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Symmetry-protected dissipative preparation of matrix product states
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We propose and analyze a method for efficient dissipative preparation of matrix product states that exploits
their symmetry properties. Specifically, we construct an explicit protocol that makes use of driven-dissipative dy-
namics to prepare a many-body quantum state that features symmetry-protected topological order and nontrivial
edge excitations. The preparation protocol is protected from errors that respect the symmetry, allowing for robust
experimental implementation without fine-tuned control. Numerical simulations show that the preparation time
scales polynomially in system size n. Furthermore, we demonstrate that this scaling can be improved to O(log® n)
by using parallel preparation of individual segments and fusing them via quantum feedback. A concrete scheme
using excitation of trapped neutral atoms into the Rydberg state via electromagnetically induced transparency is
proposed and generalizations to a broader class of matrix product states are discussed.
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I. INTRODUCTION

Entangled many-body states play a central role in under-
standing strongly correlated quantum matter and constitute
the key resource for quantum information science. Ma-
trix product states (MPSs) [1] form an important class of
many-body entangled states that can describe a variety of
one-dimensional quantum systems. Notably, MPSs include
states featuring symmetry-protected topological (SPT) or-
der [2-5], corresponding to exotic quantum phases beyond
the standard Landau paradigm of symmetry breaking. Such
states can be prepared either through a sequence of uni-
tary quantum gate operations or by first engineering the
parent Hamiltonian and subsequently preparing its ground
state via adiabatic evolution or cooling [6-12]. However,
generating entanglement among many particles using these
approaches is challenging, as it typically requires high-
fidelity control of individual interactions while maintaining
low entropy for intrinsically out-of-equilibrium systems. In
particular, unavoidable coupling to the environment lim-
its the lifetime of these states and hinders their potential
applications.

In this paper, we propose and analyze an alternative
method to efficiently prepare an MPS by engineering cou-
plings between a system and its environment such that
the desired quantum state is obtained as the unique steady
state of time evolution. Such approaches to prepare entan-
gled states have been described previously [13-22]. It has
also been shown that under certain conditions, the dissi-
pative method outperforms corresponding unitary schemes
[23]. In practice, however, the implementation of these sug-
gested schemes in many-body systems is challenging as it
requires engineering of complex interactions and decay chan-
nels with environment. Here we show how symmetries can
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be used to design a simple, translation-invariant dissipa-
tive process that only requires a single decay channel and
global manipulations to create a desired MPS. Remarkably,
similar to symmetry-protected equilibrium phases, this dissi-
pative dynamics is protected from imperfections that respect
the symmetry, allowing for robust experimental realizations
in large systems with current technologies. The symmetry
protection implies that our method does not require high fi-
delity in controls such as global spin rotations or interaction
strength, which are otherwise essential in conventional unitary
schemes.

The paper is organized as follows. In Sec. II we de-
scribe our method for a well-known example of an MPS
that exhibits SPT order. We elaborate on how to construct a
driven-dissipative dynamics from given symmetry properties
of the MPS and rigorously show that the engineered dynamics
deterministically prepares the desired states. Using numerical
simulations, we find the state-preparation time scales poly-
nomially with system size n. In Sec. III we show that this
scaling of state-preparation time can be further improved to
O(log” n) by first preparing multiple chains in parallel and
then connecting them via repeated measurements with feed-
back. This corresponds to an exponential improvement over
previously known scaling O(n'°¢") for generic MPSs [14].
We also provide a detailed analysis of the effect of imperfec-
tions in quantum feedback. We emphasize that our example
scheme utilizes the most natural generic types of environ-
mental couplings as a resource and hence it can be directly
implemented in cold-atom systems with existing technologies.
In Sec. IV we propose a concrete scheme involving exci-
tation of trapped neutral atoms [24-28] into Rydberg states
via electromagnetically induced transparency (EIT) [29], in
which spontaneous emissions of photons from atomic excited
states are harnessed as resources. In Sec. V we generalize our
protocol to a broader class of MPSs, including the ground
states of all one-dimensional SPT phases, and derive a lower
bound on the number of required decay channels that may be
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saturated by an explicit construction. We discuss our results
and outlook in Sec. VI.

I1. DISSIPATIVE PREPARATION OF
AFFLECK-KENNEDY-LIEB-TASAKI STATES

A. Ground states of the Affleck-Kennedy-
Lieb-Tasaki Hamiltonian

We illustrate our scheme by starting with an example to
deterministically prepare a chain of spin-1 particles in the
ground states of a gapped frustration-free Hamiltonian

o o 1 - o
Haxir = Z [Si “Sip1 + 5(51‘ . Si+1)2:|, 9]

i

where S; is the spin-1 vector operator acting on a particle at
site i. First studied by Affleck, Kennedy, Lieb, and Tasaki, the
ground states of Hakpr are paradigmatic examples of MPSs
and model states for the Haldane phase [30—32]. While under
periodic boundary condition, Hagyr has a unique ground state;
under open boundary condition, the ground states are fourfold
degenerate due to two fractionalized degrees of freedom on
the edges. These constitute a signature of symmetry-protected
topological order, which can be experimentally verified by
measuring a nonlocal string order parameter [33,34].

The ground states of the Affleck-Kennedy-Lieb-Tasaki
(AKLT) Hamiltonian have exact MPS representations [1]. For
a system of n spin-1 particles, the unnormalized AKLT ground
states can be written as

Gi) =D (alACAS A B sisy - os,). ()
{si}

where s; € {1, 0} runs over three possible spin projections
along the Z axis for a particle at site i. The quantum ampli-
tude for each many-body basis state |s;s; - - - s,) is obtained
from the products of D x D matrices A®), and the boundary
conditions for the matrix products are specified by a row (col-
umn) vector (a| (|b)) of dimension D. Specifically, for AKLT
ground states, A®) can be concisely written using (D = 2)
Pauli matrices 0%, 07, 0%, and 0% = (o* £ ic?)/2:

AD = \/go+, A© — —\/goa ACD = —\/go_. (3)

The choices of vectors a, b € {1, |} distinguish the four de-
generate ground states with different fractionalized edge states
under open boundary conditions.! Under periodic boundary
condition, the unique grounq state is |G?) = Y |G},). .
We note a few properties of these AKLT states. With
the notation |GJ,), one can conveniently rewrite the quan-
tum state of an n-particle system as a linear superposition
of composite systems, each with m and n — m particles, i.e.,
|Gl =3 |Gi)|Gh, ™). Moreover, the overlap between two

"We note that our convention here for labeling the edge states a
and b is different from the convention where the AKLT state is
understood as projecting pairs of virtual spin—% particles in singlet
bonds back into the spin-1 particles, up to a basis change by 1 ® ic”.

AKLT states with different edge states can be analytically
evaluated; using the transfer matrix T = )" A®* @ A®), we
obtain exponentially small overlaps between distinct states
with a normalization factor %,

(Gr|GLy) = (ad | T"|bY)

= 180 [1 — (= 1)**€"] + 88y (1 — Suar )",
(4)

where € = —%. Finally, the AKLT ground state exhibits topo-
logical order that is protected by the symmetry groups D,
(dihedral group corresponding to permutation of spin axes), T
(time-reversal symmetry), and P (bond-inversion symmetry).
While the presence of any of these symmetries can protect
the nontrivial order reflected in the double degeneracy in the
entanglement spectrum, the D, symmetry is necessary and
sufficient to protect the string order parameter [32]. In addi-
tion to D,, the parent Hamiltonian Hagpr respects a larger
symmetry group of SO(3), corresponding to global rotation
of spins.

B. Constructing driven-dissipative dynamics

Our key idea is to use SO(3) symmetry of the parent
Hamiltonian Hak; 1 for preparation of an exact AKLT ground
state. By converting energy penalties imposed by Hakyr into
dissipative penalties in the form of decay channels, we can
engineer a process that effectively cools to the ground states.
More specifically, we start with a dissipative dynamics that
eliminates one type of excitation in Hakrr. Then all other
types of excitations can be eliminated using global spin rota-
tions in SO(3). Since spin rotations are symmetries of Hakrr,
their implementations are robust against imperfections in con-
trol parameters such as durations, phases, or strengths of
electromagnetic driving.

We consider a Markovian driven-dissipative dynamics de-
scribed by a quantum master equation

p=Lp=—ilH pl+ > T,Dlc,lp. (5)
"

where p is the density operator of a system, H is a Hamil-
tonian governing coherent dynamics, and D[c,]p = cﬂch -
{cj’tcﬂ, p}/2 characterizes incoherent dynamics by jump oper-
ators (i.e., decay channel) ¢, at rate I',. We can interpret the
dynamics of £ as the system evolving with a non-Hermitian
Hamiltonian Hesp = H — i), T'ucf,c,,/2 while stochastically
undergoing quantum jumps p — ¢, ,ocj'L at rates tr(I‘Mch# 0)
for each jump operator [35].

In order to construct a simplest possible £ that prepares
an AKLT ground state, we exploit the SO(3) symmetry that
conserves total angular momentum. In particular, each term in
Hakyr can be written as 2P; — 2/3, where P, is the projection
operator on the subspace of total angular momentum J; =
S; + S;+1 = 2 for the pair of particles (i, i + 1). Hence, a state
|G) minimizes the energy if it has no population in the J; = 2
manifold, i.e., P; |G) = 0 for every nearest-neighboring pair.
Under open boundary condition, there are four such states
|G.ap), labeled by two spin-% edge degrees of freedom a, b €
{1, }}. Under periodic boundary condition, only a unique state
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|Go) o< |Gyy) + |Gy ) satisfies the constraints. Below we use
|G) to denote the ground state(s) when boundary conditions
are not specified.

To prepare |G), we use jump operators to depopulate
the J; = 2 manifold of every neighboring pair. For exam-
ple, we can set H = 0 and use five types of jump operators
) = |pu)(J = 2,J% = ml i1, where {|J = 2,J° = m); 41 :
m = —2,...,2} is an orthonormal basis spanning the J; = 2
manifold for the pair of spins (i, i + 1) and |¢,,) is any other
quantum state with nonzero population in J; = 0, 1 manifolds
(dm| P; |pm) < 1). With these jump operators, quantum jumps
occur at a rate Do =T ), , tr(pcdcl)) =T Y tr(pP),
which vanishes only for the ground state |G). This implies
that |G) is a steady state of £, and any other quantum state
will undergo a series of quantum jumps.

Using SO(3) symmetry, this construction can be effectively
realized with only one type of jump operator via global co-
herent manipulations H. More specifically, let us consider a
dynamics with only one jump operator c; = |00) (J = 2,J° =
2| = |00)(++]| written in the S° basis {|+),]0), |—)}. After
time evolution over duration t /5, we apply a fast global pulse
V = expli(27/5) Y, S}], rotating the entire spin ensemble
by an angle 27 /5 about the y axis. In a rotating frame,
this operation implements the jump operator V'c,V. Re-
peated multiple times, we obtain five distinct jump operators
¢y = (V) er (V) forv € {0, ..., 4} after the vth (modulo 5)
pulses. For a sufficiently short v < 1/T", the effective Liou-
villian of the five-pulse cycle can be well approximated using
leading-order Magnus expansion by

4
Lyvp = % Z Z D[Efj)]. (6)
i v=0

Note that the purpose of global rotations is to use a sin-
gle jump operator for depopulating different states; different
choices of angles and axes are equally effective as long as
states rotated from |++) span the entire J = 2 manifold. We
may also employ a time-independent Hamiltonian Hew =
) ; S} to continuously rotate the ensemble, leading to an
effective Liouvillian

2r jw
@ iHewt (D) —iHcw
‘CCW = EA dtl"Z’D[e HCW[CZ e He t]- (7)

In both cases, the corresponding quantum jump rates vanish if
and only if the system is in |G).

C. Proving the uniqueness of steady states

While our construction of Lyp and Lcw ensures that |G)
is a steady state, one can imagine an undesired mixed steady
state that forms in dynamical equilibrium from the combi-
nation of coherent evolution and incoherent quantum jumps
(Fig. 1). Such mixed steady states may arise only if there
exists a subspace S orthogonal to |G) and closed under jump
operators, ¢,S € S [13]. Physically, this means that states in
S cannot reach |G) even with arbitrarily many applications of
jump operators ¢, allowing an equilibrium to form by their
mixtures. In our scheme, we prove the following lemma that
guarantees that the desired state |G) is the unique steady state.

H 7 0 H
7o

FIG. 1. Visualization of incoherent quantum jumps as random
walks on a directed graph in Hilbert space H. Here G is the subspace
of steady states that do not undergo quantum jumps. In the absence of
the dashed arrow c,«, the subspace of three states S is closed under a
quantum jump, allowing a mixed steady state to form. The presence
of ¢, eliminates this possibility.

Lemma. For any finite system with size n > 2 under an
open boundary condition, all states can reach |G) with some
application of jump operators in Lyp or Lew, implying |G) is
the unique steady state.

We now sketch the proof of this lemma; more details on the
proof can be found in Appendix C. The proof uses induction
on system size n. Note that under an open boundary condition,
the four |G,,) states are the desired steady states. Let us
define D, = span{|G/,)} as the subspace of AKLT ground
states of n spins. For n = 2 and 3, the uniqueness of steady
states can be checked by exact diagonalization. Our induction
hypothesis is that any n-spin input state can reach D, with
some applications of jump operators, via some polynomial
function f,;;({¢,}) (which may depend on the input state). For
the sake of contradiction, let us assume that a state | )
cannot reach D, with any sequence of jump operators ¢/
in Lyp. (The same argument holds for Lcw.) We will then
construct a sequence of jump operators, involving some fi,
on the first n spins followed by some ¢ acting on spin n
and n + 1 so that ¢ fi,; [¥"*!) reaches D, , leading to a
contradiction.

To begin, we know that by our induction hypothesis,
there exists fi,;({¢,}) so that fi,; |¥"*!) has nonzero popu-
lation in D,,. Since the AKLT Hamiltonian is frustration-free,
Jin [¥"*1) must also have nonzero population in D,_y, i.e.,
the AKLT ground states on the first n — 1 spins. We then do
a general decomposition of fi,) [¥" ™) = |¢) + |¢i) + |h5 ),
where

1 2
= Z Z Dbz

a,b=\ z=-2

G Mz). (8)

Here |z) runs through the five states in the J = 2 manifold on
the last two spins. The remaining parts of the wave function

i [+ are
61) = bana |Gl )|G2): ©)

abst

|63) Z¢ Ej)is), (10)

where |E l’:’l) runs through all the excited eigenstates of the
Hakyir on the first n — 1 spins and s runs through all nine
possible two-spin states. We now consider two cases.

Case (i). Suppose ¢up, = 0. Then fi, |¥"*") = |p7) +
|¢j‘). From our inductive hypothesis, fi, [¥"T1) must have
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FIG. 2. (a) and (b) Numerical simulation of Lyp for I' = 1 with a maximally mixed initial state, using exact diagonalization (ED) for
system size up to n = 8. Both the energy density (Hakir)/(n — 1) and the state-preparation fidelity F in the long-time regime are fitted to
an exponential function (dashed lines). (c) A log-log plot of the fitted preparation time to achieve F = 0.9 from simulations using ED and
time-evolving block decimation (TEBD) algorithms, as a function of system size, up to n = 25. Error bars are 90% confidence intervals.

nonzero population in D,, and D,,_;; this can only come from
the |¢7-) part, and thus there must be nonzero coefficients

absl # 0. On the other hand, since we have assumed that
|¢"*!) cannot reach D,y1, we must have 0 = (G5 |o;),
which is only possible if |¢l ) has the state of spins at the
(n — 1)th and nth sites in the J = 2 manifold. However, that
would then imply that |¢7-) has zero population in D,,, contra-
dicting our inductive hypothesis.

Case (ii). Now suppose ¢.p, # 0 for some a, b, z. Note that
for any jump operator ¢ acting on spins n and n + 1, we
have (G;’,;rl|6f)”)|¢j-) =0 for j =1, 2 since ¢, |Gft) =0 and
(GZ;HEZ‘]) = 0. Then our assumption that |¢"*!) cannot
reach D, gives the following set of linear equations for ¢, :

O (Gthl ‘c(n)f[n] | 1)Z/.IH*I >

— Z¢abz Gn+1 |c(n)|Gn 1) |Z> Vp’ q,v
abz

Y

Since |G7,) and |G’;,q“) have explicit MPS formulas, one can
analytically compute these expressions and find that only the
trivial solution ¢,;, = 0 are allowed for n > 3. This yields a
contradiction and implies that all states [/"*!) can reach at
least one of the states |GZ;1“) in D, with some application
of jump operators.

D. Numerical simulations and scaling

We numerically study the efficiency of our protocol via
a stochastic wave-function method for systems of up to n =
25 particles. We use both exact diagonalization (for n < 8)
and a time-evolving block decimation algorithm [36] in MPS
representations (for n < 25); more details are discussed in
Appendix D. We initialize the system in a random product
state (representing a maximally mixed state) and evolve under
Lyp with open boundary condition. We then monitor the
energy density with respect to Hakrr, as well as the fidelity
of state preparation F = (Pg), where Pg is the projector onto
the ground states. The results in Figs. 2(a) and 2(b) demon-
strate that both observables exponentially converge to their
corresponding values for AKLT states in all system sizes.
We extract the state-preparation time 7' by first fitting 1 — F
to an exponential in the long-time regime and extrapolating
F(T)=0.9. We find that T generally increases with system
size n. Plotted as a function of n [Fig. 2(c)], we find a poly-

nomial scaling 7 ~ O(n*°7). This scaling is consistent with
the more complicated protocol in Ref. [14] that requires up to
O(n'°2") time, up to system sizes simulated in this work.

III. IMPROVING SCALING VIA PARALLELIZATION
AND QUANTUM FEEDBACK

While the time our protocol needs to prepare AKLT states
is already shown to have an efficient polynomial scaling
from our numerical simulations, we now provide a method
to exponentially improve this scaling to O(log® n). Similar to
approaches used in quantum repeaters [37], this exponential
speedup is possible by preparing multiple chains in parallel,
which are subsequently connected into a single long chain
[Fig. 3(a)]. The key ingredient is the ability to efficiently
connect or fuse two AKLT chains into a single entangled state
[Fig. 3(b)], which we now describe.

A. Connecting two AKLT chains

Suppose we have independently prepared two chains of
m spins in AKLT states. As they are initially unentan-
gled, their state can be written as [1/o) = No(}_, a [G7)) @

(Q_. B |1GZ)), where @, B € C? characterizes the edge states

(a) f (b) C e—FchTc/2 )
- S ats -oo@oo--»-oo-
Co—Qvo- [ v lolo@oiiji
— ‘ ©00 ©00 - ©00000
(1-p2¥ (1-pp

FIG. 3. (a) Scheme for preparing AKLT states in parallel to
achieve logarithmic scaling. Many short chains of spins in AKLT
states are prepared initially, and adjacent chains are connected proba-
bilistically in parallel. Failures are addressed with quantum feedback
on every other segment before reattempting the connections. (b) II-
lustration of the connection algorithm, where the success of each
attempt occurs with probability p, while failure can be corrected by
discarding two spins and reattempting. Note that only one success
is necessary among all the attempts. On average, 1/p attempts are
sufficient to obtain a successful connection, with a constant overhead
of 2(1 — p)/p spins.
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at the interface and A is some normalization constant. The
edge states represented by the indices a and b are unimportant
for the connection. To connect the two chains into one, we
can turn on the jump operators {¢™} acting on spins m and
m + 1 at the interface and evolve for some time 7.. Then
we monitor quantum jump events to determine if we have
succeeded in creating an AKLT state WJ%’") =Ny |G§Z’) with
doubled length (N is some normalization constant).

A successful connection is heralded by the absence of
quantum jumps, in which case evolution under the non-
Hermitian Hamiltonian guides the system into an AKLT state
of the combined chain. For sufficiently long t., the success
probability is given by the overlap between initial and desired
states (see Appendix B). This can be computed using Eq. (4)
to be

@ - B

2arE " o3™).  (12)

=l |l =

Note that if the edge states & and B are random vectors in C?,
we have on average p ~ %. When the edge states are aligned,

i.e., d & B*, we obtain the maximum success probability of
Pmax = % The resultant state has an exponentially small error
€ L e 0,

The failure of the connection is signaled by detection of a
quantum jump ¢y, after which the state of the system changes
according to |y) Eg") [¥0). In this case, one can discard
the pair of spins (m, m 4+ 1) and then attempt the connection
procedure again with two chains of length m — 1. However,
it turns out that quantum jumps affect the success probability
of subsequent connection attempts, which in fact vanishes for
this protocol without additional intervention, a phenomenon
that we will explain in the following paragraph. Neverthe-
less, we can restore the success probability to pm.x = % by
applying a global spin rotation U = (¢™5)®"~! to one of
the chains. This quantum feedback makes the procedure very
efficient, since multiple repeated failures are exponentially
unlikely and only one success is sufficient to fuse two chains.
The number of attempts necessary follows the geometric dis-
tribution, and on average we need (1 — p)/p attempts with the
loss of 2(1 — p)/p particles per connection. By performing
these connection procedures in parallel, we can quickly pre-
pare an AKLT state of n spins in O(log” n) time, as we show
in Sec. III B.

We now explain why a single failed connection attempt
will cause subsequent attempts to fail, unless appropriate
quantum feedback is applied. It turns out that this problem
occurs whenever the matrix product state we want to prepare
respects bond-inversion symmetry, but here we first focus on
the example of AKLT states which has an intuitive explanation
(see Sec. V B for the general case). Note that we can interpret
the dynamics under £ = D[¢y] as a continuous measurement
of whether the pair of spins has total angular momentum Jy =
+2, where Jy = e % Je%. To be more specific, consider
four spin-1 particles S 1, S’z, §3, §4 and imagine that we are per-
forming a connection between spins 2 and 3 by continuously
measuring J = S, + S3. Suppose we decompose each spin-1
into two virtual spin—% particles: Si=5.+ S;g. It is known
[30] that an AKLT state can be constructed by starting with
singlet bonds of virtual spin-% particles where s; g + Sit1.L =

0 for all i and then projecting back into the triplet subspace of
the original pairs of virtual spin-% particles where s; 1 + s; g =
1. The detection of a quantum jump ¢y in a failed connection
attempt implies that J, = 2, which is only possible if 55, =
ng = sgL = ng = +%. Due to the singlet bond conditions,
this automatically implies that s{, = s}, = —%. Subsequently,
when we retry the connection with spins 1 and 4 (after discard-
ing 2 and 3), the two virtual spin-% particles at the interface are
in the state |s{, = —1) s, = —3), which has no overlap with
the desired singlet bond state |+%) |—%) - |—%) |+%). Hence
the overlap with the AKLT state is zero, and the connection
is certain to fail. Now applying U = (¢ )®"~! to the first
chain flips s(,’R so that the resultant state is |+%) |—%). This
has an overlap of % with the singlet state, restoring our success

probability to roughly %

B. Scaling of preparation time of the parallelized protocol

We are now ready to describe and analyze the full paral-
lelized protocol to prepare AKLT states on large system sizes
n in O(log® n) time. To prepare a length-n chain, we first
prepare an O(n/ng) AKLT chain of length ny and then apply
the above connection procedure in parallel for adjacent chains,
as illustrated in Fig. 3(a). Since on average we lose n. =
2(1 — p)/p particles per connection, we should choose ny >
n. and prepare Nepins = (n — n.)/(nyg — n.) such chains. We
can imagine attempting the connection simultaneously for all
junctions between chains, and we will typically have some
successes and some failures. By noting the locations of the
failures and applying the quantum feedback ™ to every
other segment, we can then reattempt connections on the
junctions that have failed, which will then succeed with p >~ %
as shown above. This process is repeated for multiple rounds
until all junctions become connected and the system becomes
one connected chain. The successful connection of each junc-
tion occurs independently and probabilistically; hence their
order may be arbitrary. The probability of completing all
Nchains — 1 connections after K rounds is

Prob{completion} = [1 — (1 — p)KNerain =1 (13)

To achieve a completion probability of pcomp, We need K, =
log[1 — pi{,ﬁ%h“‘“*l)]/log(l — p) = O(logn) rounds. Hence,
the time required to successfully complete all connections
with constant probability and obtain a length-n AKLT chain

1S
T(n) < Th+ K.t + (K, — D1y, (14)

where Ty is the preparation time of the length-ny chains, t,
is the time for each connection attempt, and 7, is the time
required for feedback after each failed attempt. Recall that
each successful connection induces an error of € < e~ 9®) in
the quantum state. Thus, a total of O(n/ny) connections yield
a final error of £ < O(n/ny)e~ %), which means we should
choose 7. = O(In(n/ny€)) to achieve a final error of £. As-
suming arbitrarily fast classical communication and control,
the quantum feedback of applying homogeneous spin rotation
€™ to a subset of the chains can be done in a system-size-
independent time 7, = O(1). Thus, the average time necessary
to prepare an AKLT state of length n with bounded error £ in
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this parallelized protocol is
T (n) = O(log(n)log(n/&)) = O(Ic)g2 n). (15)

The required number of spins that we need initially is ny(n —
n.)/(ng — n.), indicating that an O(n) (i.e., constant factor)
spatial overhead is sufficient.

While so far we have assumed that we can detect the occur-
rence of quantum jumps perfectly, this parallelized protocol
remains very efficient even when the detection is imperfect.
We describe two possible methods to address detection ineffi-
ciency. The first method is to use jump operators of the form
¢ = |++) (++| for connection, which will cause an indefinite
number of quantum jumps to occur once the first quantum
jump occurs, enhancing the quantum jump signal. Alterna-
tively, we can also slowly turn on additional jump operators
near the interface if we do not detect any quantum jump
initially; this serves to confirm that the two original chains
have been successfully connected, as any failed connection
attempt that evaded detection would cause more quantum
jumps. In both cases, the scaling of our parallelized protocol
is not significantly altered compared to the ideal case and can
be largely accounted for by modifying the effective success
probability p. We provide a more detailed analysis of these
two methods in Appendix E.

IV. EXPERIMENTAL REALIZATION

The key task in implementing our protocol is to engineer
the nearest-neighbor jump operators. Such engineering has
been previously demonstrated in systems of trapped ions [19].
Here we provide an explicit method to realize our scheme in
systems of trapped atoms [24-28] based on the Rydberg EIT
mechanism [29]. We consider a five-level system consisting
of a metastable Rydberg state |r), a short-lived excited state
le), and three long-lived hyperfine ground states |+), |0), and
|—) as shown in Fig. 4(a). Using lasers, we coherently couple
the ground state |+) to the excited state with a time-dependent
Rabi frequency g(¢). The excited state is further coupled to the
Rydberg state with Rabi frequency 2. Owing to large dipole
moments, simultaneous excitations of two Rydberg states
within distance R are suppressed by an interaction energy shift
that decays as l/R6 [38].

In the absence of interactions, our coherent driving en-
sures that every atom supports three stable states |—), |0),
and |D(t)) oc 2 |+) — g(¢) |r) for arbitrary choices of g and
Q. We use these three states to encode the spin-1 degree
of freedom. When g(7) slowly increases starting from zero,
|+) = |D(t = 0)) adiabatically follows |D(¢)) without popu-
lating any excited states. In the presence of strong interactions,
however, population in the Rydberg state of one atom pre-
vents another Rydberg excitation in its vicinity. Thus, as one
gradually turns on g(z), any neighboring atoms initially in
|++) necessarily populate the excited states, followed by their
decay into one of the three ground states. When 0 < g <« €,
this dissipative dynamics produces effective jump operators of
the form ¢y = |¢)(DD]| with a total rate

4
—2g—1m<L), (16)
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FIG. 4. (a) Atomic level diagrams for Rydberg EIT implementa-
tion of our jump operators, where |r) is a Rydberg level with strong
interaction and |e) is an excited level with short lifetime 1/y. The
lower three levels encode the spin-1 particles. (b) Pulse sequence to
engineer Lyp. (¢) Effects of the finite dephasing time 75 of spin-1
levels and long-range interaction. We use steady-state fidelity Fgg
from numerical simulations to calculate effective temperature T.g in
units of Ay, the energy gap of Hakpr.

where x ~ 1/y + y/4Q? and ¢ is one of nine different com-
binations of two-particle ground states (see Ref. [39] and
Appendix F). To engineer the full Liouvillian, we can apply
microwave pulses to the three ground states and globally
rotate the spin-1 particles by 6 ~ 2x /5 [Fig. 4(b)]. When
dissipative interactions and global rotations are alternated,
this protocol effectively realizes a dynamics similar to Lyp
and deterministically prepares AKLT states. The experimental
platform with a rearrangeable atom array in Refs. [24-28] is
particularly well suited to parallelize the implementation and
exponentially shorten preparation times for large systems.

In practice, unwanted dissipations or interactions can af-
fect the fidelity of our protocol by perturbing the steady
state of dissipative dynamics. There are two main imper-
fections in our proposed implementation: (i) Atomic states
have finite dephasing time 7, and (ii) long-range Rydberg
interaction can lead to dissipative coupling with particles
beyond nearest neighbors. For the latter, we find that pairs
of particles separated by distance R with interaction U ~
1/R® acquire decay rates T'pp(R) ~ 1/R'>. We study the
effects of these imperfections by numerical simulations of
long-range effective Hamiltonians and stochastic quantum
jumps that now include dephasing operators |s)(s| for s =
+, 0, —. We introduce an effective temperature T defined by
tr[Pgp(Tesr)] = Fss, where Fgg is the steady-state fidelity and
p(Tegr) = exp(—Haxir/Tesr)/Z is the Gibbs ensemble with
Z = trlexp(—Hakvr/ Tete)] [40,41]. When the steady state is
near the gapped ground state, T characterizes the quality
of prepared state in the thermodynamic limit. The results in
Fig. 4(c) show that the temperature decreases with increasing
dephasing time 7, and eventually saturates due to long-range
interactions. While T¢4 also depends on system size n, we
find that it stays below the gap of Hakyr for all n studied
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in the present work (up to n = 8). We note that the effect of
long-range interaction is mitigated in our parallelized proto-
col, where jump operators are turned on only for a few spin
pairs well separated by the length of connected chains. Also,
throughout the parallelized protocol, the effective temperature
does not increase, since our connection procedure ensures that
1 — F scales linearly in system sizes while the density of
excited states grows at least as fast (see Appendix G).

V. GENERALIZATION TO MPS WITH SYMMETRY

Our symmetry-based approach can be generalized to ef-
ficiently prepare a broader class of matrix product states.
In general, any translation-invariant MPS of n spins can be
written as

ALY = > (@lACVAS) A [sy5y - es,), (1T)
{si}

where s; € {1,2,...,d} runs over the physical spin basis for
the ith particle and |a), |b) € CP indicate the “boundary con-
ditions” in the virtual bond space. For the case of AKLT states,
we have d = 3 and D = 2. Under periodic boundary condi-
tion, the unique MPS is given by |A”) =) |A%,). We say
that such an MPS respects an internal symmetry group G if for
every g € G and some unitary representation V, : G — U(d)
we have

VI |AL) = € |AZ). (18)

Our protocol can be generalized to prepare any such
translation-invariant MPS with internal symmetry, which is
a class of states that includes ground states of all one-
dimensional SPT phases [2,42].

A. Generalized protocol with a minimal set of decay channels

We now show how to generalize our protocol to any
translation-invariant MPS with internal symmetry G. Specifi-
cally, we design a dissipative dynamics that deterministically
prepares the ground state(s) of the MPS parent Hamiltonian.
This protocol uses a set of global coherent manipulations
corresponding to symmetry operations on the MPS, as well
as a minimal number ky;, of decay channels {cy, c2, ..., ¢k, }
acting on pairs of neighboring particles. We are able to derive
a lower bound for kp,;, based on irreducible representations of
the symmetry group G and provide an explicit construction of
a minimal set of jump operators saturating the bound. Given
such a set {c,}, the uniqueness of the steady states can be
efficiently verified via the same inductive proof technique in
Sec. IIC. For the purpose of preparing ground states of SPT
phases, we note that the symmetry G of a parent Hamiltonian
of the MPS may be larger than the minimal symmetry G, C G
that protects the topological order. For example, G = SO(3)
while G, = Z, x Z in the case of AKLT states [32].

We now describe our results on the minimum complexity
on the decay channels (i.e., jump operators) necessary to
prepare a general translation-invariant MPS with symmetry.
Without loss of generality, we may assume that the desired
states are ground states of a gapped, frustration-free parent
Hamiltonian H, = ), h”, where AV is a translation-invariant
nearest-neighbor projector that respects the internal symmetry

G [1,42]. Each term h can be written in a block diagonal
form, corresponding to different irreducible representations
of G. We refer to the two-particle subspace that & projects
onto as a bright manifold B = range(h) C C¢°, where d is
the internal dimension of each particle. The ground states
are uniquely characterized by vanishing populations in 85 for
every neighboring pair of particles. In the Haxrr example, ‘B
corresponds to the J = 2 manifold of two neighboring spins.
Similar to our protocol for AKLT states, we can depopulate
B by employing jump operators ¢, where range(cl c,) € °B.
The number of jump operators can be reduced by utilizing and
averaging over all symmetry rotations through ¢, — V;c,LVg,
where V, is the global unitary rotation by a group element
g € G. In order to fully depopulate the bright manifold 5 and
nothing else, the set of jump operators {cﬂ}i“‘jl must satisfy
the necessary condition

Kmin

B = range Z ZV;chqu . (19)

u=1 geg

As we show below, the minimum number k,;, of distinct
jump operators will depend on the structure of the group
representation of G.

For simplicity of discussion, let us restrict the decay chan-
nels to the rank-1 form of ¢, = |¢,) (¥, |. The minimum
number of jump operators required can be calculated from the
number of different irreducible representations of the sym-
metry group G within the bright manifold ‘B. In the case of
AKLT states, B consists of a single five-dimensional irre-
ducible representation of the group SO(3). In more general
cases, the representation of G on ‘B may contain multiple
copies of isomorphic (i.e., equivalent up to a basis change) ir-
reducible representations. The capability of global symmetry
operations allows one decay channel to depopulate subspaces
corresponding to one copy of each irreducible representation
in parallel. Hence, as we have shown earlier, one decay chan-
nel is sufficient for preparing the AKLT state. For the more
general cases, however, it may be necessary to employ multi-
ple decay channels when more than one copy of an irreducible
representation (irrep) is present. Using Schur’s lemma [43],
we prove that the minimum number of rank-1 decay channels
is

No. of copies of irrep r in ‘B

kmin = max
irrep r of G in B

W. (20)

dimension of irrep r

We can also construct ki, decay channels that satisfy the nec-
essary condition of Eq. (19) by choosing a set of {(3,|} that is
supported in all irreducible representations, with destructive
interference between isomorphic irreducible representations.
The details of the proof and the construction are described in
Appendix H 3.

Once we have such a minimal set of decay channels {c,},
it remains to ascertain the uniqueness of the steady state.
This can be efficiently verified using our inductive proof
techniques, which show that the steady states are unique as
long as there are only only trivial solutions to a linear equa-
tion like (11). More specifically, to prove uniqueness under
open boundary condition, one simply needs to compute a
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D?¢ x D*rank(®8) matrix M whose matrix elements are

D
M)sr =" (palT"?|rb) x (G} |evlz) . 1)

r=1

where T is the transfer matrix for the MPS, a, b, p,q,r, c
are indices for D-dimensional virtual bond space, and |z)
enumerates the possible states in the bright manifold ‘8. Here
£ < d? isrelated to the maximum dimension of the irreducible
representations of the symmetry group G on the bright mani-
fold ®B. By verifying (through exact calculations or numerics)
that the steady state is unique for some small system size ny,
one can then prove uniqueness for all n > ny by showing that
det(M'M) # 0. We emphasize that these proofs can be done
efficiently for any given {A®)} and decay channels {c,}, since
the calculations only involve matrices of constant dimensions,
independent of system size n.

Our Rydberg EIT implementation proposal can be nat-
urally adapted for these general cases. The Rydberg EIT
scheme allows us to engineer two-body jump operators of the
form cer = |st1s12) (sRsR|, where |s'), |s¥) € €7 are single-
spin states. Unlike the case of AKLT states, the preparation
of a generic symmetric MPS may require more than one
(kmin = 2) rank-1 jump operator. The implementation of
multiple decay channels can be achieved, for example, by
introducing extra lasers that couple (additional) hyperfine
ground states to the short-lived excited state(s). By adjusting
the relative strength of laser driving to each hyperfine ground
state, one can engineer different EIT dark states that acquire a
dissipative interaction. This allows us to generate a set of jump
operators {c¢" = |s51sE2) (sRsR| - w =1, ..., kpin} with inde-
pendent |sﬁsﬁ>. When particles are individually addressable,
one can engineer a jump operator with a more complicated
right singular vector (¥,|, i.e., (V| # (sﬁ|®2 for any (sf| €
C“. For example, if we can engineer a unitary U where
(s§|®2U = (Y| and U |s5'sl2) = |¢,), then applying U
stroboscopically each time before turning on dissipative in-
teraction [see Fig. 4(b)] would allow engineering of ¢, =

1) (Wl

B. Generalizing the parallelized protocol

We can also extend our strategy of parallelized connection
and quantum feedback to the class of translation-invariant
MPSs with internal symmetry. Recall that the idea is to pre-
pare many segments of the desired MPS with open boundary
conditions and then connect adjacent pairs of segments in
parallel. The analysis is much simpler when the MPS is in-
jective, which means that largest-magnitude eigenvalue of the
transfer matrix T = > A®* ® A“ is nondegenerate. When
the desired MPS is injective, which is true for generic cases
[1] (and also for AKLT states), we can show that the suc-
cess probability of connection is typically at least 1/D?. This
system-size-independent success probability implies that the
scaling of the preparation time of the parallelized protocol is
O(log” ), which exponentially outperforms existing dissipa-
tive protocols that do not involve parallelization and feedback
[14]. The case of noninjective MPSs is more subtle, since
the associated parent Hamiltonian of the MPS has degenerate
ground states. These states can be shown to be the only steady

states of our protocol, but typically a mixture of them will be
prepared. Nevertheless, if we place some (often reasonable)
restrictions on the initial state, a pure noninjective MPS can be
prepared, as we illustrate with the example of a Greenberger-
Horne-Zeilinger (GHZ) state.

1. Injective case

We first analyze the protocol for the case of injective
MPSs. Consider an arbitrary initial state of two adjacent
length-m chains of MPSs, which can be written as [y) =
No Yy Coe |ALL) ® |AZ), where Cp € CP*P is some coef-
ficient matrix that characterizes the edge states at the interface
of the chains and N is a normalization constant. If the two
chains are unentangled, then C,. = a8, for some &, B e CP.
By turning on the jump operators acting at the interface,
we can cool this state into the desired final state |1pj%'") =
N |A2m) for some normalization constant ;. Since the MPS
is assumed to be injective, the success probability of connec-
tion can be shown to be

o WOF
@ - Bl .
=P o) G = w2
piappe 0% M= b @2

where ¢, is the second largest eigenvalue of T (see Ap-
pendix H for more details). For random states &, B € CP, we
have on average p ~ 1/D?. The maximum success probability
of pmax = 1/D is obtained when & || B, i.e., when the two
edge states are identical.

When our desired MPS exhibits bond-inversion symmetry
P, as the AKLT states do, we have the same issue of vanishing
success probability after a quantum jump that also respects P.
To see this, consider what happens in the event of a quantum
jump due to a jump operator of the form ¢ = |¢)(y|. The state
after discarding the two particles at the interface is |) =
MYy .o Cre lAZH AL, where

Cre = (WI(]A45) ® [Al))Coe. (23)
bc
If |) respects bond-inversion symmetry, i.e., P |V) = £ |),
where P = Zi_j lij)(ji| is the swap operator, then

tr(C‘) = ZCaa = Z (’N ( |At]lb) ® |Aia) )Cbc

abc

=" WIP(|AL) ® [AL))Ch

abc

=Y+ (Y|A2)Ch = 0. (24)
be

We find that this quantity is zero regardless of the initial Cp,,
entangled or unentangled, due to our requirement that |1) be
orthogonal to the desired MPS |A%b). In fact, tr(C) is related
to the success probability of the next connection attempt, p’ =
7" 2 [y I o [r(C)]* + O(ey') = O(ey'), which is expo-

nentially small for a large system size m.
Similar to the AKLT case, we can also try to restore the
success probability by applying a global symmetry operation
U&= for some g € G to one of the chains. In our AKLT
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protocol, there is a symmetry operation U, = ™% whose ac-
tion on the virtual bond level u, = e~™%/? yields |tr(u;(i" )2 =
tr(C*C), allowing us to recover the maximum success prob-
ability of ppnax = 1/D regardless of the initial state Cp. or
which quantum jump occurred. While the existence of such
an operation is not known for the general case, we can at
least restore the success probability to 1/D? for many injective
MPSs by applying a randomly chosen symmetry operation.
This is because injectivity is typically associated with the
irreducibility of the representation u, on the virtual bond level
[42], which allows us to show that p = 1/D?. If we write
C = Y, V/Ailb;){a;| in its singular value decomposition form,
then

i) =Y Mk (ailuf|bi) (bjluglas).  (25)
ij
If u,, is irreducible, then by Schur’s lemma [43] we have

Eeegllr@fO)*] = Y /Aikj (aila;) (b;lb;) /D
iJ

1 1

Hence, this yields a subsequent success probability of p =~
1/D?. A sufficient condition for the irreducibility of u, is that
U, be irreducible and {AWTAC)V 5 '} spans the whole space
of D x D matrices (see Proposition 17 in Ref. [42]).

2. Noninjective case

For a noninjective MPS, the analysis is complicated by
the presence of degenerate ground states of its parent Hamil-
tonian. Here we consider an illustrative example to prepare
GHZ states: |GHZ..) = (]0") &+ |1”))/ﬁ. These states have
an MPS representation with (d, D) = (2, 2) given by the fol-
lowing matrices:

1 0
A(°>=|¢><¢|=<O O),

0 0
A“>=|¢><¢|=<o 1). 27)

In this representation, |GHZ,) o |A", ) =]A"__) and
IGHZ_) oc A", ) = |A"_,), where | =) = (1) + [1))/v/2
and |<) = (|1) — [4))/+V2 are possible edge configura-
tions. This MPS has an internal symmetry group of G =
Z,, which is represented by {1,02"} acting on the sys-
tem. Its parent Hamiltonian is Hguz = ) ;(1 — oVa /),
whose ground states are doubly degenerate due to noninjec-
tivity. The corresponding two-particle bright manifold is ‘B =
span{|®.), |®_)}, where |®4) = (]01) + |10))/+/2. The two
states |®4) support two distinct irreducible representations
of Z,, which are the trivial and the sign representation, re-
spectively. Hence, we can use just one jump operator of the
form, e.g.,c = |00) (k4 (D4 | 4+ k- (D_]|), with kx # 0 so that
both irreducible representations are supported (a necessary
condition as shown in Appendix H 3). Then, along with the
global symmetry operation 02", we can depopulate the bright
manifold and obtain span{|GHZ. )} as the subspace of steady
states.

Now let us consider preparing |GHZ..) in a parallelized
protocol with connections and feedback. We note that, un-
like in the injective case, different choices of jump operator
here can lead to qualitatively different outcomes. Specifically,
we consider two choices of jump operators that may result
in different degrees of entanglement of the final state. First
consider an example choice of jump operator ¢ = |00)(01]
(i.e., k+ = 1/+/2). While this along with the symmetry op-
eration produces a dissipative dynamics that has |GHZ.) as
the steady states, the parallelized protocol can only produce
an unentangled final state of either |0") «« |GHZ,) 4+ |GHZ_)
or |1") «« |GHZ,) — |GHZ_) once any quantum jump occurs,
regardless of states of the initial chains. Alternatively, we
may choose the jump operator ¢ = |00) ((01| 4§ (10|)/«/§
li.e., ky =k* = (1 +1)/2]. In this case, suppose we start
with |0™) 4 |1™) on the initial chains of length ny. Then
we can produce a maximally entangled final state of |0") +
¢ |1") even after quantum jumps, for some ¢ € {1, £i} that
we can determine from recording quantum jump history. In
both cases, for an arbitrary (unentangled) initial state |y) =
Z}l peo(@aa™)) @ (By |6™)) of two chains, the success prob-
ability of connecting them is on average % for random &, B €
(2. This system-size-independent success probability means
that the parallelized protocol for this noninjective MPS also
has an efficient scaling of O(log? n) for the preparation time.

VI. SUMMARY AND OUTLOOK

In this work, we have shown that using only one type of
nearest-neighbor decay channel and global control, an AKLT
state in a large system can be efficiently prepared as the prov-
ably unique steady state of the driven-dissipative dynamics.
Since the symmetry group of AKLT states is continuous, the
decay channels and pulses need not be fine-tuned, and the im-
plementation is robust against imperfections in experimental
parameters. The scaling of preparation time was numerically
shown to be polynomial and can be improved exponentially
using parallelization and quantum feedback. This proposal is
feasible for a wide range of controlled quantum systems and in
particular optimal for a rearrangeable array of trapped neutral
atoms using a Rydberg EIT scheme. In addition, we analyzed
the generalization to other translation-invariant MPSs with
symmetry and derived a bound on the minimum number of
necessary decay channels that may be saturated by a construc-
tion. We also showed that the parallelized protocol can work
in the general case and provided some sufficient conditions for
success, such as the injectivity of the MPS and the irreducibil-
ity of the symmetry group representation on the virtual bond
level.

Finally, we note that it may be possible to generalize our
symmetry-based dissipative preparation scheme to higher-
dimensional many-body entangled states. Many such states
are described by projected entangled pair states (PEPSs), a
natural generalization of MPSs for arbitrary lattices, which
also allow construction of frustration-free parent Hamilto-
nians [44] to be converted into jump operators [13-15].
However, our inductive proof of uniqueness of steady states
does not extend straightforwardly, since exact computation
of expectation values of a generic PEPS is intractable [45].
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Further investigations are thus necessary to extend our
strategy to higher dimensions, which can support even
more interesting, long-range entangled states with symmetry-
enriched topological order [46].
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APPENDIX A: EFFECTIVE LIOUVILLIAN

Our proposal for preparing AKLT states uses only one type
of jump operator, e.g., ¢ = |00)(++|. The dissipative dynam-
ics due to this jump operator is Lo = I'Y_; D[c”], where i
enumerates the pair of neighboring sites (i, i + 1). Our key
idea is to use coherent global manipulations, corresponding to
operations in the symmetry group, so as to effectively realize
additional jump operators. This can be achieved either by
periodically applying pulsed global spin rotations (symmetry
operations) or by continuously rotating the spins.

In the first, multipulse sequence approach, we apply pulses
Vy = (€%%)®", each separated by an interval of t. Then in the
rotating frame we have the time-dependent Liouvillian

Lap(t) = (V) LVF forkt <t < (k+Dz. (Al

Suppose we choose 6 = 2m /¢ for some integer ¢; then this
dynamics is periodic with period £7, since an ¢ = 1. In the
limit of fast pulses T <« 1/T", we can use the first-order Mag-
nus expansion to derive a simpler, effective time-independent
Liouvillian that approximate the dynamics

. 1 ‘t r —1 )
Lyp = z_-[ EMp(l)d[ = Z E g D[El(,l)]y (A2)
0 v=0

i

where ¢, = (V;T/[)"CVZ‘;!/Z.

Alternatively, we may employ a continuous-wave ap-
proach by introducing a time-independent Hamiltonian
Hew=w); S'l.v . Then in the rotating frame we have c(¢) =

eithv Cefia)tS) and

p=Lew®)p =T ) Dl 1)]p. (A3)

In this frame, the dynamics is periodic with period 27 /w.
Again, we compute the effective time-independent Liouvillian

_ w [ - G
['CW = E/o ECW(t)dt = Zﬂg(‘: FﬁD[C;})]’ (A4)

obtained by time averaging (first-order Magnus expansion)
as an approximation. The effective jump operator ¢4 in the
standard form of a Liouvillian can be obtained by diagonal-
izing the superoperator acting on the space of the density
operator. More explicitly, we diagonalize a Hermitian matrix

L = U"AU, whose entries L;y ;;» are given by

w 2 Jw
Ly jy ={ijl — ditTc* (1) @ c(t)|i')')
27 0

=Y U ulpUsjy = ij1 Y Tpts ®@cplij).
5 5
(A5)

We can read off I's = Ag, and ¢g = ), ;, Up i [k) (k'|. For
our example choice of c(t = 0) = |00) (++|, we obtain £ =9
independent jump operators after evaluating the integral and

diagonalizing, each with rate I'g /" = L 2, 3 1L

| 32 16° 16° 87 8° 16 16°
respectively.

o and

1
64°
APPENDIX B: QUANTUM EVOLUTION CONDITIONED
ON NO QUANTUM JUMP

To understand how our quantum state evolves conditioned
on detecting no quantum jumps, we use the stochastic wave-
function formalism for open system dynamics. Namely, we
define an effective non-Hermitian Hamiltonian Heg = H —
iZ” Fﬂc;cM/Z, where H is the Hamiltonian of the system
and ¢® are quantum jump operators. A system evolves un-
der H.s until it undergoes a quantum jump [¥) = ¢, |¥)
at a rate (Y| FMCLCM |¥). In our protocol to prepare AKLT
states, H = 0 since we work in the rotating frame. Hence, He
is anti-Hermitian and thus diagonalizable with eigenvalues
Ao = —iYy/2. It is assumed that our desired states are dark
states, which are eigenvectors of H.g with a zero imaginary
part of the eigenvalue. For simplicity and illustrative purposes,
let us also assume that there is just one dark state |0) with
eigenvalue Ao = 0 and the rest of the eigenvalues are sorted
by 0 < y; < y» < ---. Let us decompose the initial state in
the eigenbasis |Yo) = Y, co lt) = co10) +¢1 1) + - -. The
evolution under H.¢ yields the unnormalized state

[ (1)) = e ™ |yrg) = o |0) + cre 2 [1) +--- . (Bl)

The probability of undergoing no quantum jump over a time
duration 7 is

po(T) = (Y (DI (T)) = leol* + lerPe T + -
> Jeol* = 1(0lyo) | (B2)

Conditioned on such an event, the fidelity of the quantum state
preparation is

1019 (T))|? |co?
Fry = WO
@ (WD) leol> +lerPenT + -
=1- O(e_J/IT) if |CO|2 >0, (B3)

where we find that the fidelity exponentially approaches unity.
This allows for effective cooling of the system into the de-
sired state when there is no quantum jump for 7 > 1/y,
which occurs with probability py 2 |(0|)]°. It is also easy
to see that when there are multiple dark states, given by some
projector Pp, the system is cooled into |y9) — Pp |¥o), con-
ditioned on no quantum jumps, which occurs with probability

po = (YolPplo).

032418-10



SYMMETRY-PROTECTED DISSIPATIVE PREPARATION OF ...

PHYSICAL REVIEW A 104, 032418 (2021)

APPENDIX C: PROOF OF UNIQUENESS OF STEADY
STATES FOR THE AKLT EXAMPLE

In this Appendix we provide a detailed proof of our
lemma that Lyp and Lew have AKLT states as unique steady
states, for n > 2 under an open boundary condition. Although
the proof has already been sketched in the main text, here
we provide a more detailed analysis. Let us define £; =
S TyDIE?] as the Liouvillian acting only on sites i and
i+1, and Ly, = Zl'.';ll L;. Let Q;;+1 be the projector onto
the J = 2 manifold on spins i and i + 1. We also define

Hir =) Oiis (C1)
i=1

as the AKLT Hamiltonian acting on n spins under the open
boundary condition. We also let D, = span{|G},)} be the
space of AKLT states on n spins and let P, be its correspond-
ing projector. We prove by induction on 7.

We start with our inductive hypothesis, which is that £,
only has the AKLT states |G”,) as steady states. This means
that any n-particle wave function can reach D,, via some se-
quence of jump operators ¢,. More formally, this means that
for any n-particle wave function [") there exists a polyno-
mial function of jump operators f,;({¢,}) such that

1P fim W) 0. (€2

We only need to show that any (n + 1)-particle wave function
|"+1) can reach D, via jump operators, which would yield
the proof of our lemma.

From this inductive hypothesis, we first argue that there
exists a polynomial f,;({¢,}) of jump operators acting on the
first n spins such that

1P fim "Y1 # 0. (C3)

This can be done by simply looking at the reduced density
matrix p, of |[¢"*!) on the first n spins and picking fi,
with respect to one of the nontrivial eigenvectors of p,. We
note that the AKLT Hamiltonian is frustration-free, so any
(ground) state minimizing the energy of H XELT must also

minimize the energy of H /[\'}(Lg, or P,P,_y = P,. Hence (C3)

implies that f;,;|¢"™!) also contains a nonzero population
in the AKLT ground states among the first n — 1 spins, i.e.,

”Pnflf[n] |1/fn+])|| ?é 0.

Let us then perform a general decomposition

T 1™ = 19) + o) + 193, (C4)

where

4 2
=3 Y bae |Gl )2, (C5)

a,b=\ z=-2

Here |z) runs through the five states in the / = 2 manifold on
the last two spins. The remaining parts of the wave function

i [+ are
61 = Y baw |Gy )| Ga): (C6)

a,b,s,t

|63) Z¢ |Ex")ls). (C7)

where |E} "=1) runs through all the excited eigenstate of the

H ["KLIT] and s runs through all nine possible two-spin states.

We assume for the sake of contradiction that |y,;) is
a state that cannot reach D, via jump operators. We now
consider two cases.

Case 1. If ¢up, = 0, then fi|" ™) = i) + |#5). From
our inductive hypothesis, fj,;|¥"*!) must have a nonzero pop-
ulation in D, and D,,_; this can only come from the |¢1J-) part
and thus ¢ cannot be all vanishing. On the other hand, since
we have assumed that ["*!) cannot reach D,,;, we must
have 0 = (G}'|¢1"). That means Q; ;41|¢7) # O for some i.
Since Q,-,[+1|¢f-) =0 for all i #n — 1, this means that we
must have Q,—1.,|¢i) = |¢i). Then we have P, fi| ") =
Pn|¢1l> + Pn|¢2l> = 0, since POn—1n = 0 and B1|E3_1> =0.
This gives a contradiction of (C3).

Case 2. Some ¢y, # 0. Consider any jump operator ¢
acting on the spins n and n + 1. Note that

Y (@ E G [ s e,

LS

=0 (C8)

(Gn—H }C(n)‘db )

because |G} ') are ground states of HXQLT and thus or-
thogonal to |E;~"). We also have (G+'|c\V|¢i) = O since
Cy |Gfl) = 0. Then our assumption that |1/"*!) cannot reach

D, 1 gives the condition

O — <GZ:]H |El(;n)f[n] |wn+1>

1 2
> Y (G |G ) B

a,b=| z=-2
1 2
=Y ) M¥u. =M, (C9)
a,b=| z=-2

where ¢ is a 2 x 2 x 5 = 20 dimensional vector and M is a
4¢ x 20 dimensional matrix. The matrix elements of M are
given by
Mygs = (G167 1Goy )
T
ZGHZ n1G2|Cu|Z
r=|

(C10)

and can be calculated analytically, since the first factor comes
from diagonalizing the transfer matrix and the second factor
is computed in a small nine-dimensional Hilbert space of two
spins. Now if det(M M) # 0, then the matrix M has full rank,
indicating that we only have the trivial solution ¢,,, = 0. This
would contradict this case’s assumption, and hence any |, 1)
must be able to reach D, via jump operators, and the AKLT
states IG”“) are the unique steady states of Ly,

Therefore, it only remains to compute det(M M) and show
that it is nonzero for £ in our proposals. Let us first con-
sider Lyp, with £ = 5 corresponding to rotation pulses with
6 = 2m /5. For this, we explicitly find

520(x +3)P(x — 9)"

i —
det(M'M) = 210033640 ’

(C11)
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where x = (—3)". It is easy to see that this is only zero for
n = 1,2, so our inductive proof holds for n > 3. The base
case of n = 2, 3 can easily be checked numerically or by exact
calculations.

For Lcw, which has £ = 9, we find

(@ +3)P — 9"

detM'M) = = o (C12)

where again we have defined x = (—3)". This is also only
nonzero when n = 1, 2. Since the base cases of n = 2, 3 can
be checked exactly, this proves that the steady states of Lyp
and Lcw are uniquely given by D, for n > 2.

Our proof method here naturally suggests a method to
prepare an AKLT state with specified edge states instead of
a mixture of the four |G),) under the open boundary condi-
tion. For instance, |G'{;) can be deterministically prepared by
adding two jump operators: ¢, = |0)(—|; on the left edge and
cg = |0)(+], on the right. In this case, it is easy to see that
any linear combination of four ground states |G’,) can further
decay into |G%,), which becomes the unique steady state.

APPENDIX D: DETAILS OF OUR NUMERICAL
SIMULATION

We simulate the dissipative dynamics £ =} T',Dlc,]
using the stochastic wave-function method [35]. In this
approach, the wave function |y (¢)) continuously evolves
under the effective non-Hermitian Hamiltonian H.i = H —
iy u T MCLCM /2 and stochastically undergoes quantum jumps
¢, atarate (WFMCLCMW). Physical observables are extracted
from an ensemble of wave-function trajectories obtained
from independent simulations. Compared to direct numeri-
cal integrations of quantum master equations, this method
allows simulation of systems with a larger number of par-
ticles. In order to simulate a maximally mixed initial state
(or equivalently an infinite-temperature ensemble), we sam-
ple a random product state in the S, basis as the initial
state |, (0)) for the wth simulation. For each small time
step &t, the state |1,(¢)) evolves stochastically according
to either |y, (t + 61)) o ¢, | ¥ (t)) with probability ép, =
(Yo (OITucficulVa(0)) 8t or Yot + 81)) oc e |y, (1))
with probability 1 —3_ dp,. We choose 8t so that §p =
ZM dp, < 1. Since this process is stochastic, we average
over a sufficiently large number N; of trajectories to estimate
the values of observables:

Niraj

D WaIOa (1))

a=1

(0) = t[Op(t)] ~ (D1)

traj

For the numerical data presented in the main text, we average
over up to Ny,j = 1000 trajectories, and statistical uncertain-
ties are estimated using the bootstrapping technique [47]. For
relatively large system sizes n > 8, numerical computations
of exact many-body wave functions are impractical. Instead,
we store the wave function in an MPS representation and sim-
ulate the evolution using the time-evolving block decimation
algorithm [36]. Since we are dissipatively preparing AKLT
states that have bond dimension D = 2, we find that restricting
the maximum bond dimension of our MPS wave function to
D < 15 is sufficient, as truncation errors are found to be less

than 5 x 107 in all simulations. This algorithm allows us to
simulate systems with up to n = 25 spins.

During our simulated evolution, we monitor two observ-
ables: (i) energy density (Hakpr)/(n — 1) and (ii) fidelity of
state preparation F = (Pg), where Pg is the projector onto
AKLT ground states. Note that since our simulation in the
main text is for the open boundary condition, there are four
degenerate ground states that are all accepted as output; we
define our fidelity F to be the sum of overlap with each ac-
cepted state. Another widely used measure on quantum states,
trace distance [48], cannot be applied in this context, because
it measures how close a state is to another (target) state, not
to a subspace of such states. Even in a situation where the
target state is a single pure state, e.g., under periodic boundary
condition, the trace distance 7 is bounded by our fidelity
F through 1 — VF < T < +/1—F. In our numerics where
the system size goes up to n = 25, the computational cost of
calculating the density matrix and trace distance would also
be prohibitively expensive. Finally, this fidelity J coincides
with the success probability of state preparation, which is a
physically meaningful metric.

APPENDIX E: EFFECT OF IMPERFECT QUANTUM
JUMP DETECTION

In realistic experiments, the detection of quantum jumps
often entails imperfections. The presence of such imperfec-
tions affects our protocol by (i) not heralding the failure of
connection of two chains (false positive) and (ii) incorrectly
heralding failure when the connection has been successful
(false negative). The former may arise due to imperfect de-
tection efficiency and the latter due to the dark counts in
the detector. As mentioned in the main text, our parallelized
protocol can still have an efficient scaling even when such
imperfect quantum jump detection is accounted for. In the
false-negative scenario, we can still discard affected particle
pairs and continue the procedure, but we have to adopt an ideal
case success probability lower than py.x (discussed below).
To minimize the occurrence of false positives, we propose two
methods that address detector inefficiency. In the following
analysis, we denote the detector efficiency by 1 — 5, the dark
count rate by r, and the ideal case success probability by p.

1. Success probability after false negatives

We showed previously in Sec. III A that the maximum
success probability of connection of pp.x = % can be re-
covered for the subsequent attempt after a failed connection
(via detection of quantum jumps) if we discard the affected
particles and apply a global 7 rotation U = ¢ to one of
the remaining chains. However, this is not the case if the
quantum jump detector has only received a dark count, i.e.,
the failure is a false negative, and the connection has in fact
succeeded. After a dark count is registered, the experimenter
will unwittingly discard the particles at the original interface,
apply U, and retry the connection anyway. If we consider the
density matrix of the remaining pair of chains, we can see that
their edge states at the interface are essentially randomized
in a maximally mixed state, which would intuitively yield
a success probability p ~ % in the attempt to connect them.
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More precisely, if k particles were discarded in each original
chain of length n starting from interface (i.e., 2k particles in
the middle of the connected chain of length 2n), the success
probability of connecting the two chains of length n — k can
be computed to be

p=11-€"+ 0, (E1)

where € = —%. In particular, when k = 1, p =~ %.

2. Method 1 to mitigate false positives

The first method to address false positives from detec-
tor inefficiency is to only use jump operators of the form
¢ = |[++4)(++] for the connection. Once a quantum jump
occurs, the state will continue to undergo quantum jumps in-
definitely, creating a much larger signal and effectively larger
detection efficiency. Consequently, the detector inefficiency
can be exponentially suppressed by the time 7. of having the
jump operators turned on. Let 7y be the timescale in which a
single quantum jump would occur. In this case, the probability
of diagnosing a successful connection and keeping the result
is given by the probability of not detecting any quantum jumps
over time t,

Psucc = Probikeep} = p(1 — r.co)f(-/l’o +( - P)’It"/n’
= p(l = rz)™/ (1 + ai™/*), (E2)

where we defineda = (1 — p)/pand i} = n/(1 — rtp). The fi-
delity is the conditional probability that the diagnosed success
was a truly successful connection

p(l — rrp)™/™
p(1 = rro)™/™ + (1 — pyne/m

F = Prob{success|keep} =

1

= E3
1 _|_ aflfr/fo ( )

Note that we can only achieve a fidelity arbitrarily close to 1
if # < 1, i.e., when the detector efficiency is larger than the
dark count probability 1 — 1 > r1g. In order to achieve a final
error of £ for a system size of n from initial chains of length
ny, where n/ng connections are necessary, we need 1 — F <
no& /n, and consequently . = O(In(n/no&)/Ini7~'). This is
consistent with the 7, ~ logn scaling necessary in the ideal
protocol. Nonetheless, our new success probability now de-
creases with system size n as pgec ~ O(n~?) if dark counts
are non-negligible, where § = In(1 — r1y)/In#j ~ rro/Inn~'.
Consider now the average time to prepare a chain of length n,
Tc+fr(1 _psucc) n—ne
lo

2 , (E4)
Psucc nop —ne

Tn)=T+

where n. = 2(1 — psucc)/Psuce, To is the time to prepare ini-
tial length-ny chains, and 7, is some constant time necessary
to reset the edge states in the event of failure. At first
sight, this indicates that our preparation time would ulti-
mately scale polynomially instead of polylogarithmically in
the infinite-n limit. However, in the regime of rty < 1, this
polynomial dependence has a very small power and its ef-
fect can be neglected if rt. <« 1. Hence, in practice, our
protocol has an efficient polylogarithmic scaling up to n <

<z

[0)

E [

= I

- I

S I

= I

© I

© I

% |

5 } ——preparation time
o 20 } = = ideal log?(n) scaling | |

= | n’ scaling

= 4 | | | L | : :

0 1000 2000 3000 4000 5000 6000 7000 8000
Iogm (number of initial chains)

FIG. 5. Preparation time in the parallelized protocol with detec-
tor efficiency 1 — n = 0.2 and dark count rate » = 25 Hz, using jump
operators of the form ¢ = |[++) (++| (method 1). We also assume
a quantum jump rate 7, ! = 1 MHz, ideal case success probability
p= %, time to discard atoms and reset edges 7, = 7y, and target final
error £ = 1074,

fmax = O((1/n)!/7™), beyond which it switches to a polyno-
mial scaling. For instance, even if the single-photon detection
efficiency is 1 — n = 0.2, then assuming a dark count rate of
r =25 Hz [49] and a quantum jump scattering rate of 7, I
1 MHz, it takes an astronomically long chain of 7., ~ 10%0%0
to reach the polynomial scaling. An example scaling under
these conditions is shown in Fig. 5.

3. Method 2 to mitigate false positives

The second method for addressing detector inefficiency
is to slowly turn on jump operators in the vicinity of the
interface. In this way, the absence of quantum jumps further
confirms that the two chains have indeed been successfully
connected; since only a successful connection does not lead to
any subsequent quantum jumps, any false-positive diagnosis
of successful connection can be corrected. More concretely,
consider a k-step scheme where we turn on jump operators
to include k neighbors on each side of the original interface,
one pair of neighbors at a time. Atstep £ = 1, ..., k, we have
jump operators on for 2¢ particles centered at the interface,
turned on for time 7. If a quantum jump occurred and evaded
detection at any step £, we assume t; is long enough so
that the 2¢ particles would have formed a connected chain of
length 2¢. At the subsequent step £ + 1, the length-2¢ chain
in the middle can be connected to the two length-(n — £)
chains on both sides if we succeed by having no quantum
jump, producing a fully connected chain of length 2n. Note
that the success probability for steps £ > 1 is roughly p, =
1/2*. From the system size scaling found in our numerical
simulations presented in the main text, we expect to need
¢ ~ (20)*97 ~ (2¢)’. Additionally, we expect the number
of quantum jumps during z; of step £ to roughly scale as

N}"™ =~ Ct{ for some constant C. Observe that this scheme
allows us to obtain a fully connected chain even in the event
of initial failure(s), as long as we do not have any quantum
jumps at the last step. Thus, the probability of succeeding and
deciding to keep the result (due to not detecting any quantum
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jump) is
Prob{success and keep}
k

k
= pexp (—rZ ré) + (1 — p)nSTipyexp (—r Z T,

=2

=1

k—1
1- ]
=pe" (1 +— Ep Y= poy e )Tv>,

s=1

where T, = Y ,_, ¥ ~ Bs* for some constant B. The proba-
bility of failing at the last step but still keeping the result is

Prob({fail and keep} = (1 — p)(1 — o) InCT, (E6)

The fidelity is the conditional probability of true success given
that we have kept the result

pe (14
pe T (T (= p) (1= p2)F Tk

F = Prob{success|keep} =
> pe
T pe 4 (1= p)(1 = p)f I

~ 1 —b(l — py)FEX,

(E7)

where we defined b = (1 — p)/p and £ = (n°e")®. To achieve
arbitrarily good fidelity, we require £ < 1, i.e., the dark count
rate 7 < C1lnn~! needs to be sufficiently small. At the same
time, the apparent success probability of keeping the result
1S psucc = Prob{keep} ~ pe”Bk4. We can carry out the same
analysis as in the previous method and a similar behavior
emerges: When the dark count rate is nonzero, the efficient
polylogarithmic scaling applies until a maximum chain length
of n & Nmax = O(n~C/"), beyond which a polynomial scaling
of O(n") with 8’ & r/Inn~C applies.

APPENDIX F: ANALYSIS OF THE RYDBERG EIT
IMPLEMENTATION PROPOSAL

In this Appendix we derive the effective dissipative in-
teraction between two nearby particles for our Rydberg EIT
implementation scheme introduced in the main text. Con-
sider two particles interacting via the Rydberg shift Hi, =
U |rr) (rr|. Their effective (non-Hermitian) Hamiltonian under
the Rydberg EIT scheme proposed in the main text is

2
Hi=Y [<g|+><e| +QIr) (el +He) = iZ]e) <e|} + Hin
Jj=1 J

2
=Z[A(|B><e|+H.c.)—i§|e><e|} + Hp,  (F1)
j=1 J

where A = /Q2+ g2, D) = (Q|+) — g|r))/A is the EIT
dark state, and |B) = (g|+) + 2|r))/A is a state orthogo-
nal to |D) that we call the EIT bright state. Now consider
a general two-particle wave function |y) = )" caq laa) +
> aep Cap(lab) + |ba))/\/§, where we have restricted our-
selves to working in the symmetric subspace. Then the

k
) + (1= pm“ (1 = p2)n“= prexp <—r > ré‘) o

=3
(ES)
[
equations of motion for the coefficients are
. g'U V28U £
iepp = — - Cpp — —— 7~ CDB + Aa BB
iCpe = —I%CDe + Acpg,
.. 282Q°U V28 QU
iCpp = —— 3~ CpB + Acpe — A3 oD
V2gQU
- TCBB,
iCoe = —1YCee + \/ZAceB’
iCep = _i%CeB + \/EA(Cee + CBB)a
. QU V23U FQU
icpg = —g-Cop + V2Aces — s ‘ot g Cop-

In the limit of U « g, Q, v, or g K R, v, U, and assuming
we start initially with |v) = |DD), we can adiabatically elim-
inate the fast dynamics involving coefficients {c,,} other than
cpp- This procedure can be effectively achieved by setting
¢ap = 0 for ab # DD, allowing us to obtain

icpp = Uppcpp, (F2)
where
4
g U
Upp =2 —
PP AT rixU
with

QYQ% + (1 + 382/ A%)y?/4]
Aty ’

X:

Here Re(Upp) is the interaction-induced energy shift and
I'pp = —2Im(Upp) is the two-body effective decay rate.

A more general version of adiabatic elimination for open
system can be found in Ref. [39], which allows us to obtain
effective jump operators. Consider original jump operators of
the form L; ; = |s)(e|;, corresponding to the spontaneous de-
cay from excited state |e) to one of the three hyperfine ground
state |s) for s € {+,0, —} in atom j. Note that, in practice,
the excited state can also decay into other hyperfine ground
states, which can then be repumped to the excited state using
additional lasers. We denote the decay rate corresponding to
L, j by ys, where y, + yo + y— = y. Then we can compute
the effective jump operators

L = |se)(DD],

L% = |es)(DD|, (F3)
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with rate ey = ;—;FDD and |&) ?—K IB) — iS2|e) — £ |D).
Note that [¢) will further decay through the original jump
operator L, ;. Assuming we are in the regime y > y,I'pp/2y
so that |é) is a short-lived intermediate state, we can approxi-
mate the overall effective dynamics with jump operators of the
form L?Sf,f = |ss')(DD] for s, s € {+, 0, —}. Note that, while
we only need a jump operator such as ng = 100){DD]| to
ensure AKLT states are unique steady states of the engineered
dissipative dynamics, the additional effective jump operators
do not affect the steady states and can in fact help to more
quickly depopulate the undesired states.

APPENDIX G: SCALING OF IMPERFECTION IN
RYDBERG EIT IMPLEMENTATION

Our protocol prepares AKLT states with finite fidelity
when experimental imperfections are taken into account. Here
we analyze how the fidelity scales as multiple chains are con-
nected. In particular, the long-range nature of interaction in
the proposed Rydberg EIT implementation limits fidelity even
in the absence of dephasing. Nevertheless, we show that by
adopting the parallelized protocol, the long-range interactions
only affect the initial preparation of length-n( chains and such
imperfection does not substantially grow in the later con-
nection procedures. This is because the connections involve
turning on the dissipative interaction on particle pairs that are
spatially separated by at least ny particles. Since the effective
decay rate scales as I'pp ~ 1/R'? for the proposed imple-
mentation, the perturbative effect of long-range interaction
is characterized by the very small number of 1/(ny — 1)'2,
which becomes even smaller in later rounds of connections.
Hence, we neglect the effect of long-range interaction on the
connections and only consider how the induced errors on the
states of initial chains propagate through the protocol. Let us
assume that we initially start with individual chains of length
ng, each with bounded error €. At the £th level of connections,
we on average double the length ny >~ 2n,_| — n., where n,
is the expected number of particles discarded in each con-
nection. The number of initial chains necessary to reach a
final chain length of nis L = (n — n.)/(np — n.), and L — 1
connection procedures need to be performed. Hence, the final
error is bounded by

| — F < Leg+ (L — 10" ™) ~ 0,
no

(GD
where we neglect the second term, which can be made small
compared to the first if we choose 7. = O(Inn). As we can
see, the predominant source of error is due to the imperfect
initial chains, whose errors add linearly.

This linear scaling of error is indeed very favorable for a
many-body state preparation protocol. To put this in perspec-
tive, let us estimate how the effective temperature T scales in
our connection procedure. We define the effective temperature
through the relation

e H/ Test 1
F =tr| P =
( Gtr(e—H/Teﬂ)> 1+/Z;p p(E)e E/TidE

o0
~1— / p(E)e ElTndE (G2)

A gap

where p(E) is the density of states at energy E and we assume
that T is sufficiently small. Now we consider connecting
two length-n; chains at effective temperature 7 (with er-
rors 1 — Fj). After connection, we have a chain of length
ny ~ 2ny, with bounded error 1 — 7, < 2(1 — F1). The cor-
responding effective temperature 7, of the connected chain
can be estimated from

/ p2(E)e EIRdE ~ 1 — F, <2(1 — Fy)

Agap

~ / 2p1(E)e E/MdE,

Agap

(G3)

which implies

i

gap

o0
2p1(E)e E/MdE — / 02(E)e E/RdE >0,  (G4)
Ag“P

where p;(E) and p,(E) denote the density of states for
chains of lengths n; and n, ~ 2n,, respectively. In a generic
many-body interacting system, the density of states grows ex-
ponentially in system sizes. Here we are most interested in the
density of states of low-lying excitations, e.g., the first excited
band, where the scaling of p(E) can be much weaker. Ref-
erence [50] used a Bijl-Feynman single-mode approximation
to deduce that there is a band of low-lying excited states with
dispersion relation Ej (k) = 217(5 + 3 cos k), corresponding to
magnon excitations. Therefore, we expect the number of states
in the low-lying excited bands to scale at least linearly with
system size, and thus p(E) > 2p(E). Applying this to the
earlier inequality, we have

oo
/ 02(EYe EM — e E/yE >0 = T, <Ty. (G5)
Agap
Hence, the effective temperature should not increase (and can
potentially decrease) after each connection procedure.

APPENDIX H: GENERALIZATION TO SYMMETRIC MPS

In this Appendix we provide additional details on how
to generalize our protocol for a broader class of translation-
invariant MPSs with internal symmetry. We first introduce
notation and elaborate on a few useful properties (including
injectivity) of translation-invariant MPSs in Appendix H 1. A
more detailed description and proofs of these properties can
be found in Ref. [1]. We then discuss the meaning of internal
symmetry of MPSs in Appendix H 2. Finally, we describe and
analyze the generalization of our protocol in Appendix H 3
and prove the lower bound for the minimum complexity of
decay channels.

1. Notation and relevant properties of matrix product states

Any (unnormalized) translation-invariant MPS with physi-
cal dimension d (i.e., spin-d%1 particles) and bond dimension
D can be written as

|A2b> = Z (@ACDAGD L AGD|BY [sys - - 5,),
{si}

(HL)

where s; € {1,2,...,d} runs over the physical spin basis
for the ith particle and |a), |b) € CP indicate the boundary
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conditions. We denote by |Al,) the translation-invariant MPS
of n particles with open boundary condition specified by a
and b and by |A”) the MPS of an n-particle system with pe-
riodic boundary condition, i.e., |A”) = )" |A”,). Under open
boundary condition, there could be at most D? distinct states
with different possible boundary conditions, e.g., fourfold de-
generacy of AKLT states. In general, however, these D? states
may not be linearly independent unless the MPS is injective
(defined below).

a. Canonical form

An MPS is in a canonical form if the matrices
have a common block-diagonal structure A =
diag(mAY, ..., ApAY)) = Pj_ hpAy’, where 0 < A5 < 1
for each block B € {1, ..., B}. The matrices in each block
must satisfy the conditions that (i) ZSAS)AS)T =1, (ii) a

map defined as Eg(X) = ZSA/(S;Y)XA/(;)T has 1 as its only
fixed point (unique eigenvector with unity eigenvalue),
and finally (iii) ZSAI(; TA,«;AE;) = Ag for some diagonal
positive and full-rank matrices Ag. From now on, we assume
any MPS under consideration is written in a canonical
form.

b. Transfer matrix

Consider the completely positive map £(X) =) A®
XA®? or equivalently the transfer matrix T =)  A®* ®
A®. Understanding the spectrum of this transfer matrix
is useful for computing the expectation value of an ob-
servable or the overlap between two quantum states, e.g.,
(AL AL, ) = (ad'|T"|bb') [1]. Some known eigenvectors of
T are ﬁ Zieﬁ lii), where Dy is the dimension of the Bth

block, and correspond to eigenvalues |Ag|. Denoting the other
eigenvectors of T with eigenvalues €, by |v), we have

P E: A
(A% |ALy) = <aa/|[z % > |ii><jj|+Zev|v><v|}|bb/>
B

i.jep v

|)\ﬂ |2n
= Z D Sa,beﬂ Saa’Sbb/
8 B

+ Y el {ad |v)(v]bb'). (H2)

Since |Ag|? is the largest eigenvalue of each block B, typically
only the first term is relevant in the limit of large n.

c. Parent Hamiltonian

For a sufficiently large L, the set of matrix products
{AGD . AGD 1 sy < d) spans the vector space of all ma-
trices with the same block-diagonal structure as the canonical
form [1]. We call L the interaction length of the MPS. With-
out loss of generality, we can assume that L = 2. This is
because otherwise we can group L sites together to get an
equivalent MPS with larger physical dimension d’ < d* and
a new interaction length L’ = 2. The parent Hamiltonian of
an MPS is then defined to be H, = Y, i, where h is any
positive-semidefinite operator acting on nearest-neighboring

sites, whose kernel is

ker(h) = span{|A2,\V a, b}. (H3)
In other words, H, imposes a condition h® for every pair
of neighboring sites (i, i + 1), which our MPS trivially sat-
isfies (i.e., KV |A",) = 0 for all 1 <i < n—1). Hence, H, is
a frustration-free Hamiltonian of which the MPS is a zero-
energy ground state. The ground-state degeneracy depends
on both the boundary condition and the number of blocks
in the MPS canonical form. Reference [1] has shown that
under periodic boundary condition, this degeneracy equals the
number of independent blocks in the canonical form, since the
ground space consists of MPSs constructed from the subma-
trices from every block.

d. Injectivity

Often it is useful to assume a condition that the MPS is
injective, which is satisfied in the generic case except for
specific fine-tuned MPSs [1]. This injectivity condition is that
the transfer matrix 7' has only one eigenvector corresponding
to its largest eigenvalue (which we normalize to 1 in the
canonical form). This also implies that there is just one block
in the canonical form of the MPS. In this case, Eq. (H2)
simplifies to

(A%, |AL,) = (ad'|T"|bY') = %sma,,,,/ +0(e5),  (H4)
where ¢, is the second largest eigenvalue of T'. Additionally,
this implies that the parent Hamiltonian under periodic bound-
ary condition has the MPS as its unique ground state and
that the ground-state energy is gapped in the thermodynamic
limit. Under open boundary condition, D? distinct boundary
conditions give rise to D? linearly independent and degenerate
ground states |A”,). By appropriately modifying the parent
Hamiltonian terms at the boundaries, we can break the degen-
eracy and make one of the D? states the unique ground state.

2. Internal symmetries of MPSs

We say a translation-invariant MPS defined on d-
dimensional physical spins respects an internal symmetry G
if for some unitary representation U : G — U(d) we have

US"|AL) = > Ixele) |ALy).
a'b

U |Az) = A7),

(H5)

That is, a global action of the symmetry operation keeps a
ground state of the MPS parent Hamiltonian in the ground
space under open boundary condition or only imprints a com-
plex phase factor under periodic boundary condition.

Assuming that the symmetry group is reasonable (either
a discrete or a compact connected Lie group) but without
assuming injectivity, Ref. [42] showed that we can replace the
action of the symmetry in the physical basis with a unitary in
the virtual bond basis. More explicitly, we have

Z[Ug]ss’A(‘v) = wg“gA(S)”;gt'

/

(H6)

s
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Here u, = P,v,, with v, = @ﬂ | g,s taking on the same

block-diagonal structure as A“’ and each v/ a unitary in
block B; P, is a permutation among the B blocks. Finally,
we = Dy ei‘/’g]lﬂ is a phase factor for each block. If G is a
compact connected Lie group, Ref. [42] showed that P, = 1,
while g — e and g vf are representations of G.

For AKLT states, where G = SO(3), the relevaLnt repre-
sentation is given by the rotations U, = exp(i@, - S) on the
spin-1 vector S for some real parameters d, = (agf, ozz,', ozi,). In
particular, we have

Z[Ug]-vs’A(s/) = ”gA(S)”g = U A7) = |AZ§a

!

ph HD

§

where u, = exp(zcx -0 /2), with & (ozg, ag, 2,).

3. Finding a minimal set of decay channels using symmetry

Our goal is to find a minimal set ki, of decay channels
{c1,c2, ..., cx,, } acting on neighboring pairs of particles that
deterministically prepare the desired MPS, assuming global
symmetry operations are available. For concreteness we will
first focus on decay channels of the form ¢, = [¢,,)(¥,.|. We
show there is a lower bound on ky;, from the structure of
representation of G on the physical particles and provide a
construction of the jump operators saturating the bound. The
uniqueness of steady states under the constructed jump oper-
ators can be analytically confirmed using the same inductive
proof strategy demonstrated for the case of AKLT states.

Without loss of generality, we assume that the desired
states are ground states of a gapped, frustration-free parent
Hamiltonian H, = Y, h”, where h) is a translation-invariant
nearest-neighbor projector that respects the internal symme-
try G [1,42]. We note the projector i has a block-diagonal
form, corresponding to different irreducible representations
of G. We call the two-particle subspace that & projects onto
a bright manifold 9B = range(h) C C¢°. The ground states
are uniquely characterized by vanishing populations in B for
every neighboring pair of particles.

The foremost necessary condition for the jump operators

{c,) is

kmin
B = range (Z Qu), (H3)
n=1
where
1
Qu=-—Y Vicie,Vy= ZV 1Y) (V| V.
4 191
8€g geg

In other words, the jump operators must be capable of de-
populating the entire bright manifold after averaging over all
symmetry operations. While here we have assumed that the
symmetry group G is finite for simplicity, the following results
apply to any compact group by replacing the sum over g € G
by an integral over the Haar measure of G.

To find the minimum number kni, of [¥,) (and conse-
quently c,) required, it is useful to decompose V, into direct
sums of irreducible representations V, = P, V, where r enu-
merates the irreducible representations, each with dimension
d,. This decomposition is possible because finite-dimensional

unitary representations of any group are completely reducible
[43]. Let us also define |y,) = 6P, |¥,,), where each [/ is
a d,-dimensional vector. Observe that for any d, X d,» matrix
X, we can derive the identity using Schur’s lemma [43]

rY T
|g|ZV V =) ewlx)

geg d,

ifr v
(H9)
U, ifr=r,

where r = r’ means Vg’ = U,,/Vg" UrTr,, or r is equivalent (iso-
morphic) to ¥’ up to a unitary basis change. Note we can
always choose a basis for the representation of V, that absorbs
U,,, so we assume U, = 1 without loss of generality. Using
the notation @,,/ M, to denote the matrix whose rth row,
#'th column block is M, ,», we can write Q,, through the above
identity as

@MZV"’” wlv!

g€g

@wlw D

r#r r=r

Sl o
where the second term characterizes the possible nonzero
off-diagonal blocks, which can only exist between pairs of
equivalent irreducible representations.

Since inequivalent irreducible representations are decou-
pled, we for now only consider the subspace B, C ‘B
corresponding to K, copies of irreducible representations
equivalent to irreducible representation r (dim ‘B, = K,d,).
We will also define Q) = Q,l», as the operator Q) re-
stricted to the subspace 9B,. Observe that |y,) restricted to
this subspace is specified by the set of K, vectors {|y/) €
c* } . When K, > d,, regardless of the choice of [y,),
there are K, — d, linearly 1ndependent vectors ,8/ eCk,j=
1,...,K, —d,, such that ZT_ Bl ( (5] = 0. Then any vec-
tors of the form |x) = @s:l ,BS lv) are in the kernel of Q)
for any |v) € C%, since one can verify Q,, 1x) = 0. Since
there are (K, — d,)d, linearly independent such vectors |x),
we have rank(Q),) < d?. Hence, in order to fully depopulate
B,, we need dim(*B,) = rank(ZM 0,) < ZM rank(Q},) <
kmindrz. Because ki, must be an integer, we must have kyi, >
[K,/d,] for every irreducible representation .

Note that this lower bound for kp;, can be saturated by
construction as follows. First, we partition the K, equivalent
irreducible representations into [K,/d,] groups of no more
than d, irreducible representations. For each group, we can
assign a |y, that is nonzero only in the subspace correspond-
ing to the irreducible representations in the group. Finally,
we make all off-diagonal blocks vanish for each group u €
{1,..., [K,/d,]} by finding d, or fewer mutually orthogonal
vectors |y/) € C% such that () [y) =0 for r # r’. For a
single jump operator of the form c, = |¢,) (.|, the state
|¥,) may have supports on more than one subspace °5,.
Therefore, the construction of a set of jump operators {c,}
to satisfy Eq. (H8) can be done in parallel for all the different
B, corresponding to the inequivalent set of irreducible repre-
sentations, leading to the minimum number

kmin = max[K.,/d,]. (HL1T)
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Here r enumerates inequivalent irreducible representations
of G in B, K, is the number of copies of r, and d, is the
dimension of r.

We can also consider an arbitrary jump operator c,
beyond the rank-1 form of |¢,)(y,|. For any operator
¢,, we can perform singular value decomposition to write
=2 Vi) (Wi ], where (@i, 1;,) = (Vi 1¥;,) =
Siﬂj,p Then C;;CM = Ziu ]/,'HH”,'#) (wiu| with )/,‘Il > 0. HGHCC,
the condition of Eq. (H8) becomes a condition imposed
on the set of right singular vectors {|v;,)V u,i,}, where
we must have B = range(ﬁ Zg,u,iu yiuV;Wiu) (Vi [Ve).
We can thus interpret the kp;, found for rank-1 jump

operators as the minimum number of independent

1¥,)’s.

While we can easily construct a minimal set of {c,} to
satisfy the necessary condition of Eq. (H8), we still need
to prove the uniqueness of steady states. This can be done
using our inductive proof strategy, where one simply needs
to confirm that there are only trivial solutions to Eq. (C9)
under the open boundary condition. As discussed in Sec. V A,
this simply involves showing that a certain matrix M has full
rank. Nevertheless, for noninjective MPSs, this scheme cannot
break the ground-state degeneracy intrinsic to the MPS parent
Hamiltonian, but it can guarantee that the ground states are
the only steady states.
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