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The performance of variational quantum algorithms relies on the success of using quantum and classical
computing resources in tandem. Here, we study how these quantum and classical components interrelate. In
particular, we focus on algorithms for solving the combinatorial optimization problem MaxCut, and study
how the structure of the classical optimization landscape relates to the quantum circuit used to evaluate the
MaxCut objective function. In order to analytically characterize the impact of quantum features on the critical
points of the landscape, we consider a family of quantum circuit ansätze composed of mutually commuting
elements. We identify multiqubit operations as a key resource and show that overparameterization allows for
obtaining favorable landscapes. Namely, we prove that an ansatz from this family containing exponentially many
variational parameters yields a landscape free of local optima for generic graphs. However, we further prove that
these ansätze do not offer superpolynomial advantages over purely classical MaxCut algorithms. We then present
a series of numerical experiments illustrating that noncommutativity and entanglement are important features for
improving algorithm performance.
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I. INTRODUCTION

Quantum computers promise to offer computational ad-
vantages over classical computers for certain high-value tasks
[1–3]. However, the availability of fault-tolerant quantum
computers that can achieve these speedups at meaningful
scales is likely years away. In the meantime, the advent of
noisy, intermediate-scale quantum (NISQ) [4] devices has in-
spired tremendous interest in variational quantum algorithms
(VQAs), which aim to leverage the computing power of NISQ
devices to solve a broad range of scientific problems, with
applications spanning quantum chemistry [5], combinatorial
optimization [6], machine learning [7], and linear systems [8].
VQAs function by using NISQ hardware in tandem with a
classical processor [9]. At the outset, an objective function J
is defined that encodes the solution to a problem of interest.
Then, a classical computer is used to iteratively optimize J .
The optimization is conventionally performed over a set of pa-
rameters associated with a quantum circuit, or ansatz, which
is used to evaluate J on the NISQ device. In order to achieve
strong performance, the classical optimization procedure and
the quantum objective function evaluation must function suc-
cessfully together. As such, an understanding of the associated
costs and challenges of the quantum and classical aspects of
VQAs, and how they interrelate, is highly desirable.

To date, significant attention has been paid to the quantum
component of VQAs, in an effort to develop effective strate-
gies for evaluating the objective functions associated with
different problems of interest, and a plethora of ansätze have
been developed to target different applications [5–7]. These
application-oriented ansätze are often motivated by physical

intuition. However, hardware-efficient ansätze have also been
developed that are motivated by a convenient implementation
on typical NISQ platforms [5,10]. Furthermore, a variety of

FIG. 1. Pictorial representation of how ansatz selection can be
informed by the interplay between the problem instance and the
underlying optimization landscape structure for solving the MaxCut
problem. In particular, the graph structure (a) can be utilized to guide
the development of an ansatz (b) for a VQA that yields favorable
landscape properties (c), resulting in enhanced convergence. Here,
we introduce a family of ansätze as a toy model that allows for
analytically studying the associated landscape critical point structure,
and prove that an ansatz from this family containing exponentially
many variational parameters yields a landscape that is free of local
optima. We go on to use this ansatz family as a starting point for
exploring relations between inclusion of quantum features in ansätze,
scalability, and VQA performance.
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error mitigation schemes have been developed in order to
bolster the utility of ansätze in different settings [11–14]. In
comparison to these efforts studying the quantum component
of VQAs, fewer analyses have been done with respect to
the classical component [15–18]. The latter aspect of VQA
performance can carry a significant computational cost. This
circumstance arises because the classical optimization prob-
lem is nonconvex in general [19], due to the fact that the
quantum circuit parameters typically enter in a nonlinear man-
ner into J . This can cause local optima to appear, which
can render the classical search for a global optimum of J
prohibitively difficult [20].

Here, we seek to obtain a deeper understanding of these is-
sues by analyzing the optimization landscapes, defined by the
objective J as a function of the quantum circuit parameters.
The precise manner in which J depends on the parameters is
dictated by the interplay between the ansatz and the problem
at hand, and consequently, the quantum and classical com-
ponents of VQAs are intimately related. Thus far, numerical
and theoretical observations have confirmed the presence of
local optima in VQA landscapes for commonly employed
ansätze [20–22]. However, numerical observations have sug-
gested that overparameterization of an ansatz can yield a more
favorable landscape structure [18,23]. We note that similar
findings on overparameterization have appeared in the analy-
sis of quantum control landscapes [24–27], where in the latter
setting, overparameterization takes the form of “sufficient”
pulse-level control resources. In fact, VQAs can themselves
be considered a form of quantum learning control experiment
[28–32], where the control is performed at the quantum circuit
level, rather than at the conventional pulse level [27]. Simi-
lar findings on the effects of overparameterization have also
appeared in the study of classical neural network landscapes
[33–35]. Despite these observations, analytical analyses and
rigorous results regarding the critical point structure of VQA
landscapes remain scarce, and a comprehensive understanding
of VQA landscapes has not yet been attained.

In this article, we make a step in this direction. Namely, we
explore quantum-classical tradeoffs in VQAs by studying how
the structure of the classical optimization landscape relates
to the problem instance and to the quantum ansatz used to
evaluate J . In particular, we investigate how ansätze can be
designed to yield favorable landscapes that are free of local
optima. To do so, we examine how quantum resources, such
as entangling gates, can be harnessed to improve the opti-
mization landscape structure to contain only global optima
and saddle points, the latter of which often do not hinder
local searches from finding global optima efficiently [36–39].
However, as these aims are difficult to achieve in general, we
focus here on applications of VQAs for solving the combi-
natorial optimization problem MaxCut, and consider ansätze
that allow for analytically characterizing the critical point
structure of the optimization landscape in this setting. Our
general approach for this is depicted in Fig. 1. That is, in
Sec. III we consider a family of ansätze with elements gener-
ated by mutually commuting k-body operators [40,41] and use
these ansätze as a toy model for our studies. The considered
ansätze can be tailored to the structure of the graph under
consideration, and allow for analyzing the impact of adding
variational parameters in a systematic fashion. To this end,

we first prove that for generic graphs on n vertices, an ansatz
from this family containing 2n−1 − 1 variational parameters
yields a landscape free of local optima. We go on to explore
the prospect of achieving favorable landscapes through an-
sätze with polynomially many parameters, and discuss how
these findings relate to classical algorithmic capabilities. For
instance, despite the inclusion of entangling operations, we
show that the considered ansatz family does not offer a super-
polynomial advantage over purely classical MaxCut schemes.
We then numerically explore in Sec. IV how the algorithm
performance is affected by incorporating noncommutativity
into the ansatz, and compare our findings against the quantum
approximate optimization algorithm (QAOA) [6].

II. PRELIMINARIES

Consider a quantum circuit

U (θ) =
M∏

j=1

e−iθ j Hj , (1)

parameterized by a set of M (variational) parameters collected
in the vector θ = (θ1, . . . , θM ), where Hj are Hermitian op-
erators. The parameterized circuit (1) defines an ansatz for
optimizing an objective function J (θ). The objective function
considered here takes the form

J (θ) = 〈ϕ(θ)| Hp |ϕ(θ)〉 , (2)

where Hp is the so-called problem Hamiltonian, and the state
|ϕ(θ)〉 = U (θ) |φ〉 is created through the parameterized circuit
starting from a fixed initial state |φ〉. The goal of VQAs is then
to solve the optimization problem

min
θ∈RM

J (θ). (3)

Solving (3) is typically accomplished by iteratively searching
for the parameters θ that minimize J in a hybrid quantum-
classical fashion. In each iteration, a quantum device is used
to create the state |ϕ(θ)〉, followed by expectation value mea-
surements to infer the value of J . Then, a classical search
routine is employed to determine how to update the values
of θ for subsequent iteration. This procedure is repeated un-
til convergence is achieved. In order for this procedure to
be scalable, the depth of the parameterized circuit and the
number of variational parameters M should each scale at most
polynomially in the number of qubits.

A. Optimization landscapes of VQAs

The ease of finding the parameter configuration that
minimizes J depends on the structure of the optimization
landscape, given by J as a function of θ. This landscape
structure depends on how the components of θ enter in the
associated quantum circuit U (θ) in conjunction with the form
of Hp. In order to obtain a favorable landscape, one obvious
choice is to consider ansätze [42,43] that allow for directly
varying over the O(2n) coefficients of |ϕ(θ)〉 in the eigenbasis
of Hp, assuming the eigenbasis is known, e.g., as for the
MaxCut problem studied below. In this case, the optimization
problem is convex and constrained due to the normalization of
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|ϕ(θ)〉. However, such ansätze lack the flexibility to systemat-
ically reduce the number of variational parameters, while still
maintaining guarantees on the reachability of the ground state.
Furthermore, there is no obvious mechanism for tailoring their
structure to the problem instance at hand.

In order to address these challenges, here we consider the
more common case where the variational parameters θ enter
in a nonconvex manner, and consequently, the associated opti-
mization landscapes may contain local optima. In this setting,
an assessment of the associated optimization landscape relies
on an analysis of the set of critical points {θ∗} at which the
gradient ∇J (θ) vanishes. For objective functions of the form
(2), the jth component of the gradient takes the form

∂

∂θ j
J (θ) = −i 〈ϕ(θ)| [Hp,WjHjW

†
j ] |ϕ(θ)〉 , (4)

where Wj = ∏M
k= j e−iθk Hk . Due to the form of the gradient

(4), it is evident for each of the eigenstates of Hp, which
are reachable through U (θ), that the corresponding parame-
ter configurations constitute critical points. In addition, there
could also be situations where parameter configurations that
yield noneigenstates constitute critical points.

In order to characterize the type of critical point (e.g.,
saddle point, minimum, maximum), the Hessian matrix, de-
noted by ∇2J (θ), can be used. Using the short-hand notation
Aj ≡ WjHjW

†
j , the components of the Hessian are given by

∂2

∂θ j∂θk
J (θ) = −〈ϕ(θ)| [[Hp, Aj], Ak] |ϕ(θ)〉

− i 〈ϕ(θ)| ∂

∂θ j
Ak |ϕ(θ)〉 . (5)

To distinguish a saddle point from a local optimum, we define
a local optimum as follows:

Definition 1. A local optimum is a critical point that does
not correspond to a global optimum or a saddle, but at which
the Hessian is positive or negative semidefinite.

As recent studies have suggested that saddle points often
do not hinder gradient-based algorithms from efficiently find-
ing global optima [36–39], here we focus on the question of
whether it is possible to remove local optima by appropriately
choosing the ansatz and the initial state |φ〉. In particular, we
explore which parameterized gates allow for such favorable
landscape properties. These considerations emphasize the in-
terplay between quantum resources and classical capabilities.
Addressing them in the most general form is challenging, as
it would require the ability to analytically track the depen-
dence of Hp and U (θ) on ∇J and ∇2J . As a consequence,
here we focus on a particular Hamiltonian Hp that has high
practical relevance. In particular, we restrict ourselves to Ising
Hamiltonians whose ground states encode solutions to the
graph-partitioning problem MaxCut.

B. Formulations of the MaxCut problem

Consider a weighted, undirected graph G = (V, E ), where
V denotes the set of n vertices, E denotes the set of edges,
and wa,b � 0, with (a, b) ∈ E , denote the corresponding
non-negative edge weights. The MaxCut problem then cor-
responds to partitioning V into two subsets such that the

sum of the weights belonging to the edges connecting the
two subsets is maximized. More formally, for some subset
of vertices S ⊂ V , whose complement is denoted by Sc, we
define the cut set Cut(S) with respect to the partition {S, Sc}
by Cut(S) = {(a, b) ∈ E , | a ∈ S, b ∈ Sc}. If we denote by
CutVal(S) = ∑

(a,b)∈Cut(S) wa,b the corresponding cut value,
the MaxCut problem for G reduces to solving

MaxCut(G) = max
S⊂V

CutVal(S). (6)

We note that the MaxCut problem is equivalent to the binary
quadratic program

minimize
∑

(a,b)∈E

wa,b(xaxb − 1)/2,

subject to xa ∈ {±1} for every a ∈ V, (7)

which is known to be both NP-hard [44] and APX-hard [45]
for generic graphs G. As such, significant effort has been
dedicated to the development of heuristics and approximation
algorithms that efficiently yield high cut values. For exam-
ple, the Goemans-Williamson (GW) algorithm involves the
relaxation of the discrete optimization problem (7) into a
semidefinite program, whose initial solution is then rounded
to obtain a final solution [46].

It is well known [47,48] that solving the MaxCut problem
is also equivalent to finding the ground state of an n-qubit
Ising Hamiltonian

Hp =
∑

(a,b)∈E

wa,bZaZb, (8)

where Za = 1 ⊗ · · · ⊗ Z ⊗ · · · ⊗ 1 denotes the Pauli opera-
tor Z = diag(1,−1) acting nontrivially on the ath qubit. In
this setting, MaxCut can be formulated as the optimization
problem

min
θ∈RM

∑
(a,b)∈E

wa,b(〈ϕ(θ)| ZaZb |ϕ(θ)〉 − 1)/2. (9)

If we denote the eigenstates of Hp by |z〉 with z ∈ {0, 1}n,
we see that each |z〉 corresponds to a cut of the graph as
1−〈z|ZaZb|z〉

2 ∈ {0, 1}, so it is useful to denote by Sz ⊂ V the
set of vertices that are assigned a “1” in the bit string z as-
sociated with |z〉. The equivalence CutVal(Sz ) = CutVal(Sc

z )
is reflected in fact that the eigenstates of Hp come in pairs
with the same eigenvalue, or equivalently cut value, due to the
Z2 symmetry of the Ising Hamiltonian (8). We refer to a set
of 2n−1 − 1 vertex subsets without any of their complements
as being nonsymmetric. The minimization problem (9) can be
considered a relaxation of the discrete MaxCut optimization
problem (7) to quantum states, rather than real vectors on a
sphere as in the GW relaxation. It is widely hoped that varying
over quantum states |ϕ(θ)〉 will offer advantages. However,
it is largely unknown which quantum features could provide
such advantages.

Investigating the optimization landscape of J (θ) for the
Ising Hamiltonians (8) offers a potential path forward for
assessing what quantum features have to offer in the context of
solving the MaxCut problem. To this end, in a recent preprint
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[20] it has been shown that using an ansatz of the form

U (θ) =
n∏

j=1

e−iθ j Xj , (10)

and taking the initial condition |φ〉 = |0〉 = |0〉 ⊗ · · · ⊗ |0〉
to be the highest excited state of (8), yields local optima in
general, from which it is concluded that the classical optimiza-
tion problem is NP-hard. In Eq. (10), Xj denotes the Pauli

operator X = (0 1
1 0) that acts nontrivially on the jth qubit.

Since the eigenstates of the Ising Hamiltonian take the form
|z〉 with z ∈ {0, 1}n, the classical ansatz (10) can be interpreted
as continuously flipping qubits. We note that even though
exp(−iθ jXj ) allows for coherent superpositions of qubit states
of the form cos(θ j ) |0〉 − i sin(θ j ) |1〉, as Hp is diagonal in
the computational basis, such coherent superpositions do not
give any advantage over convex combinations. That is, in both
cases the objective function takes the form

J (θ) =
∑

(a,b)∈E

wa,b cos(2θa) cos(2θb), (11)

whose optimization landscape provably contains local optima
depending on the graph structure. As such, we refer to (10)
as a “classical” ansatz. Furthermore, given that the relative
phase of each qubit state does not change J , even an ansatz
consisting of generic local SU(2) operations applied to each
qubit will produce an objective function of the form (11). Con-
sequently, starting from |0〉, the use of generic local operations
alone does not yield favorable optimization landscapes. With
this in mind, below we explore the effect of incorporating
entangling gates.

III. A FAMILY OF ANSÄTZE FOR REMOVING
LOCAL OPTIMA

Looking beyond the classical ansatz (11), we proceed by
including ansatz elements that are created by k-body opera-
tors

∏
i∈S Xi acting nontrivially on a subset S ⊂ V of |S| = k

qubits. This leads to a family of ansätze, which we refer to as
X-ansätze.

Definition 2. An X-ansatz is of the form

U (θ) =
M∏

j=1

e−iθ j Hj , Hj =
∏
i∈S j

Xi, (12)

where A = {S j} with S j ⊂ V being a collection of vertex
subsets that the ansatz elements nontrivially act on.

We remark that due to commutativity of its elements the set
A uniquely defines the ansatz (12), and that (10) is contained

in the family of X-ansätze through A = {{1}, {2}, . . . , {n}}.
As the application of each Hj in (12) on |0〉 has the effect
of creating a cut, varying over θ in a given X-ansatz can be
interpreted as varying continuously over cuts. Furthermore,
these X-ansätze have strong ties to instantaneous quantum
polynomial-time (IQP) circuits [40,41]. In this regard, it is
interesting to note that the ability to calculate J for a given
X-ansatz efficiently on a classical computer is related to
the ability to determine whether barren plateaus are present
[49–51]. For further details, we refer to Appendix B.

Since the ansatz elements in (12) mutually commute, the
components of the gradient (4) take a particularly simple
form,

∂

∂θ j
J (θ) = −i 〈ϕ(θ)| [Hp, Hj] |ϕ(θ)〉 , (13)

while the elements of the Hessian (5) are given by

∂2

∂θ j∂θk
J (θ) = −〈ϕ(θ)| [[Hp, Hj], Hk] |ϕ(θ)〉 ,

which enables the optimization landscape to be analyzed an-
alytically. We proceed by fixing |φ〉 = |0〉. Writing out the
objective function explicitly and utilizing techniques from
Ref. [52] for degenerate critical points, at which the Hessian
is not invertible [19], allows for establishing the following
lemma, whose proof is given in Appendix A.

Lemma 1. Given an X-ansatz, any critical point of J (θ) not
corresponding to an eigenstate of Hp is a saddle.

Given the goal of understanding the optimization landscape
critical point structure, and importantly, the presence of local
optima in this landscape, the importance of this lemma is
that it allows us to focus completely on critical points with
parameter configurations θ∗

E that correspond to eigenstates
of Hp, as all other critical points are saddle points. Since
〈z| [[Hp, Hj], Hk] |z〉 = 0 for all j 
= k and all z ∈ {0, 1}n, we
immediately have that at these parameter configurations θ∗

E ,
the Hessian is diagonal, with elements given by

∂2

∂θ2
j

J (θ)|θ=θ∗
E

= −2[J (θ∗
E ) − 〈ϕ(θ∗

E )| HjHpHj |ϕ(θ∗
E )〉].

(14)

Instead of considering J as a function of θ∗
E , we can also think

of J as dependent on the set Sz that corresponds to the eigen-
state created. In this case, we write J{Sz}, where we denote by
S0 and Sg the vertex sets corresponding to highest excited and
ground states, respectively. The second term in (14) describes
the expectation value of Hp with respect to an eigenstate
Hj |z〉. The corresponding vertex set can be described by the
symmetric difference of the set S j corresponding to Hj , de-
scribing which vertices are flipped, and the set Sz, describing
the assignment of ones in |z〉. More formally, if we introduce
the symmetric difference of two sets A and B as

A ⊕ B = A ∪ B − A ∩ B, (15)

we can express the diagonal elements of the Hessian as

∂2

∂θ2
j

J (θ)|θ=θ∗
E

= 2(J{Sz ⊕ S j} − J{Sz}). (16)

We observe that for Sz to be a local minimum, the condition

J{Sz} � J{Sz ⊕ S j}, ∀S j ∈ A, (17)

has to be satisfied, while for Sz to be a local maximum we
need

J{Sz} � J{Sz ⊕ S j}, ∀S j ∈ A, (18)

to hold. Together with Lemma 1, this allows for establishing
the following theorem.
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Theorem 1. The optimization landscape associated
with an X-ansatz for which A contains all non-
symmetric 2n−1 − 1 vertex subsets exhibits no local
optima.

Proof. We prove Theorem 1 by contradiction. By Lemma
(1) we need only consider local optima corresponding to
eigenstates. Thus, assume there exists a local minimum with
vertex set Sz. By the assumption that all nonsymmetric vertex
subsets are contained in A, we can pick S j = Sz ⊕ Sg. Using
properties of the symmetric difference, we then have

J{Sz} � J{Sz ⊕ (Sz ⊕ Sg)}
= J{Sg}, (19)

which contradicts that by definition J{Sg} < J{Sz}. Analo-
gously, a local maximum Sz satisfying (18) would contradict
J{S0} > J{Sz}, which completes the proof. �

Theorem 1 shows that an X-ansatz with M=2n−1−1
variational parameters yields an optimization landscape
whose critical points consists of global optima and saddle
points only. It also shows that local optima occurring in the
classical ansatz (10) vanish when ansatz elements that contain
k-body entangling operators are added.

While Theorem 1 holds for any graph, it requires expo-
nentially many classical parameters θ j and is therefore not
scalable. We now consider whether there exist graphs for
which an X-ansatz with polynomially many parameters can
be sufficient to obtain an optimization landscape that is free
from local optima.

We begin by considering the example of an Ising chain with
nearest neighbor interactions, described by the Hamiltonian

Hp =
n−1∑
j=1

w j, j+1ZjZ j+1. (20)

Depending on the weights ω j, j+1, the classical ansatz (8)
yields local optima. However, an X-ansatz described by a path

given by A = {{1}, {1, 2}, . . . , {1, 2, . . . , n − 1}} does allow
for turning all local optima into saddle points. To see this,
note that from (14) we have that the diagonal elements of the
Hessian at the |z〉 critical points are given by

∂2

∂θ2
j

J (θ)|θ=θ∗
E

= −4w j, j+1 〈z| ZjZ j+1 |z〉 . (21)

Together with Lemma 1, we can then conclude that the only
critical points at which the Hessian is positive (negative)
semidefinite are global minima (maxima). Consequently, for
the Ising chain, an optimization landscape free from local
optima can be obtained with an X-ansatz consisting of n − 1
variational parameters and with a circuit depth polynomial in
n. To see the latter, we note that in addition to the circuit
containing only linearly many ansatz elements, each ansatz
element can itself be implemented efficiently with standard
universal quantum gate sets [53]. Furthermore, it is straight-
forward to generalize this conclusion to chains with periodic
boundary conditions (i.e., to all connected 2-regular graphs).
In this latter case, an X-ansatz described by n paths, each
of length n − 1 but starting at a different vertex, gives an
optimization landscape exhibiting global optima and saddle
points only, using O(n2) variational parameters.

FIG. 2. Purely classical algorithm for solving MaxCut. Start with
a random bipartition (A0, Ac

0) of the vertices V . Then, iteratively
construct new bipartitions (A1, Ac

1), (A2, Ac
2), . . . , (Am, Ac

m ). At each
iteration j = 1, . . . , m, pick an ansatz element Sk ∈ A. Beginning
with an ansatz element labeled by k = 0, implement the flip(Sk )
operation by flipping the assignments of each vertex in Sk to ob-
tain Aj ⊕ Sk and Ac

j ⊕ Sk . If flip(Sk ) increases the CutVal such that
CutVal(Aj ⊕ Sk ) > CutVal(Aj ) (or, equivalently, decreases the ob-
jective function J), then increment j and set Aj+1 = Aj ⊕ Sk and
Ac

j+1 = Ac
j ⊕ Sk and return to k = 0. Otherwise, increment k and

repeat the flip operation until CutVal(Aj ⊕ Sk ) > CutVal(Aj ) is sat-
isfied. Continue this procedure until a bipartition (Am, Ac

m ) is reached
such that CutVal(Am ) cannot be increased any further by a single flip.

These examples illustrate that including quantum features
in the ansatz, here in the form of k-body entangling oper-
ators, can allow for obtaining a favorable landscape while
maintaining scalability. We now consider whether scalable
X-ansätze can yield a landscape free from local optima for
other classes of graphs, where MaxCut is nontrivial. Math-
ematically, this translates into the question of whether for a
given graph G, an X-ansatz with |A| = poly(n) exists so that
conditions (17) and (18) can only be satisfied at the global
optima.

Theorem 2. For any graph G and an X-ansatz A, there
exists a purely classical algorithm that has the same solution
set as the set of local optima satisfying conditions (17) and
(18).

Proof. Consider the purely classical algorithm for solving
MaxCut, shown in Fig. 2 and outlined in the associated figure
caption. The condition that an output of the classical algorithm
is a cut in which the CutVal cannot be increased any further
by a flip of a single set of vertices Sk is precisely condi-
tion (17). Changing “increase” to “decrease” in the algorithm
immediately yields those that satisfy (18), although for the
purposes of MaxCut this set is irrelevant. This completes the
proof. �

We remark that the manner in which a particular Sk is
picked at each step in the algorithm shown in Fig. 2 is ir-
relevant. Choosing Sk uniformly at random from A yields a
randomized algorithm, whereas iteratively testing each Sk ∈
A and choosing the largest increasing Sk at each step yields
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a greedy algorithm akin to the classical 0.5-approximation
scheme for MaxCut [54].

This immediately yields the following corollary:
Corollary 2.1. Unless P = NP, there does not exist a class

of X-ansätze with |A| = poly(n) that yields a landscape free
from local optima for generic graphs.

Proof. If there exists a landscape free from local optima,
then the only cut that satisfies either (17) or (18) is the one
corresponding to the global minimum (namely, the maximum
cut) or global maximum. By Theorem (2), if there exists
an X-ansatz A with size |A| = poly(n), there also exists a
purely classical greedy algorithm that would always converge
to the global minimum as well. Notice that for an unweighted
graph the maximum cut value is at most |E |, so the purely
classical algorithm converges in at most |A| · |E | steps, thus
solving unweighted MaxCut with polynomial cost. Since un-
weighted MaxCut is NP-hard, and so is MaxCut for arbitrary
graphs (see Ref. [54] for the extension of greedy algorithms
to weighted graphs), this shows that unless P = NP, there
does not exist a class of X-ansätze with |A| = poly(n) that
generically yields landscapes consisting of global optima and
saddle points only.

This relation can be extended even further, by consider-
ing approximation schemes for MaxCut, aimed at achieving
an approximation ratio α = CutVal(S)/MaxCut(G) for some
S ⊂ V . Then, assuming the existence of an algorithm that can
escape saddle points, the following holds true:

Corollary 2.2. Given a fixed approximation ratio α, and
any X-ansatz with |A| = poly(n), even an algorithm that can
escape saddle points cannot provide a superpolynomial ad-
vantage over a purely-classical α-approximation scheme for
MaxCut.

Proof. Analogously as to the proofs of Theorem 2 and
Corollary 2.1, the key idea is that the solution set among the
local optima that satisfy conditions (17) or (18) is indifferent
to each such potential solution in a gradient algorithm, even
one that can escape saddle points. Similarly, the classical
approximation scheme presented in the proof of Theorem (2)
is also indifferent to each of the potential solutions, and for a
fixed α it converges in at most 2·|A|

1−α
steps, which is polynomial

in n if |A| = poly(n). As such, any provable approximation
ratios α given by each of the algorithms are identical. Conse-
quently, no superpolynomial advantage exists.

This result begs the question: What is required for a quan-
tum advantage in this setting? In the following section, we
assess the role of noncommutativity through a series of nu-
merical experiments.

IV. NUMERICAL EXPERIMENTS

To systematically assess how including k-body elements in
an ansatz affects the structure of the underlying optimization
landscape, we define the k-body depth of an X-ansatz as D =
maxS j∈A |S j |. Here, we remark that while “width” or “span”
may be more apt descriptors of this quantity with respect to
ansatz elements acting on a graph, we choose to refer to it as
a “depth” in order to serve as a proxy for the more common
circuit depth complexity, as depicted in Fig. 3(a). Given this,
we first aim to explore how the structure of the optimization
landscape changes when the k-body depth is successively

FIG. 3. The performance of the X-ansatz, whose circuit diagram
is shown in panel (a), for solving MaxCut on complete graphs is
shown in panel (b). In panel (a), boxes represent variational ansatz
elements. Connected boxes represent entangling ansatz elements
that are generated by k-body X operators acting nontrivially on k
“boxed” qubits. In panel (b), the approximation ratio is shown as a
function of the k-body depth for different problem sizes n. The circles
correspond to the average taken over 100 randomly chosen graph
instances and BFGS initial conditions. The shaded areas show the
corresponding standard deviations. The gray dashed line indicates
the threshold for when better approximation ratios than the classical
ansatz (10) are achieved.

increased, toward an ansatz containing all k-body operators,
which according to Theorem 1 yields a landscape free from
local optima. We then proceed by introducing noncommuta-
tive elements in the X-ansatz, and investigate whether such
extensions exhibit faster convergence to better approximation
ratios. Finally, we compare the X-ansatz and its noncommu-
tative variants against QAOA.

We focus our numerical analyses on complete graphs Kn

with random positive edge weights, for which MaxCut is
known to be NP-hard [44]. In each numerical experiment, we
solve (9) for Kn with wa,b chosen uniformly randomly from
[0,5], and utilize the first-order gradient Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm with a randomly chosen
initial parameter configuration θ. Details regarding the hyper-
parameters used can be found in Appendix C. In each run, we
calculate the approximation ratio α, given as the ratio between
the actual MaxCut value MaxCut(Kn), obtained from exact
diagonalization of Hp, and the cut value obtained from solving
(9) using BFGS. The curves in the figures below show the
average taken over 100 realizations and the shaded areas show
the corresponding standard deviation.
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A. Dependence on the k-body depth

We begin by investigating how the approximation ratio that
is obtained changes when the k-body depth in the X-ansatz is
increased. In particular, we consider the X-ansatz schemat-
ically represented in Fig. 3(a), where increasing the k-body
depth by one is achieved by adding

( n
k k

)
-body operators. That

is, for a fixed k-body depth D the ansatz consists of M =∑D
k=1

(n
k

)
ansatz elements, noting that D = 1 corresponds to

the classical ansatz (10) with M = n local rotations. We fur-
ther note that for D = n we have M = 2n − 1, so that for D =
n − 1 the number of variational parameters M = 2n − 2 scales
exponentially in the number of qubits n. The approximation
ratio as a function of the k-body depth is shown in Fig. 3(b)
for different n. We first observe that the classical ansatz per-
forms very well as approximation ratios �0.95 are achieved.
Numerical simulations shown in Appendix C indeed confirm
that solving (9) using BFGS for graphs with a large vertex
degree yield approximation ratios that are slightly better than
the ones obtained from the GW algorithm. However, from
Fig. 3(b), we also see that adding quantumness in the form of
two-body entangling terms does not increase the approxima-
tion ratio. Instead, performance drops until a sufficiently large
k-body depth is reached (here >3). This behavior suggests
that simply adding additional two-body terms to the classical
ansatz does not automatically make the optimization land-
scape structure more favorable, as a drop in the approximation
ratio indicates that randomly initialized first-order gradient
algorithms are in this case more prone to get stuck in local
optima or saddle points. However, increasing the k-body depth
even further allows for obtaining better approximation ratios
than the classical ansatz, which is indicated by a gray dashed
line. We further observe in Fig. 3(b) that when D = n − 1,
i.e., exponentially many variational parameters are used, av-
erage approximation ratios of �0.99 with standard deviations
�10−6 are achieved. This behavior is in line with Theorem 1,
as an X-circuit with exponentially many parameters yields
a landscape free from local optima, while the appearance
of saddle points does not seem to affect the performance of
BFGS. However, we remark here that according to Theorem 1,
a landscape not exhibiting local optima is already obtained at
a lower k-body depth D > n/2, as all nonsymmetric vertex
subsets are then contained in A. It is interesting to note that
in this case, smaller approximation ratios correspond to runs
converging to degenerate saddle points.

One way to justify this behavior disappearing when we
increase the k-body depth from n/2 to n − 1 is to consider that
at depth n − 1, each parameter is effectively included twice
(for any ansatz element Sk with parameter θk , there exists its
complementary element S j = Sc

k for some j, with parameter
θ j). Since the critical point conditions are equivalent for θk

and θ j , the probability of all pairs satisfying the conditions
(and thus yielding a critical point) at depth n − 1 is squared
relative to the probability that each of the 2n−1 − 1 values at
depth n/2 satisfies them. Thus, the probability of observing
this phenomenon at depth n − 1 is significantly lower than at
depth n/2.

The results shown in Fig. 3(b) suggest that the X-ansatz
with sufficiently many k-body terms performs better than the
classical ansatz (10). However, according to Corollary (2.2),

FIG. 4. The role of noncommutativity is assessed by introducing
variational ansatz elements generated by Pauli Z operators into the
X-ansatz. This is achieved by alternating between ansatz elements
generated by k-body X (orange) and (a) k-body Z (green) operators
and (b) single-qubit Z operators (blue). In panel (c), the approxima-
tion ratio is shown as a function of the k-body depth for n = 8 qubits.
The circles and triangles correspond to the average taken over 100
randomly chosen complete graphs and BFGS initial conditions. The
shaded areas show the corresponding standard deviations.

there is also a purely classical strategy to achieve the same
approximation ratios. A natural next question to consider is
whether introducing noncommutativity in the X-ansatz will
improve performance.

B. Assessing the role of noncommutativity

We proceed by introducing noncommutative ansatz ele-
ments into the X-ansatz. We consider ansätze of the form

U (θ) =
∏

j

e−iθ̃ j H̃ j e−iθ j Hj , (22)

where Hj ∈ {∏i∈S Xi | S ∈ A} are the generators of the X-
ansatz elements determined by A and noncommutativity is
introduced through the Hermitian operators H̃j . As schemat-
ically represented in Figs. 4(a) and 4(b), we consider the
case where the k-body depth is increased by including ansatz

032401-7



LEE, MAGANN, RABITZ, AND ARENZ PHYSICAL REVIEW A 104, 032401 (2021)

elements generated by Pauli Z operators between the elements
of the X-ansatz in the last section, which we refer to as XZ-
ansätze. We treat two different cases. Namely, in Fig. 4(a),
we consider H̃k ∈ {∏i∈S Zi | S ∈ A}, while in Fig. 4(b), H̃k =∑n

i=1 Zi for all k. As such, now the number of variational
parameters is increased by 2

(n
k

)
when the k-body depth is

increased by one. The results are shown for n = 8 in Fig. 4(c).
We first observe that both XZ-ansätze yield faster con-

vergence than the X-ansatz, which is not surprising as the
number of variational parameters has doubled. However, it is
interesting to observe that the performance between Figs. 4(a)
and 4(b) differs only slightly; at a k-body depth of 4, both
XZ-ansätze yield approximation ratios of ≈0.98 while the
X-ansatz achieves ≈0.94, which is even lower than for the
classical ansatz (10).

Another way of introducing noncommutativity is repeating
a given structure, which consists of ansatz elements that do not
mutually commute. A standard example for such an ansatz is
QAOA [6].

C. Comparison with QAOA and initial state dependence

QAOA is a VQA designed to solve combinatorial opti-
mization problems that was developed in 2014 [6] and has
since inspired many works [55–61]. QAOA aims to generate
approximate solutions to combinatorial optimization prob-
lems such as MaxCut through an ansatz of the form

U (θ) =
∏

j

e−iθ̃ j Hpe−iθ j HX , (23)

where HX = ∑n
j=1 Xj . In QAOA, the initial state is given

by |φ〉 = |+〉 where |+〉 = |+〉 ⊗ · · · ⊗ |+〉 with |+〉 being
an eigenstate of X , so that for sufficiently many alternations
between Hp and HX as in (23) a ground state of Hp is reach-
able. In contrast to the X- and XZ-ansätze in the last section,
for which the ground state is reachable at a k-body depth of
D = 1, a sufficiently large circuit depth is needed in QAOA
before the ground state can be created.

In Fig. 5, we compare the approximation ratios obtained
from QAOA (blue) with the X- and XZ-ansatz (orange and
orange/green, respectively) represented in Figs. 3(a) and 4(a)
as a function of the number of variational parameters for
n = 8 qubits. We note that since Fig. 5 compares the per-
formance obtained using the X- and XZ-ansätze against the
performance of QAOA and its variants, we plot the results
as a function of the number of variational parameters, rather
than the k-body depth, as the latter is not a relevant quantity
in QAOA. However, for the former X- and XZ-ansätze, the
number of variational parameters serves as a proxy for the
k-body depth, as per Figs. 3 and 4.

We first observe that for a small number of variational
parameters, QAOA performs worse than the X- and the XZ-
ansätze. This behavior can be traced back to the fact that for
a small number of variational parameters (and accordingly, a
shallow circuit), the ground state of Hp may not be reachable
through the ansatz (23). In contrast, as the classical ansatz (10)
is contained in the X- and the XZ-ansätze, for M = n vari-
ational parameters the ground state is already reachable for
a small number of classical parameters, which explains why
the X- and the XZ-ansätze perform better in this regime than

FIG. 5. A comparison of different versions of QAOA with the
X- and XZ-ansätze for n = 8 qubits is shown. The circles and tri-
angles correspond to the average approximation ratio taken over 100
randomly chosen complete graphs and BFGS initial conditions. The
shaded areas show the corresponding standard deviations.

QAOA. However, we also see from Fig. 5 that with increasing
numbers of variational parameters, QAOA outperforms the X-
and the XZ-ansatz, as for QAOA a better approximation ratio
can be obtained with fewer variational parameters. One may
then wonder whether we can combine these favorable aspects
of QAOA and the X- and the XZ-ansätze, e.g., by modify-
ing QAOA such that for a few variational parameters high
approximation ratios �0.95 are obtained, while increasing
the number of variational parameters continuously improves
the approximation ratios, or conversely, whether it is possible
to avoid the drop in the approximation ratios observed in
Figs. 3(b) and 4(c) when the k-body depth is increased.

A natural modification of QAOA is to incorporate n in-
dependent local X rotations at each layer [62], such that the
classical ansatz (10) is now contained in the ansatz (23). This
modification is well motivated, due to the fact that even on
noninteracting spin problems, conventional QAOA (i.e., using
only global X rotations) can fail to converge [63]. However,
we note that this does not automatically guarantee that the
ground state is then reachable for a smaller number of vari-
ational parameters, as reachability also depends on the initial
state |φ〉. And indeed, from the olive-green curve in Fig. 5, we
see that a modification of QAOA to include local rotations
while having |φ〉 = |+〉 does not substantially change the
convergence behavior, suggesting that a lack of reachability
may affect the performance in this case. In comparison, if
additionally the initial state is changed to |φ〉 = |0〉 (red), then
M = n variational parameters do allow for retaining high ap-
proximation ratios �0.96. Furthermore, increasing M allows
for increasing the approximation ratio to ≈0.99 at M ≈ 45.
These results suggest that in addition to the incorporation
of noncommutativity into an ansatz, the ability to guarantee
reachability of the set of solution states with shallow circuits
can enhance the performance of variational quantum algo-
rithms. However, we do note that continuing to increase M
causes the approximation ratio to drop again, indicating that
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further work is needed to fully understand the tradeoffs in
how these aspects of algorithm design impact performance.
We also note that the numerical simulations in Fig. 5 suggest
that the modified version of QAOA (red) and the XZ-ansatz
require M ≈ 2n+1 variational parameters in order to achieve
approximation ratios asymptotically approaching 1.

V. CONCLUSIONS

The successful implementation of VQAs rests on the abil-
ity to solve the underlying optimization problem, which in
turn is determined by the structure of the corresponding op-
timization landscape. The landscape structure depends on
the problem under consideration, and on the parameterized
quantum circuit ansatz used to evaluate the associated objec-
tive function. In this work, we have focused on VQAs for
solving the combinatorial optimization problem MaxCut and
studied the interplay of the graph type, ansatz, and critical
point structure of the optimization landscape in this setting.
In particular, we introduced a family of ansätze consisting of
mutually commuting elements generated by k-body Pauli X
operators, which we termed X-ansätze. We proved that for
generic graphs, an ansatz from this family containing expo-
nentially many variational parameters yields an optimization
landscape that consists of global optima and saddle points
only. Next, we considered examples for which an ansatz from
this family with polynomially many variational parameters
yields a landscape free from local optima, but for which Max-
Cut is also efficiently solvable classically. We then showed
that for a given graph, a polynomially sized ansatz from the
considered family exists if and only if there exists a purely
classical algorithm that allows for solving MaxCut efficiently.
As a consequence, we concluded that this ansatz family can-
not offer a superpolynomial advantage over purely classical
schemes.

We went on to numerically study whether introducing non-
commutative ansatz elements could improve performance. For
the X-ansatz and its variants, we found that the addition of
k-body terms did not improve the landscape structure in a
manner that yields monotonically improving approximation
ratios. However, for sufficiently high k-body depth, noncom-
mutative versions of the X-ansatz did perform better than
their commutative counterparts. In total, we believe that the
X-ansatz family can be useful as a baseline, upon which new
ideas for further performance improvement can be studied.
We note that for relatively shallow circuit depth, the best
performance overall was obtained through a modified version
of QAOA, motivated by our prior findings, that includes inde-
pendent local rotations.

More research is needed to determine how quantum re-
sources contribute to favorable landscape properties and if
effective ansätze can be identified in a problem-dependent
manner in the future. To this end, it is interesting to note
that a “classical” ansatz, consisting of only local rotations,
in combination with a first-order gradient algorithm, achieves
remarkably high ≈0.95 approximation ratios, and performs
slightly better on average than the purely classical Goemans
and Williamson MaxCut approximation algorithm for graphs
with sufficiently high vertex degree. Due to the provable ex-
istence of local optima when utilizing the former classical

ansatz, this suggests that the optimization landscape could be
favorable in the sense that gradient algorithms converge to
critical points with high associated approximation ratios.

In order to improve beyond these results, it would be de-
sirable to steadily remove local optima from the landscape,
while retaining only local optima with high corresponding
approximation ratios. Furthermore, an equally important goal
would be to widening the basin of attraction of global optima
and reducing those of the remaining local optima [63]. In
addition, analyzing the curvature of the optimization land-
scape can reveal information about an algorithm’s robustness
to noise [25], suggesting that it could be desirable to design
future ansätze to take this into account in order to enhance the
quality of NISQ implementations.

Future studies may benefit from using the former “clas-
sical” ansatz as a starting point, from which additional
“quantum” features are added, i.e., through the design of
adaptive ansätze [15,64–67], e.g., seeded from local rota-
tions and then grown by incorporating gates that introduce
noncommutativity and entanglement with the goal of con-
tinuously improving the landscape structure such that higher
approximation ratios are attainable. Such procedures could
additionally be guided by characterizing the geometry [68]
and entangling power [18] of the parameterized circuit.

The ideal outcome would be the development of VQAs
that are scalable, and have optimization landscapes with a
favorable critical point structure. The most favorable land-
scapes would be free of local optima and also free from certain
types of saddle points. That is, while in this work we did
not distinguish between classes of saddle points, the conver-
gence of classical optimization routines can be significantly
hindered by the presence of degenerate saddle points, as op-
posed to more favorable “strict” saddle points. Furthermore,
the most favorable landscapes would also be free of barren
plateaus [49–51] (see also Appendix B), where the gradient
becomes exponentially small, thereby impeding the progress
of optimization algorithms. In fact, taken together, ansätze
with polynomially many variational parameters lacking in
barren plateaus, degenerate saddles, and local optima would
allow a global optimum to be found efficiently using first-
order gradient methods [37–39]. However, for problems like
MaxCut, we do not expect that such efficient solutions will
be feasible in general, as we do not anticipate that VQAs will
be able to solve NP-hard problems efficiently. Nevertheless,
the achievement of any subset of these goals for scalable VQA
ansätze would be highly desirable. Looking ahead, we hope
that the strategies outlined above will allow for systematically
assessing how to improve VQA performance across a range
of applications.
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APPENDIX A: PROOF OF LEMMA (1)

We first provide an outline of the proof, including major
components and equations, in Appendix A 1, followed by a
detailed proof in Appendix A 2.

1. Proof outline

For ease and consistency of notation throughout the
proof, we implicitly associate Hj with the vertex subset
S j on which Hj acts. The first observation is that for all
j such that (a, b) 
∈ Cut(Hj ), we have that e−iθ j Hj com-
mutes with ZaZb. This observation motivates us to define the
set C(a,b) = {Hj ∈ A | (a, b) ∈ Cut(Hj )} and K(a,b) = {K ⊂
C(a,b) | ⊕{H ∈ K} = ∅}, which allows for rewriting the objec-
tive function J (θ) as

J (θ) =
∑

(a,b)∈E

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
.

(A1)

Notice that cos(2θk ) and sin(2θk ) never appear in the same
product together, such that for a certain k we can write

J (θ) = cos(2θk )Sk + sin(2θk )Tk + Vk, (A2)

where Sk, Tk,Vk do not depend on θk . This result allows for
easy expressions for the gradient and Hessian (where for ease
of notation we use ∂kJ (θ) for the kth gradient element and
∂2

j,kJ (θ) for the j, k element of the Hessian):

∂kJ (θ) = 2[− sin(2θk )Sk + cos(2θk )Tk], (A3)

∂2
k,kJ (θ) = −4[cos(2θk )Sk + sin(2θk )Tk]. (A4)

The condition that ∂kJ (θ) = 0 at a critical point yields

sin(2θk )Sk = cos(2θk )Tk . (A5)

Extensive analysis on the relative signs of
sin(2θk ), cos(2θk ), Sk, Tk yields that nondegenerate critical
points are either eigenstates of Hp or saddle points, where we
use the following definition of a saddle point:

Definition 3. A parameter configuration θ∗ ∈ RM is a sad-
dle point of J if it is a critical point, but for all ε > 0 there exist
θ1, θ2 with ‖θ∗ − θ1‖, ‖θ∗ − θ2‖ < ε and J (θ1) < J (θ∗) <

J (θ2). Furthermore, it is well known [69] that a sufficient
condition for θ∗ being a saddle point is that the set of scalars

{zT (∇2J (θ∗))z : z ∈ RM} contains both positive and negative
elements, where ∇2J (θ∗) is the Hessian matrix of J evaluated
at θ∗.

Throughout the proof, we utilize either the former defini-
tion or the latter sufficient condition to show that a particular
nondegenerate critical point is either a saddle point or an
eigenstate of Hp.

For the case of degenerate critical points, we justify and ap-
ply Proposition 3 from Ref. [52], which states (reworded here
from Ref. [52] to fit our context and notation) the following:

Proposition 1. Let f (x) = ∑∞
j=0

1
j! Fj (x) be the Taylor ex-

pansion of a function f : RM → R, where Fj is the jth Taylor
form. Let Fp denote the first nonzero Taylor form of f at a
critical point a of f , let Kp denote the kernel of Fp, and let Fs

be the first Taylor form that does not vanish identically on Kp

(noting that at a critical point 2 � p < s, and s may not exist).
Now, suppose that Fp is positive semidefinite but not positive
definite. If s exists and Fs takes a negative value on Kp, or if s
does not exist, then a is a saddle point of f .

Applying Proposition 1 yields that any degenerate criti-
cal point is a saddle, so that combined with the cases for
nondegenerate critical points, we obtain that any parameter
configuration at a critical point not corresponding to an eigen-
state of Hp is a saddle. �

2. Details of the proof

a. Computation of the objective function

We first remark that much of the computations of this
section are only to derive the form of J (θ) as in Eq. (A24),
which has also been shown in similar forms with respect to
the well-known parameter shift rule [70]. Readers interested
in the main portion of the proof can thus skip straight to
Eq. (A24).

To derive a manipulable form of the cost function, we first
compute J (θ), which we expand by utilizing linearity, to yield
a form that is easier to manipulate:

J (θ) = 〈ϕ(θ)| Hp |ϕ(θ)〉
=

∑
(a,b)∈E

wa,b 〈ϕ(θ)| ZaZb|ϕ(θ)〉

=
∑

(a,b)∈E

wa,b 〈0|
[( M∏

j=1

eiθ j Hj

)
ZaZb

( M∏
j=1

e−iθ j Hj

)]
|0〉 .

(A6)

Here, notice that for all j such that (a, b) 
∈ Cut(Hj ), we
have that eiθ j Hj commutes with ZaZb. For ease of notation,
let C(a,b) = {Hj ∈ A | (a, b) ∈ Cut(Hj )}, corresponding to the
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elements that do not commute with ZaZb. Thus,

J (θ) =
∑

(a,b)∈E

wa,b 〈0|

×
[( ∏

Hj∈C(a,b)

eiθ j Hj

)
ZaZb

( ∏
Hj∈C(a,b)

e−iθ j Hj

)]
|0〉 .

(A7)

Now, we first recall the well-known formula for matrices A, B
with B2 = 1:

eiαBAe−iαB = cos2(α)A+sin2(α)BAB+i sin(α) cos(α)[B, A].

(A8)

Setting A = ZaZb, B = Hj , and α = θ j yields

eiθ j Hj ZaZbe−iθ j Hj = cos2(θ j )ZaZb + sin2(θ j )HjZaZbHj

+ i sin(θ j ) cos(θ j )[Hj, ZaZb]. (A9)

For Hj ∈ C(a,b), without loss of generality assume
{a, b} ∩ Hj = {a}. Then, using simple algebra, we
obtain

eiθ j Hj ZaZbe−iθ j Hj

= cos2(θ j )ZaZb + sin2(θ j )HjZaZbHj

+ i sin(θ j ) cos(θ j )[Hj, ZaZb]

= cos2(θ j )ZaZb + sin2(θ j )XaZaZbXa

+ i sin(θ j ) cos(θ j )(HjXaZb)[Xa, Za]

= cos(2θ j )ZaZb + sin(2θ j )HjXaZbYa

= cos(2θ j )ZaZb + i sin(2θ j )HjZaZb

= (cos(2θ j )1 + i sin(2θ j )Hj )ZaZb. (A10)

Thus, since each of the Hj’s commute and ZaZb |0〉 = |0〉 for
all (a, b) ∈ E , we arrive at

J (θ) =
∑

(a,b)∈E

wa,b 〈0|

×
[ ∏

Hj∈C(a,b)

(cos(2θ j )1 + i sin(2θ j )Hj )

]
|0〉 . (A11)

Now, notice that the summands in the expansion of
∏

Hj∈C(a,b)

are products over all Hj ∈ C(a,b) of either cos(2θ j )1 or
i sin(2θ j )Hj . Taking the expectation of a particular summand
with respect to the state |0〉 yields a nonzero value if and only
if the product of the Hj’s that are included is the identity;
since each Hj corresponds to a particular vertex subset, this
condition can also be expressed as the symmetric difference of
all included Hj’s being the empty set. This leads us to define
K(a,b) = {K ⊂ C(a,b) | ⊕{H ∈ K} = ∅}, where for a particular
K ∈ K(a,b) the elements Hj ∈ K are those corresponding to the
i sin(2θ j ) terms, and the elements Hj ∈ C(a,b) − K correspond
to the cos(2θ j ) terms. This yields

J (θ) =
∑

(a,b)∈E

wa,b

∑
K∈K(a,b)

×
[ ∏

Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A12)

While the presence of the imaginary unit i in the product
may seem problematic given that the expectation J must be
real here, we can see that |K| is even for all K ∈ K(a,b)

(since in the construction of K(a,b) we note that elements in
K must have exactly one of either a or b, each of which
requires an even number of elements in order to attain an
empty symmetric difference), so that the product remains
real.

Now, consider the gradient element ∂kJ (θ) ≡ ∂
∂θk

J (θ) corresponding to an ansatz element defined by some Hk :

∂kJ (θ) = ∂

∂θk

∑
(a,b)∈E

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A13)

Since θk appears only if Hk ∈ C(a,b), only edges (a, b) in Cut(Hk ) have a nonzero partial derivative:

∂kJ (θ) =
∑

(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b)

∂

∂θk

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A14)

Since θk appears exactly once in the product
∏

Hj∈C(a,b)−K cos(2θ j )
∏

Hj∈K i sin(2θ j ) (either as cos(2θk ) or i sin(2θk ) according to
whether Hk ∈ K or not), we can split this as follows:

∂kJ (θ) =
∑

(a,b)∈Cut(Hk )

wa,b

(
∂

∂θk

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

+ ∂

∂θk

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])
. (A15)

032401-11



LEE, MAGANN, RABITZ, AND ARENZ PHYSICAL REVIEW A 104, 032401 (2021)

Now, notice that in order to replace cos(2θk ) with its derivative −2 sin(2θk ), we can multiply by −2 sin(2θk )
cos(2θk ) , and similarly for the

derivative of sin(2θk ):

∂kJ (θ) =
∑

(a,b)∈Cut(Hk )

wa,b

(
−2 sin(2θk )

cos(2θk )

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

+ 2 cos(2θk )

sin(2θk )

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])

= −2 sin(2θk )

cos(2θk )

( ∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])

+ 2 cos(2θk )

sin(2θk )

( ∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])
. (A16)

Now, for ease of notation in arguing the remainder of this proof, define

Sk = 1

cos(2θk )

∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
, (A17)

Tk = 1

sin(2θk )

∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A18)

Notice in particular that Sk, Tk do not depend on θk , by construction since the prefactor 1
cos(2θk ) cancels the existing cos(2θk ) term

in the product for Sk , and similarly for Tk . Thus, we have

∂kJ (θ) = −2 sin(2θk )Sk + 2 cos(2θk )Tk = 2[− sin(2θk )Sk + cos(2θk )Tk]. (A19)

We can then easily compute the diagonal Hessian elements ∂2
k,kJ (θ) ≡ ∂2

∂θ2
k
J (θ) as well:

∂2
k,kJ (θ) = 2[−2 cos(2θk )Sk − 2 sin(2θk )Tk] = −4[cos(2θk )Sk + sin(2θk )Tk]. (A20)

Using this result, we can expand Sk, Tk in the formula for the diagonal Hessian element to relate its value to the objective function
J (θ):

−∂2
k,kJ (θ)

4
= cos(2θk )Sk + sin(2θk )Tk

= cos(2θk )
1

cos(2θk )

∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

+ sin(2θk )
1

sin(2θk )

∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

=
∑

(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

+
∑

(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A21)

Since we sum over all K ∈ K(a,b) such that Hk 
∈ K and those such that Hk ∈ K , this is in fact a complete sum:

−∂2
k,kJ (θ)

4
=

∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

=
∑

(a,b)∈E

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
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−
∑

(a,b)
∈Cut(Hk )

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]

= J (θ) −
∑

(a,b)
∈Cut(Hk )

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A22)

Thus, we have

J (θ) = −∂2
k,kJ (θ)

4
+

∑
(a,b)
∈Cut(Hk )

wa,b

∑
K∈K(a,b)

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A23)

Here, since as mentioned above θk appears only if Hk ∈ C(a,b), the second summand does not depend on θk; this allows us to
proceed with our analysis easily.

We now can summarize the main ingredients required here:

J (θ) = cos(2θk )Sk + sin(2θk )Tk

+ (term not dependent on θk ), (A24)

∂kJ (θ) = 2[− sin(2θk )Sk + cos(2θk )Tk], (A25)

∂2
k,kJ (θ) = −4[cos(2θk )Sk + sin(2θk )Tk]. (A26)

At a critical point θ∗, we have that for each k that ∂kJ (θ) = 0.
From (A25), we thus have that at a critical point the condition

sin(2θk )Sk = cos(2θk )Tk (A27)

has to hold for all k.

b. Case considerations

In order to prove that any critical point θ∗ not correspond-
ing to an eigenstate of Hp is a saddle point, we consider
the cases (a)–(c) below. We first consider case (a), and show
that if for some k both sides of (A27) are equal but nonzero,
meaning that sin(2θk ) 
= 0, cos(2θk ) 
= 0, Sk 
= 0, and Tk 
= 0,
the corresponding critical points correspond to saddle points.
We then go on to consider the case (b), where for some k
both sides are zero with Sk = Tk = 0, showing that in this
case the corresponding critical points must be saddle points
too. Here we will distinguish between (i) nondegenerate and
(ii) degenerate critical points, where for case (ii) we utilize
Proposition 1. As the cases (a) and (b) correspond to saddle
points, the only case left for which a critical point θ∗ could
potentially not correspond to a saddle point is (c), where for
each k either cos(2θk ) = Sk = 0 or sin(2θk ) = Tk = 0, so that
together condition (A27) is satisfied for all k. We finally show
that such critical points satisfying (c) correspond to eigen-
states of Hp.

Case (a). There exists k such that sin(2θk ) 
= 0, cos(2θk ) 
=
0, Sk 
= 0, Tk 
= 0.

If for some k the above holds, we can rewrite condition
(A27) as sin(2θk )

cos(2θk ) = Tk
Sk

. The objective function J (θ) given by
(A24) can then be rewritten as

J (θ) = cos(2θk )
S2

k + T 2
k

Sk
+ (term not dependent on θk ).

(A28)

We note again that Sk and Tk are independent of θk . Moreover,
since sin(2θk ) 
= 0 we have cos(2θk ) 
= ±1. As such, for all
ε > 0 the ε-ball around θk both increases and decreases the

value of cos (2(θk ± ε)). Thus, by definition (3) all critical
points corresponding to case (a) are saddle points.

Case (b). There exists k such that Sk = Tk = 0.
(i) Nondegenerate case (invertible Hessian)
We first note that if Sk = Tk = 0 for some k, from (A26)

we see that then ∂2
k,kJ (θ) = 0. Now, consider the vector u

with 1 in the kth entry and 0 everywhere else. Since the
Hessian matrix ∇2J (θ) is invertible by definition, so that

(∇2J (θ))u 
= 0, there exists some l such that the off-diagonal
Hessian element ∂2

k,l J (θ) 
= 0. For t ∈ R, consider the set of
vectors vt with value t in the lth position, 1 in the kth position,
and 0 everywhere else, so that

vT
t (∇2J (θ))vt = t2∂2

l,l J (θ) + 2t∂2
k,l J (θ). (A29)

If ∂2
l,l J (θ) = 0, then (A29) is linear in t . Thus, in this case

the left-hand side attains for t ∈ R both positive and negative
values. If ∂2

l,l J (θ) 
= 0, then (A29) is quadratic in t with roots

at t = 0 and t = − 2∂2
k,l J (θ)

∂2
l,l J (θ)


= 0. As such, here the left-hand

side attains for t ∈ R both positive and negative values too.
From the sufficient condition in the definition (3) of a saddle
point, we conclude that in the case (b)(i) the corresponding
critical points correspond to saddle points.

(ii) Degenerate case (noninvertible Hessian)
We first show that in order to obtain a critical point not

corresponding to a saddle point, the Hessian ∇2J (θ) at these
points must be diagonal. As above, since Sk = Tk = 0 we
know that ∂2

k,kJ (θ) = 0. If the Hessian is not diagonal, then
there exists some l such that the off-diagonal Hessian element
∂2

k,l J (θ) 
= 0, which allows for proceeding as in case (b)(i). We
conclude that critical points yielding a nondiagonal Hessian
correspond to saddle points.

Therefore, at critical points that do not immediately cor-
respond to saddle points the Hessian must be diagonal with
at least one element being 0. We treat this case by applying
Proposition 1 from above, identifying the function f (x) as the
objective function J (θ). Without loss of generality, assume
the Hessian is positive semidefinite (as an analogous argu-
ment holds for the negative semidefinite case). Notice that
the kernel of the Hessian (which we denote by Kp as in the
setting of Proposition 1) is the set of vectors with zeros in all
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FIG. 6. Comparison between the performance of the classical
ansatz (10) coupled with a BFGS algorithm and the performance
of the GW algorithm. The ratio between the two corresponding
approximation ratios αgrad and αGW is shown as a function of the
vertex degree of a k-regular graph for n = 30, 50, 70. Each data point
shows the average value of αgrad/αGW taken over 200 different graph
realizations, and the associated shaded area shows the standard devi-
ation. The straight red line indicates when BFGS and (10) performs
better, on average, than the GW algorithm.

indices j for which the jth diagonal Hessian element ∂2
j, jJ (θ)

is nonzero, and any real values for elements corresponding to
other indices. Furthermore, as in the setting of Proposition 1,
consider the case where s exists (since otherwise we imme-
diately obtain that we have a saddle) such that Fs is the first
Taylor form that does not vanish identically on Kp. Without
loss of generality, assume s = 3 (as an analogous argument
holds for s > 3), and let T be the order-3 tensor representing
the third-derivatives of J . First, notice that the “diagonal” ele-

ments satisfy ∂3
k,k,kJ (θ) = −8[ − sin(2θk )Sk + cos(2θk )Tk] =

−4∂kJ (θ) = 0, which implies that if the kernel Kp is one-
dimensional, T is zero identically on Kp. As such, in order
for T not to vanish identically on Kp, there must be some set
of indices j, k, l such that ∂2

j, jJ (θ) = ∂2
k,kJ (θ) = ∂2

l,l J (θ) = 0
but ∂3

j,k,l J (θ) 
= 0. Now, let u ∈ Kp be the vector with 1 in the
jth, kth, and lth entries and 0 everywhere else. Notice that by
construction, applying T to u and −u yields nonzero values
with opposite signs, so in particular T takes a negative value
on Kp. We can now apply Proposition 1, which states that we
have a saddle point in this case.

Case (c). For all k, either sin(2θk ) = 0 and Tk = 0, or
cos(2θk ) = 0 and Sk = 0.

From (A12), we recall the form of the objective function:

J (θ) =
∑

(a,b)∈E

wa,b

∑
K∈K(a,b)

×
[ ∏

Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

]
. (A30)

Within the set C(a,b), each Hj either has sin(2θ j ) = 0 or
cos(2θ j ) = 0. This means that at most one of the products can
be nonzero, since all other products will contain at least one
configuration with sin(2θ j ) or cos(2θ j ) being 0. This nonzero
product therefore either takes the value 1 or −1 (as it is a
product of sin and cos that are each either 1 or −1), yielding

J (θ) =
∑

(a,b)∈E

(±wa,b), (A31)

where the sign of a particular wa,b is determined by
whether the number of Hj ∈ C(a,b) that have cos(2θ j ) = −1
or sin(2θ j ) = −1 is even or odd. As discussed in Sec. II,
this assignment of signs precisely corresponds to a cut of the
graph, which in turn corresponds to an eigenstate of Hp, as
desired.

At this juncture, we also remark that an alternate proof
of case (c) can be seen by noticing that sin(2θk ) = 0 or
cos(2θk ) = 0, implying θk = nπ and θk = (2n + 1)/2π re-
spectively, such that all gates belong to full flips of qubits
or a global phase. As the circuit starts in an eigenstate
(namely, |0〉), the circuit also ends in an eigenstate, as
desired. �

APPENDIX B: BARREN PLATEAUS

The phenomenon of barren plateaus has recently been
considered as one of the main bottlenecks for VQAs [47].
A barren plateau appears if the gradient of the objective
function becomes exponentially small, which is typically
analyzed by randomly “sampling” the optimization land-
scape given by J (θ). That is, a barren plateau appears if

the variance Var(∂kJ (θ)) of the components of the gradi-
ent becomes exponentially small in the number of qubits
n, while the expectation E[∂kJ (θ)] vanishes for all k. Here,
we compute the variances explicitly for the X-ansatz. The
expectations are taken over the parameters θ, each of which
are considered to be independently and identically uniformly
distributed in [0, 2π ). Throughout the computations, we uti-
lize the well-known identities E[sin(x)] = E[cos(x)] = 0 and
E[sin2(x)] = E[cos2(x)] = 1

2 .
In order to compute the variances, we first recall from

(A25) the form of the gradient element ∂kJ (θ):

∂kJ (θ) = −2 sin(2θk )

cos(2θk )

( ∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])

+ 2 cos(2θk )

sin(2θk )

( ∑
(a,b)∈Cut(Hk )

wa,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos(2θ j )
∏

Hj∈K

i sin(2θ j )

])
, (B1)

= 2[− sin(2θk )Sk + cos(2θk )Tk]. (B2)
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Thus, since Sk, Tk are independent from θk and each have finite expectation, we can write

E[∂kJ (θ)] = 2[−E[sin(2θk )]E[Sk] + E[cos(2θk )]E[Tk]] = 2 · (0 · E[Sk] + 0E[Tk]) = 0, (B3)

where we used the identities described above. For the variance, we can first write

E[(∂kJ (θ))2] = E
[
4
(

sin2(2θk )S2
k − 2 sin(2θk ) cos(2θk )SkTk + cos2(2θk )T 2

k

)]
= 4

[
E[sin2(2θk )]E

[
S2

k

] − E[sin(4θk )]E[SkTk] + E[cos2(2θk )]E
[
T 2

k

]]
= 4 1

2E
[
S2

k

] − 0 + 4 1
2E

[
T 2

k

]
= 2E

[
S2

k + T 2
k

]
, (B4)

where we used linearity and the identities described above. Since in the expansion of S2
k , T 2

k the expectation of any single sine
or cosine is zero, only the square of the terms survive. This yields

E[(∂kJ (θ))2] = E

[
2

cos2(2θk )

∑
(a,b)∈Cut(Hk )

w2
a,b

∑
K∈K(a,b) s.t . Hk 
∈K

[ ∏
Hj∈C(a,b)−K

cos2(2θ j )
∏

Hj∈K

− sin2(2θ j )

]]

+ E

[
2

sin2(2θk )

∑
(a,b)∈Cut(Hk )

w2
a,b

∑
K∈K(a,b) s.t . Hk∈K

[ ∏
Hj∈C(a,b)−K

cos2(2θ j )
∏

Hj∈K

− sin2(2θ j )

]]
(B5)

= 2
∑

(a,b)∈Cut(Hk )

w2
a,b

∑
K∈K(a,b)

(1

2

)|C(a,b)|−1
(B6)

= 4
∑

(a,b)∈Cut(Hk )

w2
a,b

|K(a,b)|
2|C(a,b)| , (B7)

where from (B5) to (B6) we used the identities E[sin2(2θ j )] =
E[cos2(2θ j )] = 1

2 as described above, as well as noticing that
since each θ j are independent, each Hj ∈ C(a,b) contributes
a factor of 1

2 in the expectation except for Hk , as the values
corresponding to Hk are canceled out. From (B6) to (B7), we
applied simple counting and rearranging, yielding the rela-
tively simple form in (B7).

As such, whether the variance of the gradient vanishes
exponentially depends on the quantity |K(a,b)|/2|C(a,b)|. For the
classical ansatz (10), we see that |C(a,b)| = 2 and |K(a,b)| = 1,
so that the variance is simply

∑
(a,b)∈Cut(Hk ) w

2
a,b > O(1). Con-

sequently, the classical ansatz (10) does not exhibit barren
plateaus. For arbitrary X-ansätze, it remains an open question
how the scaling of |K(a,b)| compares to that of 2|C(a,b)|. We
remark that while the quantity |C(a,b)| can be computed in
linear time, determining |K(a,b)| constitutes a bottleneck in
evaluating the objective function (A12). In fact, determin-
ing the set K(a,b) can be shown to be NP-hard: For any
X-ansatz element Hj = ⊗

i∈S j
Xi for S j ⊂ V , represent Hj as

an n-bit binary string x j with x j,k = 1 if and only if k ∈ S j .
Then, the condition ⊕{H ∈ K} = ∅ is equivalent to the con-
dition ⊕{x j ∈ K} = 0 for some subset K ⊂ C(a,b). This is a
well-known problem referred to as computing the minimum
distance of a binary linear code, which was shown to be

NP-hard in Ref. [71], thus showing that determining K(a,b)

is also NP-hard.
Thus, we see that determining the existence of barren

plateaus in X-ansätze is related to whether the objec-
tive function can be evaluated efficiently on a classical
computer.

APPENDIX C: COMPARISON BETWEEN THE GW
ALGORITHM AND BFGS FOR SOLVING MAXCUT

USING THE ANSATZ (10)

Here, we numerically compare the effectiveness of the
classical ansatz (10), consisting of local rotations around X
only, and the GW algorithm for solving MaxCut. In par-
ticular, we compare the approximation ratios αgrad obtained
from solving (9) using BFGS and the classical ansatz (10)
against the approximation ratios αGW obtained from the GW
algorithm. In all simulations, we used the scipy optimizer
L-BFGS-B [72] with hyperparameters gtol = 10−6 and ftol =
10−5. We used the GW algorithm implemented in the PYTHON

package cvxgraphalgs [73].
Figure 6 shows the ratio αgrad/αGW as a function of the

vertex degree of a randomly chosen k-regular graph with n =
30 (red), n = 50 (blue), and n = 70 (green) vertices, for edge
weights wa,b ∈ [0, 5].
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