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We study quantum tomography from a continuous measurement record obtained by measuring expectation
values of a set of Hermitian operators obtained from unitary evolution of an initial observable. For this purpose,
we consider the application of a random unitary, diagonal in a fixed basis at each time step, and quantify
the information gain in tomography using Fisher information of the measurement record and the Shannon
entropy associated with the eigenvalues of covariance matrix of the estimation. Surprisingly, very high fidelity
of reconstruction is obtained using random unitaries diagonal in a fixed basis even although the measurement
record is not informationally complete. We then compare this with the information generated and fidelities
obtained by application of a different Haar random unitary at each time step. We give an upper bound on the
maximal information that can be obtained in tomography and show that a covariance matrix taken from the
Wishart-Laguerre ensemble of random matrices and the associated Marchenko-Pastur distribution saturates this
bound. We find that physically, this corresponds to an application of a different Haar random unitary at each time
step. We show that repeated application of random diagonal unitaries gives a covariance matrix in tomographic
estimation that corresponds to a new ensemble of random matrices. We analytically and numerically estimate
eigenvalues of this ensemble and show the information gain to be bounded from below by the Porter-Thomas
distribution.
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I. INTRODUCTION

To determine an unknown state is a fundamental challenge
in quantum information processing. The process of estimat-
ing an unknown state by performing measurements on it is
called quantum tomography. Since the probabilities for vari-
ous outcomes during the measurements depend on the state in
which we perform them, we can, in principle, determine the
unknown density matrix by inverting the measurement records
[1–3]. The traditional way to perform quantum tomography
is to perform projective measurements. Any projective mea-
surement would collapse the wave function, deterministically
evolved through Schrödinger’s equation. Projective measure-
ments are expensive and time consuming, and one has to
repeat the process many times to get an accurate estimate
of the density matrix. However, as an alternative, one may
overcome this by employing the protocol for tomography via
weak continuous measurements [4–13]. In this approach, the
ensemble is collectively controlled and coherently evolved in
a time-dependent manner to obtain an “informationally com-
plete” continuous measurement record. A set of measurement
operators is called informationally complete if they span all of
the operator space. Such a set of complete measurements has
been extensively studied [14–18], to cite a few. One does a
series of measurements of several observables and obtains the
outcome probabilities. Then one inverts these measurement
records to obtain the original state. An outline of the whole
procedure is shown in Fig. 1. At a more fundamental level,
continuous measurements provide us with a window to study

quantum-to-classical transition, the emergence of chaos from
quantum mechanics, and information gain in tomography un-
der chaotic dynamics [19–22].

In this paper, we study the connection between information
gain in tomography and the randomness of quantum dynam-
ics employed to generate the measurement record. For this
purpose, we consider various families of random maps. In
particular, we consider the application of random unitaries
diagonal in a fixed basis and compare this with applying a dif-
ferent Haar random map at each iteration. In the process, we
obtain bounds on maximal information that can be acquired in
for state reconstruction.

Such diagonal unitaries are of natural interest in quantum
computation. Experimentally diagonal gates can be fault tol-
erantly realized in, e.g., super- and semiconducting systems
[23]. Diagonal quantum circuits are experimentally much
simpler to implement and less sensitive to environmental
decoherence than nondiagonal quantum circuits [24]. Further-
more, the repeated action of diagonal unitaries has been shown
to achieve decoupling of two interacting quantum systems
[25]. This could be used in achieving environmental decoher-
ence. Since all gates in a diagonal circuit commute, it enables
us to realize the circuit by a single time-independent commut-
ing Hamiltonian. Therefore, in an experimental realization of
such dynamics, one does not need to worry about the order
of interactions, and it reduces the time for implementation
and makes the protocol more robust. It has been shown that
diagonal gates have better computational power than classical
computers [26,27]. The entangling power of such unitaries
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FIG. 1. An overview of the state estimation procedure.

has been also of interest [28]. Diagonal quantum circuits have
been employed in the generation of random quantum states
uniformly distributed according to a unitarily invariant Haar
measure [29,30]. Despite this, the merits of random diagonal
unitaries are far from exhausted and little is known about
their concrete applications in other quantum information pro-
cessing protocols, such as state reconstruction and quantum
control.

Our findings show that random unitary maps with diagonal
unitaries do not lead to information completeness as far as the
task of quantum state reconstruction is concerned. However, if
the state to be reconstructed lies in a lower-dimensional sub-
space [31] or if we only require a lower resolution tomography
that serves practical purposes [32], implementing diagonal
unitaries could not only be sufficient but also efficient. In this
paper, we do not put any restriction on the initial state or the
resolution of tomography and study the information genera-
tion in state reconstruction when the underlying dynamics are
random diagonal unitaries.

Our paper has an intimate connection with quantum chaos
since the nature of chaotic dynamics can be effectively mod-
eled by random maps. Probing this question deeper, we further
explore whether the origin of information gain lies in the
spectral statistics of the quantum chaotic map or in the ran-
domness of its eigenvectors. To address this question, we
study information gain obtained when the dynamics is gen-
erated by a map whose eigenvectors are random or chaotic
but spectral statistics belong to a Poisonnian distribution that
is characteristic of a regular system. We also study the amount
of information gain when eigenvalues are chosen from a dis-
tribution characteristic of a chaotic system.

The remainder of the paper is organized as follows. In the
next section, we describe a general protocol for tomography
with continuous-time measurements. In Sec. III we use this
protocol to study state reconstruction using random diagonal
unitaries. We find that despite being a restrictive case, very
good fidelities can be achieved. Then we quantify the infor-
mation gain using Fisher information and Shannon entropy of
eigenvalues of the covariance matrix of the estimation process
in Sec. IV. We give predictions of information generation
from random matrix theory, obtain bounds on information
gain, introduce a new random matrix ensemble, and show
that our predictions agree with our numerical simulations in
Sec. V. We discuss the connection of information gain in
continuous measurement tomography and quantum chaos to
spectral statistics and eigenvectors of dynamical maps in Sec.
VI before we conclude with a brief discussion and overview
of our results in the final section.

II. WEAK CONTINUOUS MEASUREMENTS

The total system we work with is composed of the object
system (S) and the probe or meter (M ). We assume that

the object system and the probe start out in a product state.
Their evolution is governed by the total Hamiltonian Hτ =
HS + HM + Hint [33]. Here Hint is the interaction Hamiltonian
between the system and the meter. The system and the meter
are initially assumed to be uncoupled. They evolve together
via a time-evolution operator U, generated by the total Hamil-
tonian Hτ ,

Uτ0U
† = Uσ0 ⊗ μ0U

†, (1)

where U = exp(− i
h̄

∫
dt Hτ ), σ0 belong to the object system

and μ0 to the probe.
Let the initial state of the meter be |m(0)〉. After undergoing

unitary evolution for time t , the state becomes |m(i)〉. Expand-
ing in terms of a continuous pointer variable Q̂ with pointer
states |q〉,

|m(0)〉 =
∫

dq|q〉〈q|m(0)〉 =
∫

dq|q〉ψ0(q), (2)

|m(i)〉 =
∫

dq|q〉〈q|m(i)〉 =
∫

dq|q〉ψi(q). (3)

Let us assume that initially, the pointer of the meter is centered
around q = 0 so that 〈Q〉0 = 0. That is a natural and con-
venient choice because the difference in the pointer variable
is what characterizes a measurement. Let us also choose the
initial wave function of the meter to be a Gaussian, centered
at zero,

ψ0(q) = 1

(2πσ 2)1/4
exp

(−q2

4σ 2

)
, (4)

where σ is the width of the Gaussian probability density.
In the collective weak measurement that we perform, the
collective observable say Oc = ∑

O j , where O j acts on the
jth subsystem. The interaction Hamiltonian Hint = γ Oc ⊗ P̂
captures the coupling of the observable to be measured with
a meter observable. The variable P̂ is chosen to be the one
conjugate to the pointer variable Q̂. Here γ is a coupling
constant. The measurement is supposed to occur during a
short-time interval δtu so that

∫
dt Hint =

∫
dt γ Oc ⊗ P̂ = γ Oc ⊗ P̂ δtu. (5)

The combination γ δtu = g is an effective coupling constant.
In our case, we are driving the system using random unitaries.
However, the measurement procedure is only concerned with
the interaction term in the Hamiltonian. Since our aim is is to
explain the measurement process, for simplicity let us set HS

and HM to zero. Then

U = exp

(−i

h̄
gOc ⊗ P̂

)
. (6)

To understand how the coupled evolution changes the
meter variable, assume that the system starts in a pure
state |φ〉s = ∑

i αi|oi〉, where {oi} are the eigenstates of
Oc. Then the collective state after interaction is given

032404-2



QUANTUM TOMOGRAPHY WITH RANDOM DIAGONAL … PHYSICAL REVIEW A 104, 032404 (2021)

by ∑
i

αi|oi〉 ⊗ |m(i)〉

= U (|φ〉s ⊗ |m(0)〉) (7)

= exp

(−i

h̄
gOc ⊗ P̂

)[(∑
i

αi|oi〉
)

⊗ |m(0)〉
]

(8)

=
∑

i

αi|oi〉 ⊗ exp

(−i

h̄
goiP̂

)
|m(0)〉 (9)

=
∑

i

αi|oi〉 ⊗ exp

(−i

h̄
goiP̂

) ∫
dq|q〉ψ0(q) (10)

=
∑

i

αi|oi〉 ⊗
∫

dq|q〉ψ0(q − goi ). (11)

The meter state after evolution is |m(i)〉 = ∫
dq|q〉ψ0(q − goi )

with probability |αi|2, which implies that ψi(q) = ψ0(q −
goi ). That is, the initial pointer state of the meter has been
translated proportional to an eigenvalue of the system observ-
able. Until now a measurement of the meter has not been
performed. Now let us perform a projective measurement of
the meter. If the meter is projected onto a particular outcome,
then the rest is an operator acting on the system Hilbert space,
called a Kraus operator [34],

Mq = 〈q|exp

(−i

h̄
gOc ⊗ P̂

)
|m0〉 (12)

= exp

(−i

h̄
gOc ⊗ P̂

)
ψ0(q) (13)

=
∑

i

ψ0(q − goi )|oi〉〈oi| (14)

=
∑

i

1

(2πσ 2)1/4
exp

(−(q − goi )2

4σ 2

)
|oi〉〈oi|. (15)

Let ρ0 denote the initial state of the object system. Then the
post measurement state is given by

ρ ′
q = Mqρ0M†

q

Prob(q)
. (16)

The corresponding positive operator-valued measure element
Eq = M†

q Mq is given by.

Eq =
∑

i

1

(2πσ 2)1/2
exp

(−(q − goi )2

2σ 2

)
|oi〉〈oi|. (17)

Note that Limσ→0Eq = |goi = q〉〈goi = q|. For a finite σ the
measurement has finite strength. For large σ , the measurement
is very weak.

The probability for a measurement outcome q is given by
Prob(q) = Tr(Eqρ0). For the initial state |φ〉s = ∑

i αi|oi〉, we
get

Prob(q) = 1

(2πσ 2)1/2

∑
i

|αi|2exp

(−(q − goi )2

2σ 2

)
. (18)

In the weak-measurement regime, when σ � oi holds for all
eigenvalues, probability function in Eq. (18) can be rewritten

as follows:

Prob(q) = 1

(2πσ 2)1/2

∑
i

|αi|2exp

(−(q − goi )2

2σ 2

)
(19)

≈ 1

(2πσ 2)1/2
exp

⎛
⎜⎜⎝

−(q −
∑

i

|αi|2goi )
2

2σ 2

⎞
⎟⎟⎠ (20)

= 1

(2πσ 2)1/2
exp

(−(q − g〈oi〉)2

2σ 2

)
. (21)

Equation (20) is obtained by Taylor expanding the exponential
function up to first order around q = 0 [35]. The Gaussian
spread σ 2 is called shot noise. There is also another noise
arising due to the fundamental uncertainty in quantum mea-
surements. Fluctuations in the observed meter state, called the
projection noise leads to variations in the system state. How-
ever, since the shot-noise σ 2 is much larger, the effect of the
projection noise can be neglected and measurement-induced
backaction is insignificant [12]. Therefore, it is possible to
perform multiple measurements without needing to repeat the
evolution from the start and obtain a time-stamped series of
measurement records.

III. CONTINUOUS MEASUREMENT TOMOGRAPHY

In the continuous measurement tomography protocol that
we consider, one starts with an ensemble of N noninteracting
simultaneously prepared quantum systems in an identical but
unknown state described by the density-matrix ρ⊗N

0 , where
ρ0 is the density matrix of a single system. The ensemble is
collectively controlled, coherently evolved, and continuously
probed to obtain an “informationally complete” continuous
measurement record. In order to achieve information com-
pleteness, the set of measured observables should span an
operator basis for ρ0 when viewed in the Heisenberg picture.
For a Hilbert space of finite dimension d , fixing the normal-
ization of ρ0, the set of Hermitian operators must form a basis
of su(d ).

We measure the sum of identical observables on all the
N subsystems, and the measurement record at time t can be
written in terms of such a collective observable as

M(t ) = 〈O0〉(t ) + δM(t ). (22)

Here, δM(t ) arises from the noise in the detection system,
and 〈O0〉(t ) = Tr[ρ0U (t )†O0U (t )]. Our goal is to determine
ρ0 by continuously measuring an observable O0 evolved in
the Heisenberg picture. Such a collective measurement, in
principle, can lead to correlations [36] among the states which
can cause backaction. However, under the conditions of weak
continuous measurements, any such quantum backaction is
negligible [4]. The prominent noise in the system is the in-
trinsic shot noise of the probe.

We consider a discrete set of measurements sep-
arated by the time-interval �t of observables On =
(
∏n

i=1 U †
i (�t ))O0(

∏n
i=1 Ui(�t )) where a different unitary

governs the evolution for each �t interval. The unitary evo-
lution, which would produce an informationally complete
set of observables is not unique. The question we ask is
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the following—How does the performance of tomography as
quantified by the fidelities obtained depend on the nature of
the unitary or the set of unitaries employed to evolve the
system. For example, one can choose U (�t )’s from the set
of Haar random unitaries [37,38] and apply them to get an
informationally complete measurement record that is also un-
biased over time. We will refer to this kind of dynamics as the
Haar random case in this paper.

One can also obtain a sequence of measurement records
from repeated application of the same fixed unitary chosen at
random according to Haar measure [39], i.e.,

∏n
i=1 Ui(�t ) =

U n
0 (�t ). This way, we obtain a one-parameter family of mea-

surement records. Although not informationally complete,
this produces high fidelity reconstruction [8]. Repeated ap-
plication of a single random unitary has been studied as a
paradigm to explore quantum signatures of chaos [20,22].
Another way of driving the operator evolution is by choosing
random unitaries that are all diagonal in a particular basis.
There is an extra degree of freedom of phases in this case,
unlike the previously described powers of a single unitary.

Let us now discuss the estimation procedure briefly. Con-
sidering a stroboscopic time series of measurement records at
a time n �t ,

Mn = Tr(Onρ0) + σW (n), (23)

where we treat the detector noise as Gaussian white-noise
δM(t ) = σW (t ). Here σ is the noise variance, and W (t ) is a
Wiener process with mean zero and unit variance [40]. We can
expand ρ0 in a Hermitian basis consisting of (d2 − 1) traceless
operators Eα and the identity matrix [22],

ρ0 =
d2−1∑
α=1

rαEα + I/d. (24)

Using (24) in Eq. (23),

Mn =
d2−1∑
α=1

rαTr(OnEα ) + σW (n) (25)

=
d2−1∑
α=1

rαÕnα + σW (n), (26)

where Tr(OnEα ) = Õnα . All such measurement records {Mn}
together can be written in a matrix form

M̃ = Õr + σW, (27)

where M̃ is a vector of measurement records. Equation (27)
says that the conditional probability of the measurement
records given the underlying parameters is a Gaussian,

P(M̃/r) ∝ exp

(
− 1

2σ 2
(M̃ − Õr)T (M̃ − Õr)

)
(28)

∝ exp

(
−1

2
(r − rML)T C−1(r − rML)

)
. (29)

Equation (29) can be obtained from (28), look at Ref. [9] for
a proof. Here the maximum likelihood estimate vector rML of
the parameters {α} is the one which minimizes the exponent
in the Gaussian [41], given by

rML = σ 2(Õ
T

Õ)−1Õ
T

M̃, (30)

where the quantity σ 2(Õ
T

Õ)−1 is called the covariance matrix
C. Therefore, rML = CÕ

T
M̃. The eigenvalues of C−1 are the

signal-to-noise ratios with which we have measured different
orthogonal directions in the operator space (given by its eigen-
vectors).

In the absence of measurement noise, and when the inverse
covariance matrix C−1 = Õ

T
Õ/σ 2 is full rank, the most like-

lihood estimate is given by ρML = ∑d2−1
α=1 rML

α Eα + I/d . In
the presence of measurement noise, or when the measurement
record is incomplete, ρML can have nonphysical eigenvalues.
Then one has to replace ρML by its closest physical density
matrix, which can be obtained by minimizing the squared
distance between the new estimate r̄ and rML [22,42],

|rML − r̄|2 = (rML − r̄)T (Õ
T

Õ)(rML − r̄) (31)

subject to the constraint
∑d2−1

α=1 r̄αEα + I/d � 0.

IV. CONTINUOUS MEASUREMENT TOMOGRAPHY
WITH RANDOM DIAGONAL UNITARIES

We evolve the initial state using random unitaries diag-
onal in a fixed basis and generate a measurement record.
In the Heisenberg picture, the operator evolves whereas the
state remains the same. After the first �t time interval, the
operator O0 changes to U †(�t )O0U (�t ), where U (�t ) =∑d

j=1 e−iφ j | j〉 〈 j|. Since we will be indexing the unitaries

as well, we can rewrite this as Um(�t ) = ∑d
j=1 e−iφm j | j〉 〈 j|,

where Um(�t ) is the random diagonal unitary applied at time
m �t .

Here the exponential phase factors φm j,∈ [0, 2π ], are cho-
sen uniformly at random. After n time steps,

On = U †
n (�t )U †

n−1 · · ·U †
1 (�t )O0U1(�t )U2(�t ) · · ·Un(�t ),

(32)
which gives

On =
d∑

j,k=1

exp

[
n∑

m=1

−i(φm j − φmk )

]
〈k| O0 | j〉 |k〉 〈 j| (33)

=
d∑

j,k=1

e−i(�n j−�nk ) 〈k| O0 | j〉 |k〉 〈 j| , (34)

where �n j = ∑n
m=1 φm j is the phase multiplying the jth

eigenvector after the evolution for time n �t . The operators
{On} do not span all of the operator space. Consider G =
{g ∈ su(d )|U (t )gU †(t ) = g}, where U (t ) is a unitary diago-
nal in a particular basis considered at time t . Let B = {g ∈
G|Tr(gO0) = 0}. Then Tr[O(t )g] = 0, ∀ g ∈ B. Here O(t )
represents the operator evolved by U (t ). G is isomorphic
to the Cartan subalgebra of su(d ), and the dimension of
G � d − 1. Therefore, the dimension of the spanned space
�d2 − d + 1. This is very similar to arguments presented
in Ref. [8], quantifying the dimension of the operator space
spanned under repeated application of a single unitary map.
But can the random diagonal dynamics saturate this bound or
do they span a strictly lower-dimensional subspace? To see
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FIG. 2. Average fidelity of reconstruction with random unitaries
diagonal in a fixed basis against time for different dimensions of
Hilbert space. The X axis represents the number of applications
of the unitary map. Averaging is performed over reconstruction of
200 random pure states drawn according to Haar measure. The fig-
ure shows that even for low dimensions, surprisingly high fidelity
reconstruction >0.98 is achieved even though measurement is not
informationally complete.

this, let us rewrite (34) as follows:

On =
d∑

j=1

〈 j| O0 | j〉 | j〉 〈 j|

+
d∑

j �=k=1

e−i(�n j−�nk ) 〈k| O0 | j〉 |k〉 〈 j| , (35)

and use the condition,

d2−d∑
n=0

anOn = 0 iff an = 0 ∀ n (36)

for linear independence of the the observables. It has been
shown that if the following conditions are satisfied, the set
{On} is linearly independent [8].

(1) 〈i| O0 | j〉 �= 0 ∀ i, j,
(2) �m j − �mk �= �m′ j′ − �m′k′ ,∀(m, j, k) �= (m′, j′, k′)
In random diagonal unitaries, we pick the eigenphases

uniformly at random, therefore, condition (IV) is satisfied for
any typical member. That is, the set of observables generated
using diagonal in a basis unitaries span a d2 − d + 1 operator
subspace almost always. This makes intuitive sense. Kinemat-
ically speaking, repeated application of a single unitary should
do as well as a set of diagonal random unitaries with a fixed
basis. Our numerical simulations and the yield of tomography
give further evidence of this.

Pure state performance when reconstructed with this algo-
rithm for random unitary diagonal in a fixed basis evolution is
shown in Fig. 2. We see that with more measurement records,
the reconstruction fidelity is increasing and saturating very
close to one. As the Hilbert space dimension increases, the op-
erator subspace about which we do not have any information
becomes less significant and a near-complete reconstruction

is achieved. However, it is remarkable that even for small
dimensions where one would expect the effect of the sub-
space not spanned to be more pronounced, fidelities >0.98
is achieved. But the same process for mixed states yields
a noticeable difference in the reconstruction fidelities when
random diagonals are used instead of Haar random unitaries
as seen in Fig. 3(b).

V. QUANTIFYING INFORMATION GAIN
IN TOMOGRAPHY

To quantify the information gain during measurements,
consider the Hilbert Schmidt distance between the estimated
state ρ̃ and the actual state ρ,

e = Tr{(ρ̃ − ρ)2}. (37)

It is easy to see that e quantifies the error in the reconstruction
[43]. Using the expansion in Eq. (24), the mean error 〈e〉,
obtained by repeating the reconstruction procedure, can be
expressed as

〈e〉 =
∑

α

〈(�rα )2〉, (38)

where {rα} are components of the state vector. The variances
in Eq. (38) are bounded from below, called the Cramer Rao
bound [44],

〈(�rα )2〉 � [F−1]αα, (39)

where F is the Fisher information matrix associated with the
conditional distribution in Eq. (28). When there is negligible
quantum backaction, all the uncertainties in a parameter value
rα is due to the shot-noise variance σ 2, and the Fisher infor-
mation matrix equals the inverse covariance matrix F = C−1

[43]. Now looking at (39), the inverse of the total uncertainty
can be written as follows;

1∑
α

〈(�rα )2〉
= 1

Tr(C)
. (40)

1/Tr(C) can be intuitively understood as a measure of the net
information gained from measurements, called the collective
Fisher information (FI) [22]. It monotonically increases with
more measurements as seen in Fig. 4(a). Each eigenvector of
C−1 represents an orthogonal direction in operator space that
we have measured up to the final time, and each eigenvalue
determines the information gain or signal-to-noise ratio in that
direction. If the dynamics does not span all of the operator
space, C−1 is not full rank, and FI is ill defined. To rectify this
situation, a Tikhonov regularization is performed by adding
a multiple of Identity to C−1 before inverting [45]. Fisher
information is closely related to other information metrics—
the mutual information I[r; M̃] and fidelity [22].

Maximum information gain is obtained when all the eigen-
values of C−1 are equal [22]. To get such an equal information
gain in all the directions, the operator dynamics needs to be
unbiased. This encourages the quantification of the “bias” or
“skewness” in sampling, and Shannon entropy is a familiar
metric that can achieve this. Let us normalize the eigenvalues
of C−1 so that they become a probability distribution. As
mentioned already, they represent the signal-to-noise ratios
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(a) (b)

FIG. 3. (a) Average fidelity of reconstruction for d = 7 with a random unitary diagonal in a fixed basis and completely Haar random
unitary (i.e., a different Haar random unitary at each time step) against the number of applications of the unitary map. Averaging is performed
over the reconstruction of 100 random pure states drawn according to Haar measure. The rank of the covariance matrix against time is shown
in the inset. It gives the dimension of the operator space spanned. Dynamics using random unitary diagonal in a fixed basis does not span all
of the operator space, yet performance is similar. High fidelity is achieved even before rank saturates. (b) Average fidelity of reconstruction
against time, averaged over 200 mixed states picked according to Hilbert Schmidt measure for small dimensions.

in each direction. We can now calculate the Shannon entropy
of this distribution H = −∑

λiln λi, where {λi} is the set
of normalized eigenvalues. With longer-time evolution, the
initial observable that we started with traverses a trajectory,
visiting all of the operator spaces that the unitary dynamics
can span. If the dynamics is unbiased, this would even out the
eigenvalues which, in turn, maximizes the Shannon entropy.
Such an even sampling of the operator space gives high fi-
delity reconstruction for random pure states. This asymptotic

saturation of entropy is evident in Fig. 4(b), i.e., random
unitary dynamics maximize information gain.

VI. STATISTICAL BOUNDS ON INFORMATION GAIN

In this section, we study the maximum information gain
that can be generated in our tomographic protocol. We
note that the inverse covariance matrix C−1 = ÕT Õ/σ 2 has
the form similar to a matrix from the Wishart-Laguerre

(a) (b)

FIG. 4. (a) Comparison of collective Fisher information of random unitary diagonal in a fixed basis with completely Haar random unitary
(i.e., a different Haar random unitary at each time step) for d = 21. The initial observable is Jx and is evolved over time. The X axis represents
the number of applications of the unitary map. The collective Fisher information, defined as an inverse trace of the covariance metric (1/Tr C)
quantifies the amount of information the measurement records have about the unknown parameters. (b) Comparison of Shannon entropy of
random unitary, diagonal in a fixed basis with completely Haar random unitary. As time passes, operator space is more evenly sampled and
Shannon entropy tends to saturate. The inset shows the rank of the covariance matrix. It is the dimension of the operator space spanned.
Operator subspace of dimension d − 2 is left out in the diagonal case, which is reflected in the entropy. The dotted line parallel to the Xaxis is
ln(d2 − 1), the maximum attainable entropy.
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ensemble [46,47], obtained from rectangular matrix of real
elements. The necessary condition for the covariance matrix
to have eigenvalues that behave statistically, such as that of
a Wishart matrix is to have uncorrelated and identically dis-
tributed matrix elements in the constituent matrices Õ

T
and

Õ. Marchenko-Pastur distribution describes the behavior of
eigenvalues of the Wishart matrices of the form W T W , where
W ’s are large rectangular random matrices with independent
and identically distributed entries. For a Wishart matrix con-
structed from the D × N rectangular random matrix with D �
N , the Marchenko-Pastur density function denoted by ρ(λ) is
given by

ρ(λ) = N

2πλ

√
(λ − λ−)(λ+ − λ), (41)

λ± = 1

N

[
1 −

(
D

N

)−1/2]2

, (42)

where λ ∈ [λ−, λ+]. Note that in our protocol, the C−1 matrix
is obtained by Õ

T
Õ/σ 2, where

Õ =
⎛
⎝Õ11 Õ12 · · · Õ1d2−1

· · · · · · · · · · · ·
ÕN1 ÕN2 ... ÕNd2−1

⎞
⎠. (43)

Here N is the total number of time steps, and d2 − 1 is the
dimension of the operator space. An element Õnα = Tr(OnEα )
is the expectation value of operator On along the direction Eα

in the operator Hilbert space. Since the expectation value of
measurements along each direction is obtained by averaging
over a large number of identically prepared systems, Õnα

follows Gaussian distribution because of central limit theorem
with variance σ 2 the shot noise. Hence, each element in Õ is
identically distributed.

Now what remains is to prove that elements of Õ are
independent. The successive operators {On} are obtained by
conjugation action on the initial operator by a Haar random
unitary at each step. This makes the operators independent of
each other and, hence, the measurement values are uncorre-
lated up to one contraint, N‖O0‖2 = ∑

i,α Õ2
iα , where O0 is

the initial operator. However, when N and d2 − 1 are large, Õ
behaves effectively as a random matrix with independent and
identically distributed entries. Now we numerically demon-
strate that the Haar random evolution accomplishes this. C−1

is a (d2 − 1)-dimensional full rank matrix. As the dimension
of the Hilbert space tends to be very large, the eigenval-
ues of Wishart matrices become continuous and follow the
Marchenko-Pastur density function as seen in Fig. 5.

We estimate the collective Fisher information using the
Wishart-Laguerre ensemble. Let {λi}D

i=1 be the eigenvalues
of C−1, where D = d2 − 1. In the limit of large N , we can
approximate the sum by an integral,

FI = 1∑D
i

1
λi

≈ 1

D
∫

1
λ
ρ(λ)dλ

= 1

D
〈

1
λ

〉 , (44)

where ρ(λ) is the Marchenko-Pastur density. In our numerical
simulation, we evolved the system for 6d2 time steps and used
the measurement records obtained to generate the Wishart
matrix. Therefore, in our simulations, the parameters in the
density function are D = 440 and N = 2646. The collective

10�3�

FIG. 5. Histogram of eigenvalue distribution of C−1 of Haar ran-
dom evolution and Marchenko-Pastur density function. Remarkable
agreement is seen in the eigenvalue distribution.

Fisher information obtained using the integral approximation
is 18.039 07, in excellent agreement with the Haar random
case. Using the covariance matrix of Haar random evolution,
we get FI = 18.762 07 after 2646 time steps. The small differ-
ence in the values obtained can be attributed to the dimension
being small for the eigenvalues to be continuous.

To quantify the bias in the operator space dynamics, we
calculate the Shannon entropy. We normalize the eigenval-
ues of C−1 so that they form a probability distribution and
compute the Shannon entropy H = −∑

λiln λi, where {λi}
are the normalized eigenvalues. For the Haar random case,
the average entropy numerically obtained for an ensemble
of random states of dimension d = 21 after 2646 iterations,
which we denote by subscript “rs,” is Hrs = 6.004 15. The
Shannon entropy of Wishart-Laguerre orthogonal ensemble,
denoted by subscript “loe” can be calculated as

Hloe = −D
∫ λ+

λ−
λ ln λ

N

2πλ

√
(λ − λ−)(λ+ − λ)dλ. (45)

Using this integral approximation, which works better for
large dimensions, we get Hloe = 6.003 63 in remarkable
agreement with the Haar random case. Figure 5 shows the
distribution of normalized eigenvalues of C−1 for Haar ran-
dom evolution and the Marchenko-Pastur density function.
When all the eigenvalues are equal, the expected Shannon
entropy for d = 21 is Hexp = ln (d2 − 1) = 6.086 77. Indeed,
an application of a different random unitary at each time step
is the most unbiased dynamics we can hope to perform.

Information gain for random diagonal unitaries

In this section, we study the maximum information gain
that can be generated in our tomographic protocol through the
application of random diagonal operators. For this case, the in-
verse covariance matrix does not obey the Marchenko-Pastur
distribution. In the standard Hilbert space, the operator we
apply at any time step is of the form U = ∑d

j=1 e−iφ j | j〉 〈 j|,
where e−iφ j and | j〉 are its eigenvalues and eigenvectors, re-
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spectively. Since we will be indexing the unitaries as before,
we can rewrite this as Um = �d

j=1e−iφm j | j〉 〈 j|, where Um is
the random diagonal unitary applied at time-step m. Here the
exponential phase factors φm j,∈ [0, 2π ], is chosen uniformly
at random. Therefore, after n time steps,

On = U †
n (�t )U †

n−1 · · ·U †
1 (�t )O0U1(�t )U2(�t ) · · ·Un(�t ).

(46)
Now we use the superoperator picture [20,48]. The super-
operator of the measured observable after n times steps,
|On) = UnUn−1 · · · U1|O0) where the superoperator map is
U = U † ⊗ U T . Using this, we can write our unitary su-
peroperator map explicitly as U = ∑d

j,k e−i(φk−φ j )| j, k)( j, k|,
where one defines | j, k) = | j〉 ⊗ |k〉∗ with ∗ denoting com-
plex conjugation. Therefore, in our notation, UnUn−1 · · · U1 =∑d

j,k exp[
∑n

m=1 −i(φmk − φm j )]| j, k)( j, k|.
In the superoperator representation after N time steps the

inverse of this covariance matrix is C−1 = ∑N
n=1 |On)(On|.

We can write this as

C−1 =
d∑

j,k=1

d∑
j′,k′=1

f j′,k′
j,k ( j′, k′|O0)(O0| j, k)| j′, k′)( j, k|, (47)

where

f j′,k′
j,k =

N∑
n=1

exp

[
n∑

m=1

−i(φm j − φm j′ − φmk + φmk′ )

]
, (48)

which can be simplified as in Eq. (34),

f j′,k′
j,k =

N∑
n=1

e−i(�n j−�n j′−�nk+�nk′ ). (49)

Note that if �n j − �n j′ − �nk + �nk′ = 0, ∀ n for a par-

ticular choice of j, k, j′, k′, the quantity f j′,k′
j,k = N . For an

arbitrary unitary map U , we will assume that the only way this
can happen is if ( j = k) ∧ ( j′ = k′) or ( j = j′) ∧ (k = k′),
which is certainly true for a random unitary.

With this assumption, we can approximate C−1 by terms
that scale with N in the large-N limit. The inverse covariance
matrix is

C−1 ≈ N

⎡
⎣ d∑

j,k=1

|( j, k|O0)|2| j, k)( j, k|

+
d∑

j �=k=1

( j, j|O0)(O0|k, k)| j, j)(k, k|
⎤
⎦. (50)

In this superoperator representation, C−1 is a (d2 × d2)-
dimensional matrix with d4 elements in total. Note that on
the right-hand side of (50), the total number of terms are only
of order d2. Therefore, the matrix C−1 is sparse for large
d . The degree of sparsity increases with the increase in the
dimension of the space. The first sum in Eq. (50) contains the
diagonal elements. In the limit of large d , eigenvalues of C−1

are very close to the diagonal terms because of the limited
interaction with other elements in the matrix. Since the inverse
covariance matrix is a superoperator in a real vector space
of d2 dimensions, let us compare the normalized eigenvalues
with the Porter-Thomas (pt) distribution [49]. The motivation

FIG. 6. Distribution of eigenvalues of C−1 for the diagonal ran-
dom case, along with the distribution of random numbers generated
from Porter-Thomas distribution. The inset shows the zoomed-in
distribution for very small eigenvalues.

for this comparison is that C−1 can be thought of as being
picked from a unitarily invariant measure by its construction
with real eigenvalues. The Porter-Thomas distribution given
below in Eq. (51) represents frequency distribution of compo-
nents of a pure unit vector, chosen uniformly at random in a
d2-dimensional real Hilbert space. Let ai be the ith component
of the random real pure state, then probability for obtaining
the ith outcome pi = a2

i . When the dimension of the Hilbert
space d2 is large, the ith outcome occurs λi = d2 pi times. The
distribution of these frequencies follow the Porter-Thomas
distribution,

ρ(λ) = 1√
2πλ

e−λ/2. (51)

We denote the Shannon entropy obtained from Porter-Thomas
distribution by subscript pt.

Hpt = −d2
∫ ∞

0

λ

d2
ln

(
λ

d2

)
1√
2πλ

e−λ/2dx = 5.359 41.

(52)
Also using properties of random states in a real vector space
[49], the expected entropy of pure states with real coefficients
Hexp = ln(d2) − 0.729 637 gives 5.359 41. Both these val-
ues obtained for entropy are very similar and in very good
agreement with Hrs = 5.416 84 as obtained by our numerical
simulations using random diagonal unitaries. Further evidence
of this is given in Fig. 6 which compares the eigenvalues of
C−1 with the Porter-Thomas distribution. In very high dimen-
sions, sparsity of the matrix is so high that all the correlations
die, and eigenvalues of C−1 form a truly random vector. In
that asymptotic limit, eigenvalues follow the Porter-Thomas
distribution.

Now let us look at the rate of information generation. The
Fisher information obtained for the diagonal random case in
our numerical simulation is 5.375 41 after N = 2646 time
steps. Using the constraint Tr(C−1) = N‖ O0‖ 2 to rescale
the numbers generated according to the Porter-Thomas dis-
tribution so that they are in same footing with the numerical
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case,

λi → λi

d2
Tr(C−1) + d2, (53)

where d2 has been added as a constant regularization fac-
tor which we also had in our simulations to avoid infinities
whereas finding the Fisher information,

FI = 1[
d2

∫ ∞
0

(
d2

λ Tr(C−1 )+d4

)
1√
2πλ

e−λ/2dλ
] , (54)

which yields 4.311 74, a low value compared to the one
we obtained numerically. This is because the Porter-Thomas
distribution is heavily populated by very small numbers. C−1

has a lesser number of very small eigenvalues as seen in the
inset of Fig. 6. Therefore, the eigenvalues of C, which is the
set of inverted eigenvalues {1/λi} has more smaller numbers
than the corresponding Porter-Thomas set. Hence, the trace of
the covariance matrix is smaller and the FI is larger, compared
to the Porter-Thomas case.

VII. CONTINUOUS MEASUREMENT TOMOGRAPHY AND
ITS CONNECTION TO QUANTUM CHAOS AND

SPECTRAL STATISTICS

Our results of the previous section indicate a connection
between random diagonal unitaries and quantum chaos. One
can characterize quantum chaos dynamically, by “ergodic
mixing,” i.e., something that takes a localized state in phase
space and maps it to a random state, smeared across phase
space. As shown in previous literature, a quantum chaotic
map takes a localized state to a pseudorandom state in Hilbert
space. This is characterized by the entropy production of
the probability distribution with respect to the standard basis
[50–55]. Intuitively, information gain in quantum tomography
is a closely related phenomenon where ergodic mixing due to
chaos can be viewed in the Hiesenbeg picture and interpreted
as the rate of obtaining information in different directions of
the operator space.

In contrast, a common approach is to characterize chaos
using static properties. In this approach, the signature of chaos
in a quantum system is in the energy-level statistics of the
Hamiltonian (or phases of a Floquet map). Depending on
the symmetries, quantum chaotic systems are classified as
Gaussian or circular orthogonal (COE), Gaussian or circular
unitary, and Gaussian or circular symplectic ensembles [56].

The question then is, does ergodic mixing depend sensi-
tively on the eigenvalues of the Hamiltonian H or Floquet map
U or just on the eigenvectors? Is the power of U to generate
randomness related to its eigenvectors and not eigenvalues?
Are any two Hamiltonians or Floquet maps with the same
eigenvalue spectrum the same? The physical Hamiltonians for
regular systems will have nonrandom eigenvectors as well as
level statistics corresponding to a Poissonian distribution.

To decouple the role played by eigenvalues and eigen-
vectors of the dynamics in the rate of information gain in
tomography, we construct quantum maps that have an eigen-
spectrum corresponding to regular systems and eigenvectors
that are random with respect to a standard basis. This is
obtained by performing a unitary transformation to a given
eigenbasis. The other possibility of regular eigenvectors but

FIG. 7. Average reconstruction fidelity over ten random states
of d = 21 using repeated application of a kicked top unitary U =
e−i1.4Jx exp( −ik0

(n−1) J2
z ). k0 is the chaoticity parameter of the map. The

X axis shows the number of applications of the Floquet map. The
“eigenvalues chaotic” case is when eigenvalues are picked from the
floquet in the chaotic regime with chaoticity 7 and eigenvectors are
picked from the floquet with chaoticity 0.5. The other case follows
similarly.

an eigenspectrum exhibiting level repulsion—a signature of
chaos is also considered.

To this end, we use the repeated application of the kicked
floquet to evolve the initial operator Jz. Results are shown
in Figs. 7 and 8. There is a stark increase in the achieved
fidelity when eigenvectors are chosen from a chaotic kicked
top unitary. Figure 8 shows that when eigenvalues of the uni-
tary are nondegenerate, the rate of information generation and
the amount of operator space spanned during the evolution
are solely dependent on the nature of eigenvectors. Choosing
the eigenphases from a chaotic unitary does not give any
advantage in this case. Figure 9 shows the evolution of the
same system with a rotated initial operator.

From these observations, it is clear that the eigenvalue
statistics of U , which is a basis-independent criterion of
quantum chaos, is not necessary for the information gain in
tomography. This suggests that it is the random matrix theory
(RMT) statistics of the eigenvectors of U that is responsi-
ble for faster quantum state reconstruction. Randomizing the
eigenvectors of the initial operator has resulted in washing
away the differences seen in the rate of information gen-
eration and entropy, in Fig. 8. This again demonstrates the
basis dependence of randomness generation. The message our
paper imparts is that, in general, the dynamical signatures of
chaos, such as the generation of near maximally entangled
random states and information gain in tomography, are a
basis-dependent feature of a system. Either we need initially
random operators that might be hard to implement, or one
needs a dynamics that gives rise to pseudorandomness in op-
erator space that generates observables that has support over
almost the entire d2 − 1 dimensions.

Figure 4 shows a faster growth of Fisher information
as compared to the case to Fig. 8 for the kicked top. As
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(a) (b)

FIG. 8. The initial observable is Jz and is evolved over time using repeated application of kicked top Flouquet operator U =
e−i1.4Jx exp( −ik0

(n−1) J2
z ) for J = 10. k0 is the chaoticity parameter. The X axis shows the number of applications of the Floquet map. The

eigenvalues chaotic case is when eigenvalues are picked from the Floquet in the chaotic regime with chaoticity 7 and eigenvectors are picked
from the Floquet with chaoticity 0.5. Other cases follow similarly. We observe that when eigenvectors are spread out with more support in the
Hilbert space, information gain is more. (b) Comparison of Shannon entropy with kicked top evolution for various cases described in part (a).
The difference in the saturation value means that when eigenvectors are picked from a chaotic unitary, they span more operator space.

discussed above, different Haar random unitaries saturate the
full (d2 − 1)-dimensional operator space, whereas a repeated
application of a single Haar random unitary (such as the
kicked top) misses d − 2 dimensions. This manifests in the
values of Fisher information. The information gain when one
employs different Haar random unitaries is naturally more
rapid as compared to being restricted to repeated application
of a single kicked top which is further restricted by additional
constraints that we describe below.

In addition, the kicked top has a parity symmetry given
by R = exp(−iπ jx ). In the basis in which the parity operator
is diagonal, the Floquet map has a block diagonal structure
corresponding to the +1 and −1 parity eigenvalues. The parity
operator R = e−iπJx commutes with the kicked top unitary, U

(Supplemental Material section in Ref. [20]). Therefore, there
exists a basis in which both Jx and U are diagonal. For param-
eters in which the classical dynamics is globally chaotic, we,
in general, expect the Floquet operator to have the statistical
properties of a random matrix chosen from the COE [56].
Because of the additional parity symmetry, we must choose
a block diagonal matrix whose blocks are sampled from the
COE in the basis in which the parity operator R is diagonal,
thus, having the same block structure as the Floquet map. This
is the reason that the saturation value of Shannon entropy in
Fig. 8 (4.8398) is lower than that of the random diagonal case
Fig. 4 (where Shannon entropy reached 5.41684). That means
the Floquet dynamics spans a smaller subspace of the operator
space.

(a) (b)

FIG. 9. When the initial operator Jz is rotated by a random unitary to U †JzU , the differences seen in the information generation and entropy
in the previous figure disappear. The X axis shows the number of applications of the Floquet map. A larger saturation value of Shannon entropy
shows that more of the operator space is spanned, much more than the previous case.
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VIII. DISCUSSION

Quantum tomography is a resource-intensive process of
fundamental importance in quantum information theory. The
challenge is to accomplish this in an efficient manner, and
research is focused on optimizing protocols. Many techniques,
such as compressed sensing [31] or the taking advantage of
the positivity constraint [57], focus on the prior information
available in state estimation. In this paper, we took a different
approach and showed that with a dynamics that is not infor-
mationally complete, we can still get very high fidelities in
quantum state reconstruction. In particular, what we have seen
in this paper is that random unitaries diagonal in a particular
basis do almost as good as Haar random unitaries in terms
of fidelity of state reconstruction. This is despite missing
out on the information from (d − 1)-dimensional subspace
of the operator space. We quantified the rate of information
gain using collective Fisher information and used Shannon
entropy to quantify uniformity in operator sampling. We gave
statistical bounds on information gain and also discussed how
close diagonal random unitary dynamics come in saturating
these bounds. Finally, we saw that asymptotic evolution using
Haar random unitaries is modeled remarkably well by the
Wishart-Laguerre orthogonal ensemble. We also obtained an
intuitive understanding of the vector space visited by the ran-
dom unitary maps considered. Thus, our paper is an important
contribution towards the applications of random matrix theory
in quantum information.

One interesting question that arises from our paper is the
performance of quantum process tomography using states
generated by random diagonal unitaries as inputs. Quantum
process tomography is the process of determining the trace-
preserving completely positive map that is applied on the
system and, therefore, d4 − d2 real numbers are required to

completely characterize it. Using continuous measurement
quantum process tomography, how close does a random dy-
namics or random dynamics diagonal in a fixed basis come in
getting an accurate description of the map?

The flip side of quantum tomography is quantum control.
One requires an informationally complete set for perfect state
reconstruction. Similarly, such an informationally complete
dynamics will be able to steer an initial state to any target state
in the Hilbert space. The ability of random diagonal unitaries
to generate information in d2 − d + 1 dimensions tells us as
to what target states are achievable starting from a fiducial
state.

Randomized benchmarking is used to estimate the fidelity
between the applied map and the target unitary, in the presence
of errors. How well do randomized benchmarking protocols
work when one only has random diagonal unitaries at dis-
posal? Is there a way to perform randomized benchmarking
with a restricted set of unitaries? These are questions we like
to address in the future.
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