η < 0 the complexity is
the same and we only need to flip the sign of the shift i in the
block encodings.

C. Examples

Below we discuss the application of our preconditioned
Green’s-function evaluation method to the Hubbard model,
the second-quantized quantum chemistry Hamiltonian in the
plane-wave dual basis, and the Schwinger model, and discuss
whether there is speedup compared to the direct evaluation
of Green’s function through QSVT or LCU as discussed in
Appendix F. In all three models the Hamiltonian can be writ-
ten as the sum of two terms Ĥ = Â+ B̂, with ‖Â‖ � ‖B̂‖.
The direct method using QSVT or LCU results in a lin-
ear dependence on ‖Ĥ‖, and therefore the dominating term,
as discussed in Appendix F. Our preconditioning method
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replaces the dependence on ‖Ĥ‖ with the dependence on the
much smaller quantity ‖B̂‖. Such a dependence can, how-
ever, be cubic when no additional information about σ̃min in
Theorem 2 is available.

1. Hubbard model

The Hubbard model can be viewed as a prototypical system
for describing electrons in strongly correlated materials. The
Hamiltonian shares similarity with the full Coulomb Hamil-
tonian in Sec. IV C 2. Consider the two-dimensional (2D)
Hubbard model with

√
N ×√N grid points that only has

onsite interaction between electrons of opposite spins. The
Hamiltonian reads as

Ĥ =
∑
x,y,σ

T (x − y)â†
x,σ ây,σ +U

∑
x

n̂x,↑n̂x,↓ =: Ĥ0 + Ĥ1.

Here n̂x,σ = â†
x,σ âx,σ , x = (x1, x2) ∈ Z2, and the noninteract-

ing part only involves nearest-neighbor interaction as

T (x − y) =
{−t, d (x, y) = 1

0, otherwise.

For most fermionic problems of interest we have t,U > 0.
The two-dimensional domain is assumed to be periodic.

Using the fermionic Fourier transform (FFFT) [55], one
may transform the creation and annihilation operators to the
momentum space as

ĉ†
G,σ
= FFFT†â†

x,σFFFT, ĉG,σ = FFFT†âx,σFFFT,

where G = (G1,G2) is the index of vectors in the recipro-
cal space given by Gα = 2πkα/

√
N , and kα ∈ {−

√
N/2+

1, . . . ,
√

N/2}, α = 1, 2. For simplicity we assume that
√

N
is an even number.

Explicit circuits for the FFFT, for the Jordan-Wigner
fermionic representation, can be found in [55]. Using FFFT,
the translation-invariant kinetic energy operator can be diago-
nalized in the momentum space as

∑
x,y,σ

T (x − y)â†
x,σ ây,σ = FFFT

(∑
G,σ

T̂ (G)ĉ†
G,σ ĉG,σ

)
FFFT†.

(22)

Here T̂ (G) is the Fourier transform of the discretized kinetic
operator.

There are a number of ways to express such a diagonal
matrix. In particular, this transformation yields ĉ†

G,σ ĉG,σ =
(I − ZG,σ )/2, which can be simply implemented as −ZG,σ /2
by neglecting a dynamically irrelevant shift to the energy in
the equality. Applying the (ordinary) two-dimensional Fourier
transform on T (x) to find T̂ (G), we find that there exists
a unitary decomposition of the kinetic term such that the
sum of the absolute value of the coefficients in the unitary
decomposition is at most αT which obeys

αT � N

2
max

G
|T̂ (G)| = max

G

∣∣∣∣∣1

2

∑
x

T (x)eiG·x
∣∣∣∣∣ � N |t |. (23)

We further find that (again up to an irrelevant constant shift
in the energy)

U
∑

x

n̂x,↑n̂x,↓ =
∑

x

Zx,↑Zx,↓ − Zx,↑ − Zx,↓
4

.

Therefore, the sum of the coefficients of the unitaries in this
unitary decomposition αU satisfies

αU �
∑

x

3|U |
4
= 3N |U |

4
� N |U |. (24)

It then follows that we can construct an (αH ,O( ln(N/ε)), 0)
block encoding of Ĥ for

αH � αT + αU � N (|t | + |U |). (25)

If |U | is small compared to |t |, then the kinetic energy term
dominates and so it makes sense to use the preconditioned
algorithm to compute the Green’s function where Â is taken to
be the kinetic operator and B̂ the electron-electron interaction.
Since the kinetic term can be diagonalized by the FFFT, we
can use the fast-inversion result of Proposition 2 we can invert
the kinetic part of the Hamiltonian using a single query to
an oracle that yields the diagonal elements of T̂ (G) and a
single application of FFFT and its inverse. On the other hand,
if |t | is small compared to |U | (which corresponds to the
strongly correlated regime, and is often the case of interest)
then we simply take Â to be the onsite interaction term. This
is similar in spirit to the hybridization expansion in quantum
Monte Carlo calculations [56]. In either case, the scaling for
the normalization constant is min(|U |, |t |).

We also require for our Green’s-function approach an
oracle that yields a block encoding of B̂+ i, where B̂ is
the two-body operator describing electron-electron interac-
tion. As mentioned previously, a block encoding of B̂ exists
with a block-encoding factor N min(|t |, |U |). Therefore, we
can construct a block encoding for B̂+ i with a value of
αB = N min(|t |, |U |)+ 1 ∈ O(N min(|t |, |U |)). Such a block
encoding requires 2 queries to an oracle that computes the
energy U

∑
x n̂x↑n̂x↓ for a particular configuration of electrons

in position space.
The Green’s function can therefore be computed with error

at most ε and failure probability δ using a number of queries
to oracles that compute the kinetic and potential energy of a
given configuration (in momentum space and position space,
respectively) that are of

Õ

(
N3 min(|U |, |t |)3

η2ε
ln

(
1

δ

))
, (26)

which is independent of the value of |t |. Here we used
Theorem 2 and the worst-case bound σ̃min = η/(1+ η + αB)
as discussed in the theorem. This can provide an advan-
tage over the nonpreconditioned version of the algorithm if
min(|U |, |t |) is much smaller than max(|U |, |t |).

Remark 9. Using arguments given in Appendix J, we can
further optimize this scaling to depend on the number of elec-
trons in the initial state. If we denote the number of electrons
to be Ne, then the scaling of the number of energy evaluations
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is improved to

Õ

(
N3

e min(|U |, |t |)3

η2ε
ln

(
1

δ

))
. (27)

2. Plane-wave dual basis

For treating electrons in a periodic, infinite lattice, it is
appropriate to use a periodized Coulomb operator (also called
the Ewald interaction) [57]. This representation of electronic
structure is also significant because it takes a similar form
to the Hubbard model and consists of a kinetic and inter-
action term where the former can be diagonalized using the
FFFT and the latter is diagonal in the computational basis.
We omit the detailed discussion of the quantum many-body
Hamiltonian in plane-wave dual basis here and refer readers
to Ref. [55]. Unlike the Hubbard model, we find (somewhat
surprisingly) that there is no clear advantage for using our
preconditioned algorithm for this Hamiltonian in terms of
Green’s-function evaluation, at least according to our worst-
case analysis.

Here we will take the UA to be a block encoding of the
external potential and two-body interaction operators and UB

to be a block encoding of the kinetic energy term. It has been
found that the block-encoding factor for the kinetic energy
term (denoted by αB) is O( N5/3

�2/3 ), while the block-encoding
factor of the potential term (denoted by α′A) is O(N7/3/�2/3)
[55]. Thus, Theorem 2 tells us that the number of applications
of oracles that compute the diagonal matrix elements of the
kinetic and potential operators in the plane wave and plane-
wave dual basis, respectively, that are needed to compute the
Green’s functions within error ε and failure probability δ for
|Im(z)| � η is in

Õ

(
N5

�2η2ε
ln

(
1

δ

))
. (28)

Again we used Theorem 2 and the worst-case bound σ̃min =
η/(1+ η + αB) as discussed in the theorem.

Remark 10. This scaling shows that advantages do not
necessarily follow by applying our technique to problems
in chemistry. If we were to compare the results in Table I,
then we see that the nonpreconditioned Green’s-function com-
putation scales would require a number of queries that are
in Õ(N7/3/�2/3) (for constant ε, η, δ) (similar to the Hub-
bard model, we show that a small advantage can be gained
by imposing a fermion-number constraint but this does not
change the conclusion here). Therefore, despite the asymp-
totic separation between the terms, we are not able to show
an advantage of preconditioned linear system solvers in the
context of the plane-wave dual basis set. Therefore, precondi-
tioned linear system solvers with better scaling with respect to
αB would be of interest for future works. It is also possible that
the preconditioned solver could be more useful in different
basis sets, such as the molecular orbital basis set.

3. Schwinger model

As a final example of a class of models that our meth-
ods can be applied to, we will examine computing Green’s
functions for the Schwinger model. The Schwinger model

describes quantum electrodynamics in 1+ 1 dimensions and
is also used as a toy model for quantum chromodynamics.

The Hilbert space for the Schwinger model is the tensor
product of two spaces. One consists of a tensor product of
N + 1 fermionic spaces and the other consists of a product of
N gauge-field spaces. Each gauge field can be thought of as
a qubit register that can take 2L + 1 different integer values
ranging from −L to L. There are two operators that we need
to define that act on the gauge-field space. First we have Ê2

r ,
which is a diagonal operator and counts the energy stored in
the gauge field with index r ∈ {1, . . . ,N}. The second is Ûr ,
which adds one to value stored in the gauge-field register and
is analogous to a bosonic creation operator. The action of these
operators is given formally below:

Ê2
r =

L∑
ε=−L

ε2|ε〉r〈ε|r, Ûr =
L∑

ε=−L

|ε + 1〉r〈ε|r,

Û †
r =

L∑
ε=−L

|ε − 1〉r〈ε|r . (29)

Here we assume for Ûr and its adjoint that the gauge field
satisfies periodic boundary conditions at the cutoff located at
ε = ±L.

The Hamiltonian can be expressed for the Schwinger
model on N sites in one dimension using the operators Êr and
Ûr through the work of Kogut and Susskind [58] as

H =
N∑

r=1

Ê2
r ⊗ Î⊗(N+1) + x

N∑
r=1

[Ûr â†
r âr+1 − Û †

r âr â†
r+1]

+ μ

N∑
r=1

(−1)r Î⊗N
L â†

r âr . (30)

Here we use ÎL to denote the identity operation on the link
variables and Î to be the identity operation on the fermionic
modes, where Ê2

r gives the energy in the gauge field that links
two sites in the one-dimensional lattice and Ûr is an operator
that raises or lowers excitation number for the gauge field,
μ = 2m/(ag2) and x = 1/(ag)2, with a the lattice spacing, m
the fermion mass, and g the coupling constant.

Once we have made this identification, we can use the
construction in [59] to express the Hamiltonian as a sum of
unitary operations. The simplest way to construct this as a
sum of unitary matrices is to block encode Ê2

r by noting
Ê2

r =
∑

k k2|k〉〈k| is block encoded by the unitary∑
k

|k〉〈k| ⊗ e−iY cos−1(k2/L2 ) :

|k〉|0〉 �→ |k〉
(

k2

L2
|0〉 +

√
1− k2

L2
|1〉

)
as per the construction that we describe in Appendix C. Simi-
larly, Ûr can be written as a sum of unitary ladder circuits. Let
U ′

A block encode
∑

r Ê2
r ⊗ 1r and let Ub block encode

x
N∑

r=1

[Ûr â†
r âr+1 − Û †

r âr â†
r+1]+ μ

∑
r

(−1)rI⊗r−1
L â†

r âr .

From the discussion in [59, Secs. 2.1 and 2.3] we have αA′ =
(N − 1)L2 and αB = O((x + μ)N ).
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If we allow the gauge-field cutoff to grow unboundedly,
then asymptotically αA′ will dominate the complexity. If we
follow the reasoning used in the previous sections, then Theo-
rem 2, together with the worst-case bound σ̃min = η/(1+ η +
αB) as discussed in the theorem, implies that the number of
queries to UA′ and UB are

Õ

(
α3

B

η2ε

)
= Õ

(
(x + μ)3N3

η2ε

)
. (31)

There, as L increases while all other quantities remain fixed,
this offers a potentially exponential improvement relative to
the nonpreconditioned example. Therefore, in the simulations
of quantum field theory, preconditioning solvers can signif-
icantly reduce the computational complexity with respect to
the size of the cutoff.

V. FAST ALGORITHM FOR EVALUATING
MATRIX FUNCTIONS

In this section we focus on implementing the matrix
function e−βH where H = A+ B, and applying it to a
given quantum state |b〉. For a positive-semidefinite Hamil-
tonian H = A+ B ∈ CN×N with ‖A‖ � ‖B‖ and N = 2n, we
want to apply the imaginary-time evolution e−βH . Following
Sec. II B, we further assume we have access to the eigen-
decomposition of A = V DV †, where V can be efficiently
implemented on a quantum computer, and D is a diagonal
matrix whose entries can be queried by the following oracle:

OD|k〉|0r〉 = |k〉|Dkk〉. (32)

Here we assume the diagonal entries can be represented ex-
actly by r bits. We also assume there is an (αB,mB, 0) block
encoding of B denoted by UB.

This input model is inspired by the quantum many-body
Hamiltonian for which we can diagonalize the noninteracting
part efficiently on a classical computer (see Sec. IV for ex-
amples). Other input models exist for different settings. For
example, Ref. [39] assumes access to a block encoding of
the Hamiltonian, and Ref. [44] assumes the Hamiltonian is
given through a linear combination of unitaries or projections,
and we have access to what is essentially the square root of
the Hamiltonian

√
H . This allows their algorithm to achieve

O(
√
β ) dependence.

Table II compares the query complexities of a few different
algorithms assuming we are given the block encoding of the
Hamiltonian as an oracle. Note that in Table II we did not
consider the dependence on β (or taking β = 1), but this
dependence is included in our analysis in this section. The
reason for omitting β in the table is that β is tied to the
success probability of the procedure and the subnormalization
of the output quantum state. When the state is normalized,
the subnormalization factor amplifies the error in the process.
This fact, combined with the different assumptions made in
different methods, for example, Ref. [39] assumes βH � I ,
complicates the fair comparison of different methods.

The rest of the section is organized as follows. We intro-
duce an algorithm based on the contour-integral formulation
in Sec. V A, and a different algorithm based on the inverse
transform in Sec. V B. Both formulations can be used to
prepare a purified Gibbs state, which is discussed in Sec. V C.

A. Contour-integral formulation

We use the contour-integral representation

e−βx = 1

2π i

∮
�

e−βz

z − x
dz, (33)

where x � 0 and the contour is chosen as

� = {t2 − ζ + it ∈ C : t ∈ R}. (34)

We choose the parameter ζ in the following way, and will
explain the reason in Appendix G:

b = min

(
1

2β
,

1

6

)
, ζ = 2b(1− b). (35)

In particular, βζ � 1. Equation (33) then enables us to express
the matrix function e−βH in terms of a linear combination of
matrix inverses:

e−βH = 1

2π i

∮
�

e−βz(z − H )−1dz. (36)

The contour-integral formulation has been widely used to
compute matrix functions on classical computers [18]. In
Ref. [60], a number of parabolic contours have been con-
sidered, which are optimally tuned so that fast exponential
convergence can be reached with respect to the number of
discretization points N . These types of discretized contour
integrals have also been used to obtain rational approximation
[61], and to invert Laplace transform [62–64]. However, the
parabolas they use for e−βx move away from the origin in the
negative direction along the real axis, and from our analysis in
this section we find that this results in an exponentially grow-
ing subnormalization factor in the LCU procedure. Therefore,
we need to design new parametrization of contours in Eq. (35).

Once the contour is chosen, we may truncate the contour �
on a finite interval t ∈ [−T,T ], and apply the Gauss-Legendre
quadrature formula to discretize this truncated contour inte-
gral. This leads to

e−βx ≈
∑
j∈[J]

� j

z j − x
, (37)

where

z j = t2
j − ζ + it j, � j = T

2π i
w je

−βz j (2t j + i), t j = T s j,

(38)
and s j , w j are the nodes and weights of Gauss-Legendre
quadrature, respectively, and the truncation range T � 1 is to
be chosen. The contour and the quadrature points are shown
in Fig. 3. According to Appendix G, the truncation error
decays very rapidly as T increases and therefore we do not
need to choose a large T . We first bound the error of this
approximation in the following lemma.

Lemma 2. With z j and � j defined above, and β̃ =
min(β, 3), we have∣∣∣∣∣e−βx−

∑
j∈[J]

� j

z j − x

∣∣∣∣∣�
√

2

βπ
e1−βT 2 + 64T 2β̃e3/2

1−e−1/(8T β̃ )
e−J/(4T β̃ ),

for all x � 0.
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FIG. 3. The parabolic contours � and Gauss-Legendre quadra-
ture nodes {z j}. The parabola with solid line is for β = 3 and the
one with dashed line is for β = 6. The spectrum of the Hamiltonian
H = A+ B is on the positive part of the real axis (solid red line). The
dots on the parabolas show the quadrature nodes. Unlike the usual
contour integral, this parabolic contour extends to the infinity. This
is, however, not a problem because the integrand decays very quickly
to 0.

The proof of this lemma is in Appendix G. As can be seen
here, as we increase the truncation range T and number of
quadrature nodes J the error decays to zero.

With the approximation in Eq. (37), we can implement
e−βH as a linear combination of (z j − H )−1 by

e−βH ≈
∑
j∈[J]

� j (z j − H )−1. (39)

To do this, we first need the block encoding of the following
matrix (called a select oracle in the context of LCU):

S =
∑
j∈[J]

| j〉〈 j| ⊗ (z j − H )−1

=
(∑

j∈[J]

| j〉〈 j| ⊗ (z j+ξ j − A)−
∑
j∈[J]

| j〉〈 j| ⊗ (B+ξ j )

)−1

,

(40)

where we choose

ξ j =
{

i, if Im z j > 0

−i, if Im z j � 0.
(41)

We can see that the operator inside the inverse, which can
be seen as a block-diagonal matrix, is the sum of two parts,
with the operator norm of the first part being much larger
than that of the second part. Therefore, we may employ the
preconditioned linear system solver.

Since we have access to the eigendecomposition of A, we
can obtain the various block encodings needed in Theorem 1
easily. We summarize the cost for constructing these block
encodings in the following lemma.

Lemma 3. (a) A (1,m1, 0) block encoding of
(
∑

j∈[J] | j〉〈 j| ⊗ (z j + ξ j − A))−1 can be implemented
by O(1) applications of V , OD, and their inverses, with
m1 = O(poly(r + ln(J ))). (b) A (1+ αB,m2, 0) block

encoding of
∑

j∈[J] | j〉〈 j| ⊗ (B+ ξ j ) can be implemented by
one application of UB, with m2 = O(polylog(J )).

We will provide the construction in Appendix H. Here
the polylog factors originate from the classical computation
related to {z j, ξ j}, as discussed in Remark 3. We further have
the following bounds:∥∥∥∥

(∑
j∈[J]

| j〉〈 j| ⊗ (z j + ξ j − A)

)−1∥∥∥∥ � 1,

‖(z j − A− B)−1‖ � 1

ζ
� 2 max(β, 3),∥∥∥∥∥∑

j∈[J]

| j〉〈 j| ⊗ (Bj + ξ j )

∥∥∥∥∥ � 1+ αB. (42)

We introduce the parameter σ̃ ′min to be a lower bound of the
smallest singular values of I + (z j + ξ j − A)−1(Bj + ξ j ) for
all j. In other words,

1/σ̃ ′min � max
j∈[J]

‖[I + (z j + ξ j − A)−1(Bj + ξ j )]
−1‖. (43)

We want to invert the block-diagonal matrix
∑

j∈[J] | j〉〈 j| ⊗
(z j − A− B)−1, and therefore σ̃ ′min plays the same role as σ̃min

in Theorem 1. We would prefer σ̃ ′min to be a tight lower bound
in order to save computational cost. By Lemma 1, when no
better bound is available, we can choose

σ̃ ′min = 1/max
j∈[J]

[1+ ‖(z j − A− B)−1‖ ‖B‖] = �(1/βαB).

Using these block encodings and bounds, by Theorem 1,
we have the following lemma:

Lemma 4. Let σ̃ ′min satisfy Eq. (43). An (αS,mS, ε
′) block

encoding of the operator S defined in Eq. (4) can be im-
plemented using O( αB

σ̃ ′min
ln( 1

σ̃ ′minε
′ )) applications of V , OD,

UB, and their inverses, where αS = O(1/σ̃ ′min) and mS =
O(poly(r + ln(J ))). Furthermore, it is guaranteed that σ̃ ′min =
�(1/(βαB)).

This block encoding of the operator S, with some unitaries
to prepare a state containing the coefficients

|c〉 =
∑

j

√|� j || j〉∑
j |� j | , |c′〉 =

∑
j

√|� j |eiθ j | j〉∑
j |� j | , (44)

where the phase factor θ j satisfies � j = |� j |eiθ j . This en-
ables us to perform the LCU procedure for

∑
j � j (z j − H )−1

through

(〈c| ⊗ In)

(∑
j∈[J]

| j〉〈 j| ⊗ (z j − H )−1

)
(|c′〉 ⊗ I )

=
∑
j∈[J]

� j (z j − H )−1.

What we get in the end is an (αLCU,mLCU, ε
′) block encoding

of
∑

j � j (z j − H )−1, where

αLCU = αS

∑
j

|� j |. (45)
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Note that [using Eq. (38)]∑
j

|� j | = T

2π

∑
j

w j |e−βz j (2t j + 1)|

→ 1

2π

∫ ∞

−∞
dt e−β(t2−ζ )(2|t | + 1) = O

(
1√
β

)
,

(46)

where we have used the relation βζ � 1. Therefore, substitut-
ing this into Eq. (45) we have αLCU = O(αB

√
β ).

We then estimate the error of this block encoding. So
far, the error for block encoding

∑
j � j (z j − H )−1 has been

accounted for, and it is bounded by ε′. An additional source
of error is due to the difference between

∑
j � j (z j − H )−1 and

e−βH . This error is bounded by Lemma 2. The total error ε is
the sum of these two errors. Therefore, we set ε′ = ε/2, and
choose J and T so that the error bound in Lemma 2 is bounded
by ε/2. We need to choose T and J to be

T = O

(√
max

(
1,

1

β

)
ln

(
1

ε

))
,

J = Õ

(
max (1, β )

[
ln

(
1

ε

)]3/2)
. (47)

The above results can be summarized into the following
theorem.

Theorem 3. Let σ̃ ′min satisfy Eq. (43). An (αLCU,mLCU, ε)
block encoding can be constructed for e−βH , with H = A+ B
as described at the beginning of this section and the oracles V ,
OD, and UB described above, where

αLCU = O(1/(
√
βσ̃ ′min)),

mLCU = O(poly(r + ln(β )+ ln ln(1/ε))),

using O( αB
σ̃ ′min

ln( 1
σ̃ ′minε

′ )) applications of V , OD, UB, and their in-

verses. Furthermore, it is guaranteed that σ̃ ′min = �(1/(βαB)).
We remark that the number of qubits needed is n+

O(poly(r + ln(β )+ ln ln(1/ε))) where the poly comes from
the cost of classical Boolean circuits to perform algebraic
operations on eigenvalues of A and the conversion to quantum
circuit using [46, Lemma 10.10]. A more detailed estimate
of the number of qubits needed and the gate complexity will
require estimating these costs.

Given the block encoding we can apply the matrix func-
tion e−βH to a quantum state |b〉 which is prepared by a
circuit Ub, i.e., Ub|0n〉 = |b〉. We let ξ = ‖e−βH |b〉‖, and the
goal is to prepare a state e−βH |b〉/ξ . Directly applying the
block encoding has a success probability of �(ξ 2/α2

LCU).
Using amplitude amplification [47] we can boost the success
probability to at least 1

2 with O(αLCU/ξ ) applications of the
block-encoding circuit and its inverse. Because of the subnor-
malization of the output quantum state by a factor of ξ , we
need the block-encoding error to be O(ξε) instead of O(ε).
Therefore, in total we need to query V , OD, UB, and their
inverses O( αB

ξ
√
βσ̃ ′2min

ln( 1
ξεσ̃ ′min

)) times, and Ub and its inverse

O( 1
ξ
√
βσ̃min

) times. Therefore, we have obtained the complex-
ity for applying matrix exponential using contour integral in
Table II.

B. Inverse transform formulation

The basic idea of using the inverse transform to acceler-
ate the computation of f (A+ B) is as follows. We assume
that (A+ B) 
 0 and that (A+ B)−1 can be efficiently block
encoded with a block-encoding factor α′A+B, as indicated in
Theorem 1. The inverse transform is simply

f (A+ B) = g((A+ B)−1), (48)

where

g(y) = f (y−1). (49)

Then, instead of finding a block encoding of f (A+ B), we
can alternatively find a block encoding for g((A+ B)−1). The
efficiency of such a transformation relies on the behavior of
g within the interval [−1, 1]. In particular, the behavior of g
near the origin plays a critical role, which reflects the decay
of the original function f at infinity. Our strategy is then to
approximate g(y) uniformly on [−1, 1] by a Chebyshev series,
and the truncated Chebyshev series can then be implemented
via QSVT. Compared to the contour-integral formulation, the
use of the inverse transform does not require the usage of the
LCU technique, and provides a simpler method for preparing
the thermal state.

An example is the imaginary-time evolution e−βH . The
corresponding function is f (x) = sgn(x)e−ζx, and we may
construct g(y) = sgn(y)e−ζ |y|

−1
. The parameter ζ will later be

specified to be ζ = β/α′A+B to block encode e−βH = g((A+
B)−1/α′A+B). The reason why we put a sgn function in f (x)
and g(y) is to ensure that g(y) is an odd function on [−1, 1],
then the corresponding truncated Chebyshev series is also odd
and can be implemented via QSVT discussed in Appendix B,
in which we only describe how to apply QSVT to block en-
code odd polynomials for technical simplicity. We remark that
QSVT can also be used to block encode general polynomials
(see Remark 11), therefore, the inverse transform approach
can be applied to general functions, provided that the function
g(y) is in the Gevrey class (to be defined later), which means
that the original function f (x) decays at infinity in some sense.

We first note that the function sgn(y)e−ζ |y|
−1

is in
C∞([−1, 1]) but not real analytic at y = 0. This complicates
the convergence analysis when we approximate this function
via polynomials of y. Nonetheless, we shall show that the
query complexity only scales logarithmically with respect to
the error ε. To this end, we first define a subset of smooth
functions, called the Gevrey class as follows.

Definition 3. The Gevrey class of order σ on an interval I
is defined as

Gσ (I ) = {g(y) ∈ C∞(I ) : ∃C > 0,R > 0, s.t .|g(k)(x)|
� CRk (k!)σ , ∀ x ∈ I, k � 0}. (50)

Note that G1([−1, 1]) represents the class of real ana-
lytic functions on [−1, 1], and G1([−1, 1]) ⊂ Gσ ([−1, 1]) ⊂
C∞([−1, 1]) for all σ > 1. In order to show that sgn(y)e−ζ |y|

−1

belongs to the Gevrey class, we will use the chain rule of
high-order derivatives (called the Faà di Bruno’s formula, see
e.g. [65, Theorem 1.3.2]):
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Lemma 5 (Faà di Bruno’s formula). Let h, g be smooth
functions, and f (s) = h(g(s)), then

f (k)(s) =
∑ k!

q1!(1!)q1 q2!(2!)q2 . . . qk!(k!)qk

× h(q1+q2+···+qk )(g(s))
k∏

j=1

(g( j)(s))q j , (51)

where the sum is taken over all k-tuples of non-negative inte-
gers (q1, . . . , qk ) satisfying

∑k
j=1 jq j = k.

Proposition 4. Let g(y) = sgn(y)e−ζ |y|
−1

. Then for any ζ >

0, g(y) ∈ G3([−1, 1]), with C = 1,R = 16eζ−1.
Proof. Without loss of generality we only consider y > 0.

We view e−ζy−1
as the composition of ew and w = −ζy−1.

Then, by Lemma 5,

g(k)(s) =
∑

∑
jq j=k

k!

q1!(1!)q1 q2!(2!)q2 . . . qk!(k!)qk

× e−ζy−1
k∏

j=1

[(−1) j+1ζ j!y− j−1]q j

=
∑

∑
jq j=k

k!

q1!q2! . . . qk!
e−ζy−1

(−1)k+∑
q jζ

∑
q j y−k−∑

q j .

Using the substitution z = ζy−1 and the fact that the function
e−zzm achieves its maximum at z = m, we have

e−ζy−1
ζ

∑
q j y−k−∑

q j = ζ−ke−zzk+∑
q j

� ζ−ke−k−∑
q j

(
k +

∑
q j

)k+∑
q j

�
(

4

eζ

)k

(kk )2 �
(

4e

ζ

)k

(k!)2,

where the last step is due to the inequality kk � ekk!. Then we
have

|g(k)(s)| �
(

4e

ζ

)k

(k!)2
∑

∑
jq j=k

k!

q1!q2! . . . qk!
.

Finally, by directly loosing k!
q1!q2!...qk ! to k! and noticing that

the number of tuples (q1, . . . , qk ) satisfying
∑

jq j = k is less
than (k + 1)(k/2+ 1) . . . (k/k + 1) = (2k

k

)
< 22k , we have

|g(k)(s)| �
(

4e

ζ

)k

(k!)222kk! =
(

16e

ζ

)k

(k!)3.

�
Now let us consider the convergence analysis of the Cheby-

shev polynomial expansion of g(y). We remark that the proof
based on the contour-integral formulation is only possible if
the function is complex analytic in a neighborhood of [−1, 1]
in the complex plane, as shown in the proof of Lemma 2. This
is not satisfied in the case of the inverse transform. Here we
present another approach following, e.g., [66, Sec. 5.7]. The
proof of Theorem 4 is given in Appendix I.

Theorem 4. Let g(y) ∈ Cr+1([−1, 1]), and Tk (·) be the kth-
order Chebyshev polynomial on [−1, 1]. Let

ck = 2− δk0

π

∫ 1

−1

g(y)Tk (y)√
1− y2

dy, k � 0. (52)

Then for d � 1

‖g(y)−
d∑

k=0

ckTk (y)‖∞ � 32
8r (r + 1)!‖g(r+1)‖∞

dr
. (53)

If the function g(y) is smooth, we can choose r to be
arbitrarily large to obtain better convergence with respect to
d . However, if the derivatives of g also grow rapidly when r
increases, the error will eventually grow up again. Therefore,
we may choose an optimal r to balance the increasing norm
of higher-order derivatives and better convergence order to
obtain smallest error. Under the assumption of Gevrey class,
we have the following result.

Theorem 5. Assume g(y) ∈ Gσ ([−1, 1]) for some σ � 0.
Then for any ε > 0, to achieve an ε approximation of g(y),
i.e., ‖g(y)−∑d

k=0 ckTk (y)‖∞ � ε, it suffices to choose

d � 8eR[ln (32CR/ε)+ 2]σ+1.

Proof. By Theorem 4 and the definition of Gevrey class,

‖g(y)−
d∑

k=0

ckTk (y)‖∞ � 32C
8rRr+1[(r + 1)!]σ+1

dr
(54)

holds for all r � 1. To achieve an ε approximation, it then
suffices to choose m such that

32C
8rRr+1[(r + 1)!]σ+1

dr
� ε, (55)

which is equivalently

d � 8(32C)
1
r R1+ 1

r [(r + 1)!]
σ+1

r

ε
1
r

. (56)

Using the estimate (r + 1)! � (r + 1)r , it suffices to choose

d � 8R

(
32CR

ε

) 1
r

(r + 1)σ+1. (57)

Now choose r = �ln(32CR/ε)�, then the sufficient condition
for d becomes

d � 8eR

[
ln

(
32CR

ε

)
+ 2

]σ+1

. (58)

We complete the proof. �
Finally, to implement the truncated Chebyshev series∑d
k=0 ckTk (A) for some Hamiltonian A, we may use QSVT

(see Appendix B). Let us now consider the complexity to con-
struct a block encoding for 1

2 e−β(A+B) for (A+ B) 
 0. The
reason for adding a subnormalization constant 1

2 is to ensure
that the corresponding Chebyshev polynomial is bounded by
1, which allows to use QSVT approach for block encoding.

Theorem 6. Let σ̃min be a lower bound for the smallest
singular value of I + A−1B. Let U ′

A be an (α′A,m′A, 0) block
encoding of A−1, UB be an (αB,mB, 0) block encoding of
B. Then for any β > 0 and 0 < ε < 1, a (1,mQSVT, ε) block
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encoding can be constructed for 1
2 e−βH with H = A+ B 
 0,

where

mQSVT = 2m′A + mB + 4,

with the following costs:

(1) Õ( α
′2
A αB

βσ̃ 2
min

[ln( 1
ε

)]5) applications of U ′
A, UB, their con-

trolled versions, and their inverses,
(2) (n+ 2m′A + mB + 4) qubits,

(3) O((2m′A + mB + 4) α′A
βσ̃min

[ln( 1
ε

)]4) additional primitive
quantum gates due to the QSVT approach.

Furthermore, σ̃min = �(1/[1+ ‖(A+ B)−1‖ ‖B‖]).
Proof. By Theorem 1, for any ε′ > 0 (to be specified

later), we can construct an (α′A+B,m′A+B, ε
′) block encoding

of (A+ B)−1, with α′A+B = 4α′A
3σ̃min

,m′A+B = 2m′A + mB + 3, us-

ing O( α
′
AαB

σ̃min
ln( α′A

ε′σ̃min
)) applications of U ′

A, UB, their controlled
versions, their inverses, and other primitive gates.

Consider the function g(y) = 1
2 sgn(y)e−βα

′−1
A+B|y|−1

. By The-
orem 5 and Proposition 4 (here C = 1

2 and R = 16eβ−1α′A+B),
there exists a d-degree odd polynomial P(y) with d =
�(α′A+Bβ

−1[ln(α′A+Bβ
−1ε−1)]4), such that∥∥∥∥1

2
e−β(A+B) − P

(
(A+ B)−1

α′A+B

)∥∥∥∥
=

∥∥∥∥g

(
(A+ B)−1

α′A+B

)
− P

(
(A+ B)−1

α′A+B

)∥∥∥∥ � ε

2
.

Note that ‖g( (A+B)−1

α′A+B
)‖ � 1

2 . Therefore, for any ε < 1, we

always have ‖P( (A+B)−1

α′A+B
)‖ < 1. By QSVT and the block en-

coding of (A+ B)−1, we can construct a (1,m′A+B + 1, 2dε′)
block encoding of P( (A+B)−1

α′A+B
), using d queries of the block

encoding of (A+ B)−1 and its inverse, and O((m′A+B + 1)d )
additional primitive gates. To control the total error by ε from
above, it suffices to choose ε′ = ε/(4d ). Plugging this back
into the complexity analysis and multiplying them in all the
steps, we obtain the estimates of the costs as stated in the
theorem. �

Finally, let us consider applying the matrix function e−βH

to a quantum state |b〉, i.e., preparing a state e−βH |b〉/ξ with
ξ = ‖e−βH |b〉‖. Similar to the discussion in Sec. V A, the
number of queries to V , OD, UB, and their inverses scales

Õ( α′2A αB

βξσ̃ 2
min

[ln( 1
ε

)]5), and the number of queries to Ub and its

inverse becomes O( 1
ξ

ln( 1
ε

)).

C. Purified Gibbs state

The Gibbs state is a mixed state whose density matrix is

1

Zβ

e−βH ,

where Zβ = Tr(e−βH ) is the partition function. In this section
we assume H = A+ B with the A and B accessed through the
oracles outlined at the beginning of Sec. V.

The Gibbs state can be constructed as a partial trace of a
pure state, called the purified Gibbs state:

|〉 = 1√
Zβ

∑
x∈[N]

|x〉(e−βH/2|x〉). (59)

Here x enumerates the elements of the n-qubit computational
basis. When we trace out the first register in the density ma-
trix |〉〈|, we will obtain the Gibbs state. These states are
important for any algorithm that seeks to use thermal states
and gain advantages from amplitude amplification, such as
recent results on semidefinite programming as well as results
on training Boltzmann machines [20,39,67]. We may rewrite
|〉 as

|〉 =
√

N

Zβ

(I ⊗ e−βH/2)

(
1√
N

∑
x∈[N]

|x〉|x〉
)
.

Therefore, we can prepare the purified Gibbs state by applying
the matrix function I ⊗ e−βH/2 to the maximally entangled
state (1/

√
N )

∑
x |x〉|x〉 [38], which in turn can be prepared

by applying a Hadamard transform and a series of CNOTgates
similar to how one prepares the EPR pair [48].

From the discussion at the end of Secs. V A and V B, since
we have ξ = √

Zβ/N , the query complexity of preparing the
purified Gibbs state is as follows:

Corollary 2. In order to prepare the purified Gibbs state,
the total number of queries to U ′

A, OD, UB and their inverses
is Õ((αB/

√
βσ̃ ′2min ) ln(1/ε)

√
N/Zβ ) in the contour-integral ap-

proach, and Õ((α′2A αB/βσ̃
2
min )[ln(1/ε)]5

√
N/Zβ ) in the inverse

transform approach, where σ̃ ′min satisfies Eq. (43) and σ̃min is
a lower bound for the smallest singular value of I + A−1B.

Note that if we only care about the case when β = 1
and A+ B 
 0, we can shift A such that the assumptions
A � I and A+ B � I hold without introducing much overhead
in the subnormalization constant, then α′A = O(1) and the
query complexity becomes Õ((αB/σ̃

2
min )[ln(1/ε)]5

√
N/Zβ ), as

shown in Table II.

VI. DISCUSSION

We have a quantum primitive called fast inversion to
solve a class of quantum linear systems problem (QLSP)
|x〉 ∝ A−1|b〉. If A is a normal matrix and diagonalized as
A = V DV †, then fast inversion is applicable if (1) there is an
efficient quantum circuit to implement the unitary matrix V
(for instance, when V can be implemented via the quantum
Fourier transform), and (2) the inverse of the diagonal matrix
D−1 can be efficiently implemented via a classical circuit.
Here, compared to the standard approach of first finding a
block encoding of A and then invert A, the condition (2) is the
key reason for fast inversion to achieve reduced circuit depth
and query complexities.

Using fast inversion, we developed a preconditioned lin-
ear system solver for solving a class of QLSP of the form
|x〉 ∝ (A+ B)−1|b〉. Here we assume the matrix A can be
fast inverted, but ‖A‖ � ‖B‖, ‖A−1‖, ‖(A+ B)−1‖. Our main
result is that the query complexity of the preconditioned linear
system solver can be independent of ‖A‖, or the condition
number κ (A+ B), and can therefore significantly reduce the
computational cost.
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We demonstrate an application of the preconditioned quan-
tum linear system solver for computing the single-particle
Green’s function in quantum many-body physics. Although
quantum linear system solver is often considered to be used
as a subroutine of a larger quantum algorithm, the computa-
tion of Green’s functions in quantum many-body physics is
entirely a linear system problem in high dimensions. Hence,
we need to take into account all components of the algo-
rithm, in particular the readout errors due to the Monte Carlo
sampling. Using fast inversion, we again demonstrate that the
query complexity can be independent of the norm of the total
Hamiltonian.

Observe that (A+ B)−1|b〉 is only one example of a more
general class of problems of computing f (A+ B)|b〉, where
f (A+ B) is a matrix function. To be specific, we consider
the problem of thermal state preparation, where f (H ) = e−βH

and H = A+ B is a Hermitian matrix. We again assume that
the main difficulty comes from that ‖H‖ ∼ ‖A‖ is very large.
We developed two methods to approximately compute the
matrix function via a series of linear systems. The first method
is based on Cauchy’s contour-integral formula, and the second
is based on a simple inverse transform. Using fast inversion,
both methods can be used to fast prepare a thermal state,
and the cost is independent of ‖H‖. We remark that both the
contour-integral formula and the inverse transform are quite
general, and can be used to accelerate the computation of other
matrix functions as well.

We would like to remark that fast inversion is intimately
connected to the fast forwarding of Hamiltonian simulation
eiAτ , where A is Hermitian and τ ∈ R is some arbitrary time.
For example, based on fast forwarding, the interaction picture
Hamiltonian simulation algorithm [68] allows fast evaluation
of ei(A+B)t |b〉. The assumption and the main result in [68] are
both similar to this paper, i.e., when ‖A‖ � ‖B‖ and eiAτ

can be fast forwarded, the query complexity of the Hamil-
tonian simulation ei(A+B)t |b〉 can be independent of ‖A‖. It
is interesting to compare fast inversion and fast forwarding
from a numerical analysis perspective, i.e., whether one can
use fast inversion to perform fast forwarding, and vice versa.
More generally, when considering the fast evaluation of cer-
tain matrix functions f (A+ B), whether fast inversion or fast
forwarding can lead to a more efficient algorithm. The answer
will likely depend on the details of the function f of interest,
as well as the preconstants of different methods. This will be
our future work.
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APPENDIX A: QUANTUM LINEAR SYSTEM SOLVERS

We first briefly review the literature for solving QLSPs of
the form A|x〉 ∝ |b〉 without preconditioning. Here, we con-
sider a block-encoding model [7], i.e., there exists a unitary
matrix UA that encodes the matrix A (see Sec. I B for the
details of block encoding), while the right-hand side vector
|b〉 is prepared by a unitary Ub as |b〉 = Ub|0n〉. For sim-
plicity, we only compare the query complexity to the block
encoding UA.

The query complexity of the original quantum linear sys-
tems algorithm by Harrow-Hassidim-Lloyd (HHL) algorithm
[8]2 scales as Õ(κ2/ε), where κ = κ (A) and ε is the target
accuracy. The HHL algorithm is based on the phase estimation
method. In the past few years, there have been significant
progresses towards reducing the query complexity for quan-
tum linear solvers. In particular, the linear combination of
unitaries (LCU) [6,36] and quantum singular value trans-
formation (QSVT) [7,45] (closely related to quantum signal
processing (QSP) [37,69]) techniques can reduce the query
complexity to O(κ2polylog(κ/ε)). It is worth commenting
that with respect to the condition number, the worst-case
complexity Õ(κ2) is very much inherent to all aforementioned
algorithms (HHL, LCU, QSVT). This is because the cost of
each algorithm is Õ(κ ) per run, and the worst-case success
probability of each run is Õ(κ−2). Hence, in order to boost to
�(1) success probability, the cost of the naive application of
each algorithm is Õ(κ3). When the standard amplitude ampli-
fication [47] is used, one can reduce the number of repetitions
from Õ(κ2) to Õ(κ ), and hence the complexity is reduced to
Õ(κ2). Furthermore, while the circuit depth of all methods
above is independent of the right-hand side |b〉, the number
of repetitions can depend on |b〉. Hence, the total number
of queries can scale better than Õ(κ2) (see Appendix B for
detailed discussion in the context of QSVT).

In order to further reduce the worst-case complexity
with respect to κ , it is possible to use a technique called
variable-time amplitude amplification (VTAA) [1], which is
a generalization of the standard amplitude amplification al-
gorithm and allows to amplify the success probability of
quantum algorithms by stopping different branches at differ-
ent times. In [1], VTAA was first used to successfully improve
the dependence of the HHL algorithm on κ to be almost
linear, and the query complexity is Õ(κ/ε3). In [6], VTAA
was combined with a low-precision phase estimate to improve
the complexity of LCU to Õ(κ polylog(1/ε)), which is near
optimal with respect to both κ and ε. A similar strategy may be
applied to accelerate QSVT. It is worth noting that the VTAA
algorithm is a complicated procedure and can be difficult to
implement.

Inspired by adiabatic quantum computation (AQC)
[70–72], the recently developed randomization method (RM)
[10] can solve QLSP with a runtime complexity O(κ ln(κ )/ε),
which is the first algorithm to yield Õ(κ ) complexity without
using VTAA. One can use an optimal Hamiltonian simulation

2The original HHL algorithm was not formulated in the language of
block encoding. However, this does not affect the query complexity.
We refer readers to section F for more details.
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|0〉 H e−iϕ2d+1Z e−iϕ2dZ · · · e−iϕ0Z H

|0m〉
UA U†

A

· · ·
|ψ〉 · · ·

FIG. 4. Quantum circuit for implementing the quantum singular value transformation f �(A/α), where f is a real, odd polynomial of degree
2d + 1 satisfying Eq. (B4).

method (e.g., [37]) to yield a gate-based implementation of
RM, of which the query complexity becomes Õ(κ/ε). This is
significantly better than the bounds proven using the vanilla
AQC method, of which the complexity is Õ(κ2/ε) [10,71].
Using a fast eigenpath traversal method [73], which relies on
repeated usage of phase estimation, the cost of RM can be
further reduced to be near optimal as O(κ polylog(κ/ε)).

Since repeated usage of phase estimation or VTAA are both
difficult to implement and can require a significant number of
ancilla qubits, it remains of great interest to obtain alternative
algorithms to solve QLSP with near-optimal complexity scal-
ing without resorting to such procedures. The first algorithm
along this line is achieved by an optimally scheduled AQC
algorithm [2], called AQC(exp), and the runtime complexity
is O(κ polylog(κ/ε)). There is also a slightly more versatile
class of methods called AQC(p), of which the runtime com-
plexity is simply O(κ/ε) [2]. Both AQC(exp) and AQC(p)
require the implementation of a time-dependent simulation
procedure. Using the recently developed near-optimal method
for time-dependent Hamiltonian simulation [68], the query
complexity of AQC(exp) is also O(κ polylog(κ/ε)). This im-
mediately implies that the optimal runtime complexity of the
quantum approximate optimization algorithm (QAOA) [74]
for solving QLSP is also O(κ polylog(κ/ε)), as is verified by
numerical experiments [2]. Using a different strategy called
quantum eigenstate filtering [9], one can boost any algorithm
that prepares a solution to |x〉 with O(1) accuracy O(ε) with
O(κ polylog(κ/ε)) complexity. This is a very simple proce-
dure and has a fully gate-based implementation via QSVT.
In particular, using a method inspired by the quantum Zeno
effect [9] obtains a simple algorithm to solve QLSP with
O(κ polylog(κ/ε)) complexity, without using any amplitude
amplification, phase estimation, or Hamiltonian simulation
(time independent or time dependent). We remark that for both
AQC(exp) and quantum eigenstate filtering, the result is a pure
state, and the success probability of a single run is already
�(1). This avoids the problem of repeated measurements in-
herent to HHL, LCU, and QSVT.

APPENDIX B: QUANTUM SINGULAR VALUE
TRANSFORMATION, AND ITS APPLICATION
TO QUANTUM LINEAR SYSTEM PROBLEM

For a square matrix A ∈ CN×N , where for simplicity we
assume N = 2n for some positive integer n, the singular value
decomposition (SVD) of the normalized matrix A can be
written as

A =W�V † (B1)

or, equivalently,

A|vk〉 = σk|wk〉, A†|wk〉 = σk|vk〉, k ∈ [N]. (B2)

We may apply a function f (·) on its singular values and define
the generalized matrix function [75,76] as below.

Definition 4 (Generalized matrix function [75], Definition
4]). Let f : R→ R be a scalar function such that f (σi ) is de-
fined for all i = 1, 2, . . . ,N . The generalized matrix function
is defined as

f �(A) :=W f (�)V †, (B3)

where

f (�) = diag ( f (σ1), f (σ2), . . . , f (σN )).

This implies that the singular values satisfy

0 � σk � 1, k ∈ [N].

In the discussion below, we assume f is a real, odd polynomial
of finite degree, and satisfies

| f (x)| � 1, ∀ x ∈ [−1, 1]. (B4)

We assume there is an (α,m, 0) block encoding of A denoted
by UA, so that the singular values of A/α are in [0,1]. The
quantum singular value transformation (QSVT) [7, Theorem
2] provides an efficient way to implement f �(A/α) on a quan-
tum computer using a very simple circuit, shown in Fig. 4. It
only uses one extra qubit. Here, H and Z are the Hadamard
and Pauli-Z gates, respectively. The polynomial degree is
assumed to be 2d + 1 for d ∈ N. The real numbers {ϕi}2d+1

i=0
are called the phase factors of the QSVT circuit, and the block
encoding UA and its adjoint U †

A appear alternatively. For a
given polynomial f , the phase factors are an effective way to
encode the polynomial in SU(2) [7, Corollary 11]. Although
the computation of phase factors can be entirely carried out
on classical computers, it is a nontrivial task to compute these
phase factors. Significant progress has been achieved recently,
enabling robust computation of phase factors for polynomi-
als of degrees ranging from thousands to tens of thousands
[77–79].

Remark 11. The condition on f in QSVT appears to be
much stronger than that in Definition 4. Indeed, when f is
a real, even polynomial, the counterpart of Fig. 4 implements
a type of generalized matrix function taking a different form
from Eq. (B3). Since the solution of QLSP only uses the
formulation with odd polynomials, we refer interested readers
to [7] for the construction of QSVT for real, even polynomials,
as well as more general complex valued polynomials.

If f is a general odd function, we may first approximate
f (x) on the interval [−1, 1] using a degree-d odd polynomial
[we may apply a scaling factor if needed to satisfy Eq. (B4)],
and apply QSVT to the resulting polynomial.

The matrix inversion can be implemented as a quantum
singular value transformation in the following way: when A
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is invertible A−1 = V�−1W †. Therefore,

(A/α)−1 = ( f �(A/α))†, (B5)

where f (x) = x−1. However, f (·) here is not bounded by 1
and is in fact singular at x = 0. Therefore, instead of approxi-
mating f (x) = x−1 on the whole interval [−1, 1] we consider
an odd polynomial p(x) such that∣∣∣∣p(x)− 3δ

4x

∣∣∣∣ � ε′, ∀ x ∈ [−1,−δ] ∪ [δ, 1]

and |p(x)| � 1 for all x ∈ [−1, 1]. The existence of such an
odd polynomial of degree O( 1

δ
ln( 1

ε′ )) is guaranteed by [45,
Corollary 69].

Then [7, Theorem 2] enables us to implement
(p�(A/α))† = V p(�/α)W †. We have

‖(p�(A/α))† − (3δ/4)(A/α)−1‖
= ‖p(�/α)− (3δ/4)(�/α)−1‖ � ε′, (B6)

if all diagonal elements of �/α, i.e., the singular values of
A/α, are in the interval [δ, 1]. Therefore, we want all singular
values of A/α to be at least δ distance away from the origin.
We then use QSVT to block encode (p�(A/α))† given a block
encoding of A.

We assume A can be accessed by its (α,m, 0) block encod-
ing UA. Let κ be the condition number of A, then the singular
values of A/α are contained in [‖A‖/(ακ ), ‖A‖/α]. Therefore,
we choose δ = ‖A‖/(ακ ). Using QSVT, a (1,m + 1, 0) block
encoding of p�(A/α) can be implemented [7, Theorem 2]. We
denote this block encoding by U . Then, by Eq. (B6)∥∥∥∥ 4

3δα
(〈0m+1 ⊗ I|)U†(|0m+1 ⊗ I〉)− A−1

∥∥∥∥
=

∥∥∥∥ 4

3δα
(p�(A/α)†)− A−1

∥∥∥∥ � 4ε′

3δα
.

Therefore, U† is a (4/(3δα),m + 1, 4ε′/(3δα)) block encod-
ing of A−1. Because the cost of QSVT scales linearly with
respect to the degree of the polynomial p(x), the total number
of queries to to UA and its inverse is

O

(
1

δ
ln

(
1

ε′

))
= O

(
ακ

‖A‖ ln

(
1

ε′

))
.

With the block encoding U† of matrix inversion we are then
able to solve the linear system A|x〉 ∝ |b〉 when we are given
the quantum state |b〉 representing the right-hand side of the
QLSP. We assume |b〉 can be accessed through the oracle Ub

such that

Ub|0n〉 = |b〉.
We introduce the parameter

ξ = ‖A−1|b〉‖,
which plays an important part in the success probability of
the procedure. This parameter also appears in Secs. II A,
II B, and Corollary 1. Let |̃x〉 = (3δ/4)(A/α)−1|b〉, then the
normalized solution state is |x〉 = |̃x〉/‖|̃x〉‖ satisfying A|x〉 ∝
|b〉. Now denote |̃y〉 = (p�(A/α))†|b〉, and |y〉 = |̃y〉/‖|̃y〉‖.
If the polynomial approximation has error ε′, then we have

‖|̃x〉 − |̃y〉‖ � ε′. However, for the normalized state |y〉, this
error is scaled accordingly. When ε′ � ‖|̃x〉‖, we have

‖|x〉 − |y〉‖ ≈ ‖|̃x〉 − |̃y〉‖‖|̃x〉‖ � ε′

‖|̃x〉‖ . (B7)

Also, we have

‖|̃x〉‖ =
∥∥∥∥3δ

4

(
A

α

)−1

|b〉
∥∥∥∥ = 3αδξ

4
� 3‖A‖ξ

4κ
.

Therefore, in order for the normalized output quantum state to
be ε close to the normalized solution state |x〉, we need to set
ε′ = O(ε‖A‖ξ/κ ).

The success probability of the above procedure is
�(‖|̃x〉‖2) = �(‖A‖2ξ 2/κ2). With amplitude amplification
we can boost the success probability to be greater than 1

2 with
one qubit serving as a witness, i.e., if measuring this qubit
we get an outcome 0 it means the procedure has succeeded,
and if 1 it means the procedure has failed. It takes O(κ/‖A‖ξ )
rounds of amplitude amplification, i.e., using U†, U , Ub, and
U †

b for O(κ/‖A‖ξ ) times. A single U or its inverse uses UA

and its inverse

O

(
1

δ
ln

(
1

ε′

))
= O

(
ακ

‖A‖ ln

(
κ

ε‖A‖ξ
))

times. Therefore, the total number of queries to UA and its
inverse is

O

(
κ

‖A‖ξ×
ακ

‖A‖ ln

(
κ

ε‖A‖ξ
))
=O

(
ακ2

‖A‖2ξ
ln

(
κ

‖A‖ξε
))

.

The number of queries to the Ub and its inverse is O(κ/‖A‖ξ ).
To summarize, we have the refined version of using QSVT to
solve QLSP:

Theorem 7 (Standard QSVT linear system solver). Let UA

be an (α,m, 0) block encoding of A with condition number
κ , Ub be the oracle preparing the right-hand side vector |b〉,
and ξ = ‖A−1|b〉‖ ∈ [1/‖A‖, ‖A−1‖]. Then the solution |x〉 ∝
A−1|b〉 can be obtained with precision ε and with a success
probability at least 1

2 , using O(ακ2/[‖A‖2ξ ) ln(κ/(‖A‖ξε)])
queries to UA and U †

A , and O(κ/(‖A‖ξ )) queries to Ub.
We consider the following two cases for the magnitude of

ξ . For simplicity we assume α = �(‖A‖).
(1) In general if no further promise is given, then ξ �

1/‖A‖. The total query complexity of UA is therefore
O(κ2 ln(κ/ε)). This is the typical complexity referred to in
the literature.

(2) If |b〉 has a �(1) overlap with the left-singular vector
of A with the smallest singular value, then ξ = �(‖A−1‖) =
�(κ/‖A‖). This is the best-case scenario, and the total query
complexity of UA is O(κ ln(1/ε)), and the number of queries
to the right-hand side vector |b〉 is O(1), which is independent
of the condition number.

APPENDIX C: FAST INVERSION OF 1-SPARSE MATRICES

In this Appendix we discuss the fast inversion of 1-sparse
matrices, i.e., there is at most one nonzero matrix element in
every row and column of the matrix. First, let us assume that
there exists an efficient function f such that f (x) yields the
column number for the nonzero matrix element of A in row x.
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We then define the oracle O f : |x〉|c〉 �→ |x〉|c⊕ f (x)〉 as well
as the oracle OA : |x〉|y〉|c〉 �→ |x〉|y〉|c⊕ Axy〉. Without loss of
generality we assume A is a Hermitian matrix [otherwise we
can dilate it into a Hermitian matrix as in Eq. (5); in this case
we also need access to the oracle Og : |x〉|c〉 �→ |x〉|c⊕ g(x)〉,
where g(x) yields the row number for the nonzero matrix
element of A in column x]. For convenience, we will assume
that the matrix elements of A are encoded in polar form.

Lemma 6. Let A be a 1-sparse Hermitian, invertible, and
row-computable matrix in C2n×2n

where each Axy can be
exactly represented using n′ bits of precision then for any
δ > 0, an ((minx |Ax f (x)|)−1, 1, δ) block encoding of A−1

can be implemented using at most 4 oracle queries and an
O(poly(n′ ln(1/δ))) auxiliary operations taken from a gate set
consisting of H,T ,CNOT.

Proof. The proof follows standard reasoning provided in
the quantum simulation literature [28,29]. The first observa-
tion that is important in the reasoning is that all Hermitian
1-sparse matrices can be written as a direct sum of irreducible
one- and two- dimensional matrices. This direct sum structure
can be exploited to allow the matrix inverse to be explicitly
computed on each of these subspaces of constant dimension
and thereby the desired transformation can be performed to
invert the matrix.

Consider a fixed basis vector as the input denoted by
|x〉. We need to consider two cases. First, let |x〉 be part of
an irreducible two-dimensional block of A. This means that
f (x) �= x. It then follows that

A[a|x〉+b| f (x)〉] = aA f (x)x| f (x)〉 + bAx f (x)|x〉

= |Ax f (x)|
( aA∗x f (x)

|Ax f (x)| | f (x)〉+ bAx f (x)

|Ax f (x)| |x〉
)
.

(C1)

This justifies the claim that |x〉 is in an irreducible two-
dimensional space. Additionally, we can see by applying A
again to this result and using that A is Hermitian, the eigenval-
ues of A within the two-dimensional subspace are ±|Ax f (x)|.
Similarly, the eigenvectors can be taken to be

|ψ±x 〉 := 1√
2

(
|min (x, f (x))〉 ± A∗x f (x)

Ax f (x)
|max (x, f (x))〉

)
,

(C2)
where the eigenvectors corresponding to the positive and neg-
ative eigenvalues are |ψ+x 〉 and |ψ−x 〉, respectively.

In order to perform this eigendecomposition of the input
vectors, we will map this two-dimensional space to a single-
qubit space and then diagonalize the operator once it has been
reduced to this case. There are several operations that we need
to define for this diagonalization process. First, let us define
CMP to be a comparator circuit. This self-inverse unitary
transformation has the action (for any b ∈ Z2)

CMP : |x〉|y〉|b〉 �→
{|x〉|y〉|b〉, if x � y

|x〉|y〉|b⊕ 1〉, if x > y.
(C3)

The CMP circuit can be implemented using a two-
complement adder [80] using a polynomial number of gates in
the bits of precision of the inputs x and y. The next operation
we need is the controlled swap gate CSWAP which we define
such that for any two states |ψ〉 and |φ〉 of the same dimension

|b〉
T

R2 R1

T †|0n〉
|0〉 •
|0〉

R2|0〉 R1

FIG. 5. Schematic quantum circuit for implementing the one-
and two-dimensional transformations. R1 and R2 refer to the ro-
tations implemented on the one- and two-dimensional subspaces,
respectively.

with SWAP|ψ〉|φ〉 = |φ〉|ψ〉
CSWAP = |1〉〈1| ⊗ SWAP+ |0〉〈0| ⊗ I. (C4)

The CSWAP operation can be implemented using a number of
CNOT and Toffoli gates that is linear in the bits of |ψ〉 and |φ〉.
We denote this transformation T and implement it through
the following steps under the assumption (without loss of
generality) that x � f (x):

(a|x〉 + b| f (x)〉)|0n+1〉
�→O f (a|x, f (x)〉 + b| f (x), x〉)|0n′+2〉
�→CMP (a|x, f (x)〉|0〉 + b| f (x), x〉|1〉)|0n′+1〉
�→CSWAP |x, f (x)〉(a|0〉 + b|1〉)|0n′+1〉
�→OA |x, f (x)〉(a|0〉 + b|1〉)|0〉|Ax f (x)〉
�→CNOT |x, f (x)⊕ x〉(a|0〉 + b|1〉)|0〉|Ax f (x)〉
�→�n(NOT) |x, f (x)⊕ x〉(a|0〉 + b|1〉)|δx, f (x)〉|Ax f (x)〉.

(C5)

Here, �n(NOT) is an n-controlled not gate. This sequence
of operations mirrors standard approaches for simulating 1-
sparse Hamiltonian dynamics as given in [30,81].

All the information needed to implement the inverse of
A on each one- or two-dimensional irreducible subspace of
the 1-sparse matrix is computed using a single invocation
of T . From that we invert the matrix using two controlled
inversion circuits R1 and R2 which correspond to the one- and
two-dimensional inversion circuit, respectively. This strategy
is shown schematically in Fig. 5.

The transformation R2 in Fig. 5 can be implemented as
follows. If |x〉 and | f (x)〉 form an irreducible two-dimensional
subspace, then we can identify R2 through the following
reasoning. First, note that

A

|Ax f (x)| ⊗ I (a|x〉 + b| f (x)〉)|0n+n′+2〉

= T †(I ⊗ Rz(Arg(Ax f (x) ))XRz(−Arg(Ax f (x) ))⊗ I )

× T (a|x〉 + b| f (x)〉)|0n′+n+2〉, (C6)

here X is the Pauli-X gate. Next, we see from the fact that if
C is a 2× 2 invertible Hermitian matrix, then

C =
[

0 c

c∗ 0

]
⇒ C−1 =

[
0 (c−1)∗

c−1 0

]
(C7)
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that
A−1 ⊗ I

|Ax f (x)|−1
(a|x〉 + b| f (x)〉)|0n+n′+2〉

= P†
2

(
I ⊗ Rz

(
Arg

(
A∗x f (x)

))
XRz

(−Arg
(
A∗x f (x)

))⊗ I
)

× P2(a|x〉 + b| f (x)〉)|0n′+n+2〉. (C8)

Equation (C8) shows how we can block encode the nor-
malized inverse; however, since the value of |Ax f (x)| need not
be constant over x, we will need to show how to construct a
block encoding that will allow the normalization factor to be
varied across each block. The central observation is that

A−1 ⊗ I (a|x〉 + b| f (x)〉)|0n+n′+2〉

= (I ⊗ I ⊗ 〈0|)
⎛⎝ A−1 ⊗ I

|Ax f (x)|−1
(a|x〉 + b| f (x)〉)|0n+n′+2〉

⊗
⎛⎝minx |Ax f (x)|

|Ax f (x)| |0〉 +
√

1−
(

minx |Ax f (x)|
|Ax f (x)|

)2

|1〉
⎞⎠⎞⎠.

(C9)

Then, by applying the procedure described in (C8) and (C9)
we can therefore block encode A−1. We call this operation R2

in Fig. 5. Since R2 is unitary, it is also linear and therefore
will apply the inverse on every irreducible two-dimensional
subspace simultaneously.

This procedure requires a circuit of polynomial size in the
bits of precision n′ to compute the inverse trigonometric func-
tion and reciprocal needed to perform this rotation. However,
this requires no queries and is efficient given n′ and therefore
the precise details of the arithmetic circuits used are irrelevant
for our lemma. The one aspect that is relevant is that even if
the inputs of Axy require finite precision, the computation of
the arccosine will often require infinite precision to precisely
represent. This cost is O(poly(n′ ln(1/δ))) quantum opera-
tions. Thus, we can perform an (|Axy|−1, 1, δ) block encoding
of the inverse assuming each irreducible subspace is two di-
mensional.

The construction for R1 in Fig. 5 is even simpler than that
for R2. In this case |x〉 is a member of an irreducible one-
dimensional subspace. This occurs when f (x) = x or, in other
words, when the nonzero matrix element in row x of A occurs
on the diagonal. In this case,

A−1|x〉 = 1

Axx
|x〉 = sgn(Axx )

|Axx| |x〉. (C10)

Note that because A is by assumption Hermitian, Axx ∈ R.
This further means that the diagonalization steps that were
needed for the two-dimensional case are unnecessary here.
Thus, in this case we can express the inverse as

|x〉|0〉 �→ sgn(Axx )|x〉
(

minx |Ax f (x)|
|Axx| |0〉

+
√

1−
(

minx |Ax f (x)|
|Axx|

)2

|1〉
)
. (C11)

Thus, the inversion process in this case looks very similar to
the two-dimensional case after applying the transformation

T . Then, by replacing the Pauli-X operation in (C8) with
a controlled-Z operation with the output of this function as
control, we can selectively diagonalize the block. Similarly, if
x = f (x) we need to flip the sign; this can be achieved by com-
paring Axx to zero applying Z to the resulting qubit that stores
whether Axx < 0 with the bit that stores |( f (x) �= x)〉. This can
also be achieved using an O(n)-size circuit consisting of NOT,
CNOT, and Toffoli. The part of the circuit that computes θxy is
common to both cases and thus does not need to be changed.
Thus, if we augment the circuit by making these changes, we
can implement a ((minx,y |Axy|)−1, 1, δ) block encoding of the
matrix inverse regardless of whether |x〉 is in an irreducible
one- or two-dimensional subspace using 4 oracle queries and
O(poly((n+ n′) ln(1/δ))) auxiliary gate operations from the
Rz, H , CNOT, Toffoli gate library, which can be compiled
down at polynomial cost to gates taken from H , T , CNOT. This
completes the proof. �

APPENDIX D: HADAMARD TEST FOR
NONUNITARY MATRICES

The well-known Hadamard test is frequently used to obtain
the expectation value of a unitary operator. Suppose we want
to obtain 〈φ|U |φ〉 for some unitary U and |φ〉, then for the real
part we need the following circuit:

|0〉 H • H

|φ〉 U

and for the imaginary part we need the circuit that is slightly
different

|0 .〉 H • S−1 H

|φ〉 U

Here H is the Hadamard gate and S is the phase gate. We
find that the probabilities of obtaining 0 when measuring
the first qubit are 1

2 (1+ Re 〈φ|U |φ〉) and 1
2 (1+ Im 〈φ|U |φ〉),

respectively, for the two circuits.
A small modification gives us a way of computing ex-

pectation value of nonunitary matrices when given the block
encodings. If we have the (α,m, 0) block encoding of A which
we denote by UA, then for the real part of 〈φ|A|φ〉 we consider
the following circuit:

|0〉 H • H

|0m〉
UA|φ〉

(D1)

and for the imaginary part we consider

|0 .〉 H • S−1 H

|0m〉
UA|φ〉

(D2)
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The probabilities of obtaining 0 when measuring the first
qubit are 1

2 (1+ 1
α

Re 〈φ|A|φ〉) and 1
2 (1+ 1

α
Im 〈φ|A|φ〉), re-

spectively. One can derive these two probabilities easily by
noting the fact that (〈0m|〈φ|)UA(|0m〉|φ〉) = 1

α
〈φ|A|φ〉.

It will be straightforward to estimate the probability of
obtaining all 0’s in measurement through Monte Carlo sam-
pling, and thereby estimate the quantity of interest 〈φ|A|φ〉.
The efficiency of the Monte Carlo sampling can be generally
accelerated by the amplitude estimation procedure [47, Theo-
rem 12]. However, there are two issues we need to take into
account, both arising from the preparation of |φ〉:

(1) The algorithm for preparing |φ〉 may only be able to
prepare a state close to it, which we denote as |φ̃〉 with trace
distance

√
1− |〈φ̃|φ〉|2 � ς .

(2) The algorithm for preparing |φ〉 may involve measure-
ment and have success probability lower bounded by p < 1.

The first issue compels us to take the error of the state
preparation into account. The second issue requires some
further explanation. If we wanted to estimate 〈φ|A|φ〉 using
Monte Carlo sampling, then we could simply measure the
ancilla qubit for each successful preparation of the state |φ〉,
and do nothing when the state preparation is unsuccessful.
However, when we want to use amplitude estimation, it is no
longer possible to directly select only the successful instances
in this way. In order to construct the reflection operator needed
in the amplitude amplification, we will need to prepare the
state |φ〉, or a state close to it, using a unitary circuit with
success probability 1.

First, we assume |φ〉 can be prepared perfectly with prob-
ability 1 using a unitary circuit Uφ . When estimating the real
part using amplitude estimation, we will need to run Uφ , the
circuit in (D1), and their inverses O(α/ε) times to estimate
the real part to precision ε. The same is true for the imaginary
part.

Next, we consider when the preparation involves some
error. Due to the trace distance bound of |φ̃〉, we have

|〈φ|A|φ〉 − 〈φ̃|A|φ̃〉| � 2‖A‖ς.
Finally, we consider the case when |φ̃〉 is produced only
with probability at least p. Formally, we assume (〈0r | ⊗
In)Uφ|0r〉|0n〉 = a|φ̃〉 where a � √p. In this case we first ap-
ply the fixed-point amplitude amplification [45, Theorem 27]
to Uφ . Compared to the standard amplitude amplification [47],
the fixed-point amplitude amplification has the advantage of
using only a unitary circuit, and can boost the success proba-
bility 1. By [45, Theorem 27], there exists a unitary circuit Ũφ

such that ‖|0r〉|φ̃〉 − Ũφ|0r〉|0n〉‖ � ε′, and this circuit uses Uφ

and its inverse O( 1√
p ln( 1

ε′ )) times. We may set we ε′ = O(ς ),

so that the trace distance of the output away from |0r〉|φ̃〉 is
O(ς ).

A problem with amplitude estimation is that there is a
failure probability, i.e., the estimated amplitude differs from
the true amplitude by more than the allowed error ε, and this
failure probability as mentioned in [47, Theorem 12] is at most
1− 8/π2 < 1

2 . If we want the failure probability to be smaller
than δ, then we can run the amplitude estimation multiple
times and take the median. Using the Chernoff-Hoeffding
theorem we can estimate that we only need to run O( ln(1/δ))
times to ensure the failure probability, i.e., the probability that
the median differs from the true amplitude by more than ε, is
at most δ. Therefore, we have the following lemma:

Lemma 7. Suppose a state |φ〉 can be prepared with trace-
distance error ς by a unitary circuit Uφ with probability
at least p, and A is given through its (α,m, 0) block en-
coding UA, then 〈φ|A|φ〉 can be estimated using amplitude
estimation to precision 2ας + ε with probability at least
1− δ, using O((α/ε) ln(1/δ)) applications of UA and its in-
verse O((α/

√
pε) ln(1/ς ) ln(1/δ)) applications of Uφ and its

inverse, and O((α/
√

pε) ln(1/ς ) ln(1/δ)) other one- and two-
qubit gates.

APPENDIX E: COMPUTING IMAGINARY PARTS
OF THE GREEN’S FUNCTION WITHOUT

USING THE HADAMARD TEST

We remark that if we are interested in computing the
imaginary part of the Green’s function (more accurately, the
anti-Hermitian part of the Green’s function), the calculation
can be simplified as follows. Let z = E − iη, and define

�(±)(z) = 1

2i
[G(±)(z)− (G(±)(z))†],

which are real symmetric matrices. Consider �(+) for simplic-
ity, then

�
(+)
i j (z) = 〈

N
0

∣∣âi Im(z − [Ĥ − E0])−1â†
j

∣∣N
0

〉
= η

〈
N

0

∣∣âi((E + E0 − Ĥ )2 + η2)−1â†
j

∣∣N
0

〉
.

Note that the diagonal entries are

�
(+)
ii (z) = η

〈
N

0

∣∣âi((E + E0 − Ĥ )2 + η2)−1â†
i

∣∣N
0

〉
= η

∥∥(z + E0 − Ĥ )−1â†
i

∣∣N
0

〉∥∥2

2.

If we solve the QLSP

(z + E0 − Ĥ )|yi〉 = â†
i

∣∣N
0

〉
,

the success probability in measuring the ancilla qubits and
obtain all 0’s is(

α′z+E0−Ĥ

)−2∥∥(z + E0 − Ĥ )−1â†
i

∣∣N
0

〉∥∥2

2.

Here, α′
z+E0−Ĥ

is the subnormalization factor for (z + E0 −
Ĥ )−1. Hence, �

(+)
ii (z) can be directly computed from the

success probability without using the Hadamard test.
In order to obtain the off-diagonal entries, we simply use

the identity

�
(+)
i j (z) = η

2

(〈
N

0

∣∣(âi+â j )((E+E0−Ĥ )2+η2)−1(â†
i+â†

j )
∣∣N

0

〉
− 〈

N
0

∣∣âi((E + E0 − Ĥ )2 + η2)−1â†
i

∣∣N
0

〉
− 〈

N
0

∣∣â j ((E + E0 − Ĥ )2 + η2)−1â†
j

∣∣N
0

〉)
,

which can again be evaluated as success probabilities for
separately solving three linear systems. The treatment of �(−)

follows the same procedure.

APPENDIX F: QUERY COMPLEXITIES OF ESTIMATING
GREEN’S FUNCTION USING HHL AND LCU/QSVT

We assume that we are given an exact block encoding of
Ĥ denoted by UH with subnormalization factor αH . Then,
supposing we know the ground energy E0, we can construct
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a block encoding of z − Ĥ + E0 with subnormalization factor
O(|z| + αH ) using [7, Lemma 29].

To our best knowledge, the HHL algorithm has not been
formulated in terms of block encoding in the literature, so
for completeness we provide such a formulation below. The
HHL algorithm relies on time evolution to solve the linear
system. We assume the time evolution, with a Hamiltonian
H to be specified, has a cost O(‖H‖t ), which is typical in
many Hamiltonian simulation methods [30,36,37,40,68,82],
and omit the dependence on the desired precision, because
the dependence is only polylogarithmic and therefore does not
play an important role in the complexity. The circuit construc-
tion of HHL effectively gives a block encoding of the matrix
inverse. We explain it in detail below.

Assume we have a matrix M, given in its block encoding
UM with subnormalization factor αM . If M is not Hermitian,
we may consider the dilated matrix denoted by M̃ as in Eq. (5).
If we are able to block encode M̃−1, then extracting the lower-
left block of this matrix through single-qubit operations will
yield us M−1. We then discuss how to get M̃−1 using HHL.

The HHL algorithm consists of the following steps: We
start with two ancilla registers and a main register, containing
r and one qubit, respectively, each ancilla qubit in the |0〉
state, and the main register starting with some state |b〉. First
we perform Hadamard transform on the first ancilla register,
which is usually called the clock register. Then we apply∑T−1

τ=0 |τ 〉〈τ | ⊗ eiM̃τ t0/T , the controlled time evolution of M̃,
on the main register, controlled by the first ancilla register.
Next we apply QFT on the first ancilla register, so that this
register stores the approximate eigenvalues of M̃ in superpo-
sition. Then we apply rotation on the second ancilla register,
which contains only one qubit, controlled by the first register.
Finally, we uncompute the first ancilla register, and measure
the second ancilla register. Upon obtaining outcome 1 we have
successfully prepared M̃−1|b〉/‖M̃−1|b〉‖.

The main source of error in HHL is the phase estimation
step. To control the phase estimation error to be within δ we
need to let t0 = O(1/δ). However, when the eigenvalue λ is
off by δ its inverse 1/λ will be off by approximately 2δ/λ2 for
δ � λ. We denote the smallest singular value of M as σmin.
Therefore, in order to have a block-encoding error of M̃ to be
smaller than ε′, we need to let t0 = O(1/ε′σ 2

min ). In the origi-
nal HHL algorithm this dependence is mitigated because there
is a subnormalization of the output quantum state involved. If
we want M−1 to have a block-encoding error upper bounded
by ε, we only need M̃−1 to have a block-encoding error upper
bounded by αMε. Therefore, we can set ε′ = αMε.

In the case of M = z − Ĥ + E0, we have αM = O(|z| +
αH ), the smallest singular value of M is lower bounded by
η, and therefore σmin = �(η/αM ). Therefore, we have t0 =
O(αM/η

2ε). The dominant cost of constructing block en-
coding of M−1 is running Hamiltonian simulation of M̃ for
time t0. Therefore, a single block encoding of M−1 takes
O(αM/η

2ε) applications of UM and its inverse. The block
encoding subnormalization factor is upper bounded by the
block-encoding subnormalization of M̃−1, which is at most
1/σmin, divided by αM . It is therefore O(1/σminαM ) = O(1/η).
When we take the estimates for the number of queries to UM

and the subnormalization factor into Lemma 7, we arrive at
the query complexity estimates in the first row of Table I.

The complexities of LCU and QSVT are both easier to
estimate than HHL because of the polylogarithmic depen-
dence on the desired block-encoding error, as both methods
use results from approximation theory to make this possible.
In both cases we first construct the block encoding of M̃−1,
whose singular values are in [1/σmin, 1], where σmin is the
same as defined before. To construct a block encoding of M̃−1

with error upper bounded by ε′, Õ((1/σmin)polylog(1/ε′))
queries to UM̃ are required. When we regard the result-
ing circuit as a block encoding of M−1 we need to set
ε′ = αMε as before. Therefore, in the application to Green’s
function a single block-encoding query UM and its inverse
Õ((αM/η)polylog(1/ε)) times. The resulting block-encoding
subnormalization factor of M−1 scales the same as in HHL,
which in the application to Green’s function is upper bounded
by O(1/η). These estimates lead to the complexities in the
second row of Table I.

APPENDIX G: PROOF OF LEMMA 2:
DISCRETIZING THE CONTOUR INTEGRAL

In this Appendix we prove Lemma 2. The goal is to dis-
cretize the contour integral

I = 1

2π i

∮
�

e−βz

x − z
dz = −1

2π i

∫ ∞

−∞

e−β(t2−ζ+it )(2t + i)

x − t2 + ζ − it
dt,

(G1)
for x > 0 where � is defined in Eq. (34). We first want to
approximate the integral on the real axis by an integral on a
finite interval. We define

IT = −1

2π i

∫ T

−T

e−β(t2−ζ+it )(2t + i)

x − t2 + ζ − it
dt (G2)

and

g(t, x) = e−β(t2−ζ+it )(2t + i)

x − t2 + ζ − it
. (G3)

Then we have, for |t | � 1
2 , |g(t, x)| � √8e−β(t2−ζ ). This im-

plies

|I − IT | �
√

2eβζ

π

∫
|t |>T

e−βt2
dt =

√
2

βπ
eβζ erfc(

√
βT ),

when T � 1
2 . Due to the inequality [83]

erfc(x) = 2√
π

∫ ∞

x
e−t2

dt � e−x2
,

we can bound the error due to the finite-range truncation as

|I − IT | �
√

2

βπ
eβζ e−βT 2

. (G4)

It now remains to find a quadrature for IT . To do this we use
the Gauss-Legendre quadrature. We write out the Chebyshev
expansion of g(t, x) as

g(t, x) =
∞∑

n=0

ĝn(x)Tn(t/T ), (G5)
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where Tn(t ) is the nth Chebyshev polynomial of the first kind.
We define

IGL = T
∑
j∈[J]

w jg(s jT, x), (G6)

where w j and s j are selected according to the standard
Gauss-Legendre quadrature formula on [−1, 1]. Because this
quadrature formula is exact for polynomials of degree up to
2J − 1, and that ∑

j∈[J]

w j |Tn(s j )| � 2,

we have

|IT − IGL| � 2T
∑
n�2J

|ĝn(x)|. (G7)

Therefore, we only need to bound the coefficients |ĝn(x)|.
Let h(θ, x) = g(T cos(θ ), x), and write out its Fourier ex-

pansion

h(θ, x) =
∞∑

n=−∞
ĥn(x)einθ ,

then

ĝn(x) = ĥn(x)+ ĥ−n(x), n > 0, ĝ0(x) = ĥ0(x).

Note that if we introduce a new variable z = eiθ , then

h̃(z, x) = h(θ, x) =
∞∑

n=−∞
ĥn(x)zn,

which takes the form of a Laurent series. Therefore, the
coefficients of the Chebyshev expansion {ĝn(x)}∞n=0 are di-
rectly related to the coefficients of the Laurent expansion
{ĥn(x)}∞n=−∞.

The function g(t, x) is analytic in t in the domain {t ∈ C :
t2 − ζ + it − x �= 0}. We need to estimate how far from the
real axis h(θ, x) can be extended as an analytic function of θ
in order to estimate the convergence rate of the Fourier series
(see, e.g., [84, Chapter 8]).

We want to lower bound |t2 + it − x − ζ | when | Im t | is
bounded by some parameter b to be chosen. We write t = w +
iy, and require |y| � b, then choose

ζ = 2b(1− b). (G8)

ζ is chosen in this way so that the distance between the posi-
tive part of the real axis and the set {t2 + it − ζ : | Im t | � b}
can be bounded from below, which we will consider next.
For each fixed Im t = y, the image of {t2 + it − ζ : Im t = y}
is a parabola in the complex plane parametrized by w. The
parabola moves to the left and widens when y increases from
−b to b (see Fig. 6 for an illustration). Therefore, we only
need to consider when y = −b. In this case

|t2 + it − x − ζ |2 = [w2 − b(1− b)− x]2 + w2(1− 2b)2.

We choose

b = min

(
1

2β
,

1

6

)
= 1

2 max(β, 3)
. (G9)

In particular, 0 � b � 1
6 ensures that (1− 2b)2 � 2b(1− b).

FIG. 6. The parabola {t2 + it − ζ : Im t = y} for y = −b, 0, b.
The spectrum of H = A+ B is on the positive part of the real axis
(solid red line).

We consider two cases. First, when w2 � b(1− b), we
have

[w2 − b(1− b)− x]2 + w2(1− 2b)2 � w2(1− 2b)2

� b(1− b)(1− 2b)2 � 2b2(1− b)2.

Second, when w2 < b(1− b), because x � 0, we have

[w2 − b(1− b)− x]2 + w2(1− 2b)2

= w4 + [(1− 2b)2 − 2b(1− b)]w2 + b2(1− b)2

� b2(1− b)2.

Combining these two cases we have

|t2 + it − x − ζ | � b(1− b) = ζ

2
(G10)

for all | Im t | � b and x � 0.
Next, we determine how far h(θ, x) can be analytically

extended. By the relation t = T cos(θ ), we have

Im t = −T sin(Re θ ) sinh(Im θ ).

Therefore,

| Im t | � T sinh(| Im θ |) � 2T | Im θ |
when | Im θ | � 1. Note that so far we have only used b � 1

6 . In
Eq. (G9) we also have b � 1/(2β ), which ensures that |e−βz|
for all z in a vicinity of the parabola can be bounded from
above by a constant. This is very important when we prove
the exponential decay of the Fourier coefficients below.

Therefore, for | Im t | � b we only need to require | Im θ | �
b/2T when T � 1

2 . Thus, h(θ, x) can be analytically extended
in θ to the strip {θ ∈ C : | Im θ | � b/2T }. Also, h(θ, x) is
periodic in the real direction with a period 2π . Now consider
h̃(z, x) = h(θ, x) with z = eiθ , then h̃(·, x) is analytic in the
annulus {z ∈ C : e−b/2T < |z| < eb/2T }. The coefficients of
the Laurent series can be evaluated using the residue theorem
as

ĥn(x) = 1

2π i

∮
�(a)

z−(n+1)̃h(z, x)dz,

where the contour is �(a) := {z : |z| = ea} with −b/2T <

a < b/2T . By changing the variable back from z to θ , we
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arrive at the following bounds for the Fourier coefficients:

|ĥn(x)| � 1

2πea|n|

∫ 2π

0
|h(θ − ia, x)|dθ, n � 0,

‖ĥn(x)| � 1

2πea|n|

∫ 2π

0
|h(θ + ia, x)|dθ, n < 0, (G11)

for 0 < a < b/2T .
We then bound h(θ + ia, x) for |a| < b/2T . Let t = w +

iy, then as analyzed above |a| < b/2T guarantees |y| � b.
Hence, Re(t2 + it ) is minimized when w = 0 and y = b. In
this case Re(t2 + it ) = −b(1+ b). Thus, we have

Re(t2 − ζ + it ) � −b(1+ b)− ζ = b(1− 3b) � 1

4β
,

(G12)

using the fact b � 1
6 and b � 1/(2β ) in Eq. (G9). This enables

us to bound the exponential in g(t, x). We combine the bound
for the exponential with Eq. (G10) to ensure

|h(θ + ia, x)| = |g(t, x)| =
∣∣∣∣e−β(t2−ζ+it )(2t + i)

x − t2 + ζ − it

∣∣∣∣ � 8Te1/4

ζ
.

We have chosen b and ζ in Eqs. (G9) and (G8), respectively.
Using these two equations and the fact that b � 1

6 < 1
2 we

have 1/ζ � 1/b = 2 max(β, 3). Therefore,

|h(θ + ia, x)| � 16Te1/4 max(β, 3).

Taking it into Eq. (G11) we have

|ĥn(x)| � 16T max (β, 3)e1/4

ea|n|

for 0 < a < b/2T = 1/[4T max(β, 3)] and n ∈ Z. Using this
to get ĝn(x), setting a = 1/[8T max(β, 3)], and taking into
Eq. (G7), we have

|IT − IGL| �
∑
n�2J

64T 2β̃e1/4

ean
= 64T 2β̃e1/4

1− e−1/(8T β̃ )
e−J/(4T β̃ ),

(G13)

where β̃ = max(β, 3). Combining this inequality with (G4),
in which we use βζ � 1, we have

|I − IGL| � |I − IT | + |IT − IGL|

�
√

2

βπ
e1−βT 2 + 64T 2β̃e1/4

1− e−1/(8T β̃ )
e−J/(4T β̃ ). (G14)

APPENDIX H: EFFICIENT BLOCK ENCODINGS FOR THE CONTOUR-INTEGRAL APPROACH

In this Appendix we construct the block encodings in Lemma 3. The first thing we need to implement is the block-diagonal
matrix

∑
j∈[J]

| j〉〈 j| ⊗ (z j + ξ j − A)−1 =

⎛⎜⎜⎜⎝
(z1 + ξ1 − A)−1

(z2 + ξ2 − A)−1

. . .

(zJ + ξJ − A)−1

⎞⎟⎟⎟⎠. (H1)

This block-diagonal matrix can be implemented by the following circuit:

|0 ,〉 INVA

|j〉 INVA

|φ〉 V †
OD

V

|0r〉 INVA

(H2)

where INVA satisfies

INVA|0〉| j〉|λ〉 =
⎛⎝ 1

z j + ξ j − λ
|0〉 +

√
1−

∣∣∣∣ 1

z j + ξ j − λ

∣∣∣∣2

|1〉
⎞⎠| j〉|λ〉.

This is a (1,O(r + ln(J )), 0) block encoding of the block-diagonal matrix in Eq. (H1). The main purpose of the above design is
to use V and OD only O(1) times instead of O(J ) times.

Similar to the above construction, it is possible to construct a (1+ αB,O(1), 0) block encoding of the following block-
diagonal matrix:

∑
j∈[J]

| j〉〈 j| ⊗ (B+ ξ j ) =

⎛⎜⎜⎜⎜⎝
B+ ξ1

B+ ξ2

. . .

B+ ξJ

⎞⎟⎟⎟⎟⎠, (H3)

using controlled UB only once and a logical circuit to determine the value of ξ j for each input j.
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APPENDIX I: PROOF OF THEOREM 4: CONVERGENCE OF THE TRUNCATED CHEBYSHEV SERIES

In this Appendix we prove Theorem 4. For completeness we repeat the essential steps of the proof in [66, Sec. 5.7] with a
more explicit constant dependence, which is the key to obtain exponential convergence of functions in the Gevrey class.

Using Peano’s theorem [66, Lemma 5.15],

d∑
k=0

ckTk (y)− g(y) =
∫ 1

−1
g(r+1)(t )Kd (y, t )dt . (I1)

Here

Kd (y, t ) = 1

r!

(
d∑

j=0

c jrTj (y)− (y− t )r
+

)
, (I2)

where

(y− t )r
+ :=

{
(y− t )r, y � t

0, y < t

and

c jr = 2− δ j0

π

∫ 1

t

(y− t )rTj (y)√
1− y2

dy.

Note that Kd does not depend on the function g(y).
Now let us bound the coefficient c jr for all j � 1. Using the substitution y = cos θ and t = cosφ,

c jr = 2

π

∫ φ

0
[cos(θ )− cos(φ)]r cos( jθ )dθ. (I3)

Define h(s) = [s− cos(φ)]r and f (θ ) = h( cos(θ )). Notice that the (l + 1)th-order antiderivative of cos( jθ ) is
(−1)l+1

jl+1 cos(l+1)( jθ ), using integration by parts, we obtain

π

2
c jr = −

[
r∑

l=0

f (l )(θ )
1

jl+1
cos(l+1)( jθ )

]φ

0

+ 1

jr+1

∫ φ

0
f (r+1)(θ ) cos(r+1)( jθ )dθ. (I4)

By Lemma 5,

f (l )(θ ) =
∑

∑l
p=1 pqp=l

l!

q1!(1!)q1 q2!(2!)q2 . . . ql !(l!)ql
h(q1+q2+···+ql )[cos(θ )]

l∏
p=1

[cos(p)(θ )]qp (I5)

=
∑

∑l
p=1 pqp=l

l!

q1!(1!)q1 q2!(2!)q2 . . . ql !(l!)ql

r!

(r −∑
p qp)!

[cos(θ )− cos(φ)]r−∑
p qp

l∏
p=1

[cos(p)(θ )]qp . (I6)

Notice that for all l � r − 1,
∑

p qp �
∑

p pqp = l < r, we have f (l )(φ) = 0 for all l � r − 1. Then,

π

2
c jr = − f (r)(φ)

1

jr+1
cos(r+1)( jφ)+

r∑
l=0

f (l )(0)
1

jl+1
cos(l+1)(0)+ 1

jr+1

∫ φ

0
f (r+1)(θ ) cos(r+1)( jθ )dθ.

Furthermore, when l is odd, from the equation
∑l

j=1 jq j = l , for any tuple (q1, . . . , ql ), there must exist an odd number p0,
such that qp0 �= 0. Therefore, [cos(p0 )(0)]qp0 = 0, and thus f (l )(0) = 0. When l is even, cos(l+1)(0) = 0. Therefore, we have, for
all l � r, f (l )(0) cos(l+1)(0) = 0, and

π

2
c jr = − f (r)(φ)

1

jr+1
cos(r+1)( jφ)+ 1

jr+1

∫ φ

0
f (r+1)(θ ) cos(r+1)( jθ )dθ. (I7)

Finally, using some very rough estimates that | cos(p)(θ )| � 1 and dropping all the denominators in f (l )(θ ) (which can be surely
improved, but here for technical simplicity we keep these rough estimates), and that the number of l-tuples is less than (l +
1)(l/2+ 1)(l/3+ 1) . . . (l/l + 1) = (2l

l

)
< 22l , we have

‖ f (l )‖∞ � 22l l!r!2r = 22l+r l!r!, (I8)
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and we obtain

|c jr | � 2

π

23r (r!)2

jr+1
+ 2

π

π23r+2(r + 1)!r!

jr+1
� 23r+4 (r + 1)!r!

jr+1
.

It follows that

|Kd (y, t )| � 1

r!

∣∣∣∣∣∣
∞∑

j=d+1

c jrTj (y)

∣∣∣∣∣∣ � 1

r!

∞∑
j=d+1

|c jr |

� 23r+4(r + 1)!r!

r!

∞∑
j=d+1

1

jr+1

< 23r+4(r + 1)!
∫ ∞

d

1

xr+1
dx � 16

8r (r + 1)!

dr
.

Combining this estimate with Eq. (I1), we complete the proof.

APPENDIX J: GREEN’S-FUNCTION COMPUTATION
FOR FIXED NUMBER OF ELECTRONS

Here we review how the scaling of the complexity for
evaluating Green’s functions for certain quantum many-body
Hamiltonians can be improved by utilizing the electron-
number constraint as in Sec. IV C. Our aim in this section is to
discuss how the block-encoding construction can be modified
in these cases to accommodate this.

First, let us assume that we have a Hamiltonian that is the
sum of two orthogonally diagonalizable Hamiltonians. This
means that if we express the Hamiltonian in its eigenbasis
then there exists a unitary matrix Û such that H = H0 + A :=
ÛDÛ † + A such that A and D are diagonal matrices and Û
transforms from the computational basis to the eigenbasis of
H0. Specifically, if we let |ψk〉 be an eigenstate of H0 then

Û |ψk〉 = |k〉, (J1)

where |k〉 is the kth computational basis vector.
If we let PNe be a projector onto a constrained manifold, in

our case the manifold of states with a fixed electron number
Ne, then we can define the constrained Hamiltonian H ′ via

H ′ = PNe (ÛDÛ † + A)PNe . (J2)

Further, let us also assume that PNe commutes not only with H
but also A. If this is true, then [H ′,PNe ] = [ÛDÛ †,PNe ] = 0.
Therefore, ÛDÛ †PNe = PNeÛDÛ † and in turn

H ′ = (Û (Û †PNeÛ )DÛ †)+ APNe (J3)

has the same action within the subspace conditioned on the
value of Ne. Specifically, for any+1 eigenstate of PNe denoted
by |ψ〉, we have

H |ψ〉 = HPNe |ψ〉 = H ′|ψ〉. (J4)

This validates the claim that such modifications do not affect
the action of the Hamiltonian H ′ on the fixed-particle mani-
fold.

Furthermore, let H ′′ = H ′ +C(1− PNe ) for Hermitian ma-
trix C. We then have that for any +1 eigenstate of PNe |ψ〉

H ′′|ψ〉 = H ′′PNe |ψ〉 = H ′|ψ〉. (J5)

Thus, we can perturb H any way we see fit so long as the
perturbation has no impact on the particle-number manifold in

question. We will use this fact to simplify our block-encoding
construction.

Since H0 = UDU †, we simply need to construct a unitary
for block encoding D in order to e convert this classical circuit
into a quantum circuit OD satisfying

OD|k〉|c〉 = |k〉|c⊕ Dkk〉.
For each eigenstate |ψk〉 of H0 indexed by k, we can com-
pute the particle number efficiently through a classical circuit,
which we also convert to a quantum circuit Onum, that satisfies

Onum|k〉|c〉 = |k〉|c⊕ Ne(k)〉,
where N̂ is the number operator and

Ne(k) = 〈ψk|N̂ |ψk〉.
The components work as follows:

CMPnum|Ne(k)〉|c〉 =
{|Ne(k)〉|c⊕ 1〉, if Ne(k) = Ne

|Ne(k)〉|c〉, if Ne(k) �= Ne

and

R|Dkk〉|c〉|0〉

=
{
|Dkk〉|c〉

(
Dkk
α(Ne ) |0〉 +

√
1− ( Dkk

α(Ne )

)2|1〉
)
, if c = 0

|Dkk〉|c〉|1〉, if c = 1.

We only need to make sure α(Ne) � Dkk for all k such that
Ne(k) = Ne. Therefore, in the case of the kinetic operator that
appears in the Hubbard model, this gives a block encoding of
H0PNe with subnormalization factor α(Ne).

Next we will assume that [Û ,PNe ] = 0. While this assump-
tion is not strictly needed to simplify the Hamiltonian to
accommodate the particle-number constraint, the algorithmic
design will be easier. As an example, consider the fermionic
Fourier transform[

FFFT,
∑

j

n̂ j

]
= FFFT

∑
j

n̂ j −
∑

j

n̂ jFFFT

= FFFT

(∑
j

n̂ j −
∑

j

ĉ†
j ĉ j

)

=
∑

k

FFFT

(∑
k

kPk −
∑

k

kPk

)
= 0.

(J6)

Therefore, we have that [FFFT,PNe ] = 0 and in turn this holds
for the Hubbard model, plane-wave dual simulations, and the
Schwinger model. In all these cases it follows that

H ′ = Û (PNe D)Û † + APNe . (J7)

Thus, in these cases we can zero out any eigenvalues of the
orthogonally diagonalizable operators that are outside of the
constraint specified by PNe .

For the case of Green’s-function calculation for the Hub-
bard model, Û = FFFT and we can implement a block
encoding for H0PNe on the fixed particle-number block using
the construction in Fig. 7. In particular, from (22) it is clear
that if we project the state onto the manifold consisting of Ne

electrons we obtain using the fact that FFFT commutes with
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|φ〉 U† Onum
OD O†

D

O†
num U

|0r1〉 R

|0r2〉 Onum
CMPnum CMP†

num

O†
num

|0〉
R|0〉

FIG. 7. Circuit for performing a block-encoding projector on a fixed particle-number manifold of states.

the projector onto the manifold with Ne electrons (denoted
PNe ) we observe that∑
x,y,σ

T (x−y)â†
xσ âyσPNe=FFFT

∑
G,σ

T̂ (G)ĉ†
G,σ ĉG,σPNe FFFT†.

(J8)

We therefore have that the normalization factor for the block
encoding of the kinetic operator constrained to this subspace
obeys

αT � Ne

2
max

G
|T̂ (G)| = max

kx,ky

∣∣∣∣∣ Ne

2N

∑
x,y

T (x, y)e2π i(kxx+kyy)/
√

N

∣∣∣∣∣
� Ne|t |. (J9)

The argument for αU is exactly the same except we do not
need to worry about the diagonalizing FFFT operation. This
means that we can directly apply the reasoning in (24) to find

αU � Ne|U |. (J10)

Thus, by choosing our preconditioner appropriately, we can
achieve αB ∈ O(Ne min(|t |, |U |)). The reasoning for comput-
ing Green’s functions for the Coulomb interaction in the
plane-wave dual basis and the Schwinger model follows iden-
tically.

As a final note, this block-encoding technique is not just
specific to Green’s-function evaluation. Hamiltonian simu-
lation and other related tasks can also be improved in the
continuum limit by using this strategy.
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