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Testing incompatibility of quantum devices with few states
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When observations must come from incompatible devices and cannot be produced by compatible devices is
a property that motivates two integer-valued quantifications of incompatibility, called incompatibility dimension
and compatibility dimension. The first one quantifies how many states are minimally needed to detect incom-
patibility if the test states are chosen carefully, whereas the second one quantifies how many states one may
have to use if they are randomly chosen. With concrete examples we show that these quantities have unexpected
behavior with respect to noise.

DOI: 10.1103/PhysRevA.104.032228

I. INTRODUCTION

Quantum information processing, including the exciting
fields of quantum communication and quantum computation,
is ultimately based on the fact that there are new types of re-
sources that can be utilized in carefully designed information
processing protocols. The best known features of quantum
information is that quantum systems can be in superposition
and entangled states, and these resources lead to applications
such as superdense coding and quantum teleportation. While
superposition and entanglement are attributes of quantum
states, quantum measurements also have features that can
power new types of applications. The best known and most
studied property is the incompatibility of pairs (or collections)
of quantum measurements [1]. It is crucial, e.g., in the BB84
quantum key distribution protocol [2] that the measurements
used are incompatible.

From the resource perspective, it is important to quantify
the incompatibility. There have been several studies on incom-
patibility robustness, i.e., how incompatibility is affected by
noise. This is motivated by the fact that noise is unavoidable
in any actual implementation of quantum devices and simi-
lar to other quantum properties (e.g., entanglement), a large
amount of noise destroys incompatibility. Earlier studies have
mostly focused on quantifying noise [3] and finding those
pairs or collections of measurements that are most robust to
certain types of noise [4] or finding conditions under which
all incompatibility is completely erased [5]. In this work we
introduce quantifications of incompatibility which are moti-
vated by operational aspects of testing whether a collection
of devices is incompatible or not. We focus on two integer-
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valued quantifications of incompatibility, called compatibility
dimension and incompatibility dimension. We formulate these
concepts for arbitrary collections of devices. Roughly speak-
ing, the first one quantifies how many states we minimally
need to use to detect incompatibility if we choose the test
states carefully, whereas the second one quantifies how many
(affinely independent) states we may have to use if we cannot
control their choice. We study some of the basic properties of
these quantifications of incompatibility and we present several
examples to demonstrate their behavior.

We show that, remarkably, even for the standard example
of noisy orthogonal qubit observables, the incompatibility
dimension has a jump at a point where all noise robustness
measures are continuous and indicate that nothing special
happens. More precisely, the noise parameter has a thresh-
old value where the number of needed test states to reveal
incompatibility shifts from 2 to 3. This means that even in
this simple class of incompatible pairs of qubit observables
there is a qualitative difference in the incompatibility of less
noisy and more noisy pairs of observables. An interesting
additional fact is that the compatibility dimension of these
pairs of observables does not depend on the noise parameter.

For simplicity and clarity, we will restrict our study to
finite-dimensional Hilbert spaces and observables with a fi-
nite number of outcomes. Our definitions apply not only to
quantum theory but also to any general probabilistic theory
(GPT) [6,7]. However, for the sake of concreteness, we keep
the discussion in the realm of quantum theory. The main
definitions work in any GPT without any changes. We expect
that findings similar to the aforementioned result on noisy or-
thogonal qubit observables can be made in subsequent studies
on other collections of devices.

Related studies have been reported recently in [8–11] for
the case of quantum observables. We will explain the intercon-
nections of these studies to ours in Sec. III once the relevant
definitions have been introduced.
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II. (IN)COMPATIBILITY ON A SUBSET OF STATES

A quantum observable is mathematically described as a
positive-operator-valued measure [12]. A quantum observable
with a finite number of outcomes is hence a map x �→ A(x)
from the outcome set to the set of linear operators on a
Hilbert space. We recall that the compatibility of quantum
observables A1, . . . , An with outcome sets X1, . . . , Xn means
that there exists an observable G, called a joint observable,
defined on the product outcome set X1 × · · · × Xn such that
from an outcome (x1, . . . , xn) of G one can infer outcomes
for every A1, . . . , An by ignoring the other outcomes. More
precisely, the requirement is that

A1(x1) =
∑

x2,...,xn

G(x1, x2, . . . , xn),

A2(x2) =
∑

x1,x3...,xn

G(x1, x2, . . . , xn),

...

An(xn) =
∑

x1,...,xn−1

G(x1, x2, . . . , xn). (1)

If A1, . . . , An are not compatible, then they are called in-
compatible. This definition applies in all general probabilistic
theories and has in fact led to inspiring findings on quantum
incompatibility compared to incompatibility in other general
probabilistic theories [13–15].

Example 1 (unbiased qubit observables). We recall a stan-
dard example to set the notation that we will use in later
examples. An unbiased qubit observable is a dichotomic ob-
servable with outcomes ± and determined by a vector a ∈ R3,
|a| � 1, via

Aa(±) = 1
2 (1 ± a · σ ),

where a · σ = a1σ1 + a2σ2 + a3σ3 and σi, i = 1, 2, 3, are the
Pauli matrices. The Euclidean norm |a| of a reflects the noise
in Aa; in the extreme case of |a| = 1 the operators Aa(±) are
projections and the observable is called sharp. As shown in
[16], two unbiased qubit observables Aa and Ab are compati-
ble if and only if

|a + b| + |a − b| � 2. (2)

There are two extreme cases. First, if Aa is sharp then it is
compatible with some Ab if and only if b = ra for some −1 �
r � 1. Second, if |a| = 0 then Aa(±) = 1

21 and it is called a
trivial qubit observable, in which case it is compatible with all
other qubit observables.

How can we test if a given family of observables is com-
patible or incompatible? From the operational point of view,
the existence of an observable G satisfying (1) is equivalent to
the existence of G such that for any state � the equation

tr[�A1(x1)] =
∑

x2,...,xn

tr[�G(x1, x2, . . . , xn)] (3)

holds. To test the incompatibility we should hence check the
validity of (3) in a subset of states that spans the whole state
space. An obvious question is then if we really need all those
states or if a smaller number of test states is enough. Further,
does the number of needed test states depend on the given

family of observables? How does noise affect the number of
needed test states?

Before contemplating these questions, we recall that anal-
ogous definitions of compatibility and incompatibility make
sense for other types of devices, in particular, for instru-
ments and channels [1,17–22]. We limit our discussion to
quantum devices although, again, the definitions apply to de-
vices in general probabilistic theories. We denote by S (H)
the set of all density operators on a Hilbert space H. The
input space of all types of devices must be S (Hin ) on the
same Hilbert space Hin as the devices operate on the same
system. We denote S (Hin ) simply by S . A device is a
completely positive map and the type of the device is charac-
terized by its output space. Output spaces for the three basic
types of devices are observable, P(X ) := {p = {p(x)}x∈X |
0 � p(x) � 1,

∑
x p(x) = 1}; channel, S (Hout ); and instru-

ment, S (Hout ) ⊗ P(X ). In this classification an observable A
is identified with a map � �→ tr[�A(x)] from S (Hin ) to P(X ).
We limit our investigation to the cases where the number of
outcomes in X is finite and the output Hilbert space Hout is
finite dimensional. Regarding P(X ) ⊂ S (C|X |) as the set of all
diagonal density operators, we can summarize that quantum
devices are normalized completely positive maps to different
types of output spaces.

Devices D1, . . . , Dn are compatible if there exists a device
D that can simulate D1, . . . , Dn simultaneously, meaning that
by ignoring disjoint parts of the output of D we get the
same actions as D1, . . . , Dn (see [1]). This kind of device is
called a joint device of D1, . . . , Dn. The input space of D
is the same as for D1, . . . , Dn, but the output space is the
tensor product of their output spaces. As an illustration, let
D j : S (Hin ) → S (H j ) ( j = 1, . . . , n) be quantum channels.
They are compatible if and only if there exists a channel
D : S (Hin ) → S (

⊗n
j=1 H j ) satisfying

D1(�) = trH2,...,Hn D(�),

D2(�) = trH1,H3,...,Hn D(�),

...

Dn(�) = trH1,...,Hn−1D(�)

for all � ∈ S (Hin ) [see (1)]. If D1, . . . , Dn are not compatible,
then they are incompatible.

We recall a qubit example to exemplify the general defini-
tion.

Example 2 (unbiased qubit observable and partially de-
polarizing noise). A measurement of an unbiased qubit
observable Aa necessarily disturbs the system. This trade-
off is mathematically described by the compatibility relation
between observables and channels. Let us consider partially
depolarizing qubit channels, which have the form

�p(�) = p� + (1 − p) 1
21 (4)

for 0 � p � 1. A joint device for a channel and observable is
an instrument. Hence, Aa and �p are compatible if there exists
an instrument x �→ �x such that∑

x

�x(�) = �p(�), tr[�x(�)] = tr[�Aa(x)]
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for all states � and outcomes x. It has been proven in [20] that
Aa and �p are compatible if and only if

|a| � 1

2
[1 − p +

√
(1 − p)(1 + 3p)]. (5)

This shows that the higher the norm |a| is, the smaller p must
be.

The earlier discussion motivates the following definition,
which is central to our investigation.

Definition 1. Let S0 ⊂ S . Devices D1, . . . , Dn are S0-
compatible if there exist compatible devices D′

1, . . . , D′
n of the

same type such that

D′
j (�) = D j (�) (6)

for all j = 1, . . . , n and states � ∈ S0. Otherwise, D1, . . . , Dn

are S0-incompatible.
The definition is obviously interesting only when

D1, . . . , Dn are incompatible in the usual sense, i.e., with
respect to the full state space. In that case the definition means
that if devices D1, . . . , Dn are S0-compatible, their incompat-
ibility cannot be verified by taking test states from S0 only,
and vice versa, if devices D1, . . . , Dn are S0-incompatible,
their actions on S0 cannot be simulated by any collection of
compatible devices and therefore their incompatibility should
be able to be observed in some way.

The S0-compatibility depends not only on the size of S0 but
also on its structure. We start with a simple example showing
that there exist sets S0 such that an arbitrary family of devices
is S0-compatible.

Example 3. Any set of devices D1, . . . , Dn is S0-compatible
if S0 = {�1, . . . , �k} consists of perfectly distinguishable
states. In fact, one may construct a device D′

k which outputs
Dk (� j ) after confirming an input state is � j by measuring an
observable that distinguishes the states in S0. It is easy to
see that the devices D′

1, . . . , D′
n are compatible. The same

argument works for devices in general probabilistic theories
and one can use the same reasoning for a subset S0 that
is broadcastable [23]. [We recall that a subset S0 is broad-
castable if there exists a channel B : S → S ⊗ S such that the
bipartite state B(�) has marginals equal to � for all � ∈ S0.]
For instance, two qubit states 1/2 and |0〉〈0| are broadcastable
even though they are not distinguishable. Any pair of qubit
channels �1 and �2 is S0-compatible for S0 = {1/2, |0〉〈0|}
as we can define �′

j (�) =∑1
i=0〈i|�|i〉� j (|i〉〈i|) for j = 1, 2.

The channel �′
j has clearly the same action as � j on S0. A

joint channel � for �′
1 and �′

2 is given as

�(�) =
1∑

i=0

〈i|�|i〉�1(|i〉〈i|) ⊗ �2(|i〉〈i|),

and it is clear that, in fact, tr2[�(�)] = �1(�) and tr1[�(�)] =
�2(�).

III. (IN)COMPATIBILITY DIMENSION OF DEVICES

For a subset S0 ⊂ S , we denote by S̄0 the intersection of
the linear hull of S0 with S , i.e.,

S̄0 =
{

� ∈ S
∣∣∣∣∣ � =

l∑
i=1

ci�i for some ci ∈ C and �i ∈ S0

}
.

In this definition we can assume without restriction that ci ∈ R
and

∑
i ci = 1 as they follow from the positivity and unit trace

of states. Since the condition (6) is linear in �, we conclude
that devices D1, . . . , Dn are S0-compatible if and only if they
are S̄0-compatible. This makes sense: If we can simulate the
action of devices for states in S0, we can simply calculate the
action for all states that are linear combinations of those states.
This observation also shows that a reasonable way to quantify
the size of a subset S0 for the task in question is the number
of affinely independent states.

Given a collection of incompatible devices D1, . . . , Dn, we
consider the following questions.

(a) What is the smallest subset S0 such that D1, . . . , Dn are
S0-incompatible?

(b) What is the largest subset S0 such that D1, . . . , Dn are
S0-compatible?

Smallest and largest here mean the number of affinely
independent states in S̄0. It agrees with the linear dimension
of the linear hull of S0, or dim affS0 + 1, where dim affS0 is
the affine dimension of the affine hull affS0 of S0 [24,25]. The
answer to (a) quantifies how many states we need to use to
detect incompatibility if we choose them carefully, whereas
the answer to (b) quantifies how many (affinely independent)
states we may have to use if we cannot control their choice.
Hence, for both of these quantities a lower number means
more incompatibility in the sense of easier detection. The
precise mathematical definitions read as follows.

Definition 2. For a collection of incompatible devices
D1, . . . , Dn we define

χincomp(D1, . . . , Dn)

= min
S0⊂S

{dim affS0 + 1 | D1, . . . , Dn: S0-incompatible}

and

χcomp(D1, . . . , Dn)

= max
S0⊂S

{dim affS0+1 | D1, . . . , Dn: S0-compatible}.

We call these numbers the incompatibility dimension and
compatibility dimension of D1, . . . , Dn, respectively.

From Example 3 and the fact that the linear dimension of
the linear hull of S is d2 we conclude that

2 � χincomp(D1, . . . , Dn) � d2 (7)

and

d � χcomp(D1, . . . , Dn) � d2 − 1. (8)

Further, from the definitions of these quantities it directly
follows that

χincomp(D1, . . . , Dn) � χcomp(D1, . . . , Dn) + 1. (9)

We note that, based on their definitions, both χincomp and χcomp

are expected to be smaller for collections of devices that are
more incompatible.

The following monotonicity property of χincomp and χcomp

under preprocessing is a basic property that any quantification
of incompatibility is expected to satisfy.

Proposition 1. Let � : S → S be a quantum channel and
let D̃ j be a preprocessing of D j with � for each j = 1, . . . , n,
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i.e., D̃ j (�) = D j (�(�)). If the D̃ j are incompatible, then also
the D j are incompatible and

χincomp(D̃1, . . . , D̃n) � χincomp(D1, . . . , Dn) (10)

and

χcomp(D̃1, . . . , D̃n) � χcomp(D1, . . . , Dn). (11)

Proof. Suppose that D1, . . . , Dn are S0-compatible for
some subset S0. Let D′ be a device that gives devices
D′

1, . . . , D′
n as marginals and these marginals satisfy (6) in

S0. Then the preprocessing of D′ with � gives D̃1, . . . , D̃n

as marginals in S0. The claimed inequalities then follow. �
The postprocessing map of a device D depends on the type

of the device. For instance, the output set of an observable is
P(X ) and postprocessing is then described as a stochastic ma-
trix [26]. We formulate and prove the following monotonicity
property of χincomp and χcomp under postprocessing only for
observables. The formulation is analogous for other types of
devices.

Proposition 2. Let Ã j be a postprocessing of A j [i.e.,
Ã j (x′) =∑x ν j (x′, x)A j (x) for some stochastic matrix ν j] for
each j = 1, . . . , n. If the Ã j are S0-incompatible, then also the
A j are S0-incompatible and

χincomp(Ã1, . . . , Ãn) � χincomp(A1, . . . , An) (12)

and

χcomp(Ã1, . . . , Ãn) � χcomp(A1, . . . , An). (13)

Proof. Suppose that A1, . . . , An are S0-compatible for
some subset S0. This means that there exists an observable
G satisfying, for all � ∈ S0, any j, and x j ,

tr[�A j (x j )] =
∑
l 
= j

∑
xl

tr[�G(x1, . . . , xn)]. (14)

We define an observable G̃ as G̃(x′
1, . . . , x′

n) =∑
x1,...,xn

ν(x′
1|x1) · · · ν(x′

n|xn)G(x1, . . . , xn), which then
satisfies

tr[�Ã j (x
′
j )] =

∑
l 
= j

∑
x′

l

tr[�G̃(x′
1, . . . , x′

n)] (15)

for all � ∈ S0, any j, and x′
j . This shows that Ã1, . . . , Ãn are

S0-compatible. The claimed inequalities then follow. �
We will now give some examples to demonstrate the values

of χincomp and χcomp in some standard cases.
Example 4. Let us consider the identity channel id :

S (Cd ) → S (Cd ). It follows from the definitions that two
identity channels are S0-compatible if and only if S0 is a
broadcastable set. It is known that a subset of states is broad-
castable only if the states commute with each other [27],
and for this reason the pair of two identity channels is S0-
incompatible whenever S0 contains two noncommuting states.
Therefore, we have χincomp(id, id) = 2. On the other hand, S0

consisting of distinguishable states makes the identity chan-
nels S0-compatible. As S0 consisting of commutative states
has at most d affinely independent states, we conclude that
χcomp(id, id) = d .

A comparison of the results of Example 4 to the bounds (7)
and (8) shows that the pair of identity channels has the small-

est possible incompatibility and compatibility dimensions.
This is quite expectable as that pair is considered to be the
most incompatible pair; any device can be postprocessed from
the identity channel. Perhaps surprisingly, the lower bound
of χincomp can be attained already with a pair of dichotomic
observables; this is shown in the next example.

Example 5. Let P and Q be two noncommuting one-
dimensional projections in a d-dimensional Hilbert space H.
We define two dichotomic observables A and B as

A(1) = P, A(0) = 1 − P; B(1) = Q, B(0) = 1 − Q.

Let us then consider a subset consisting of two states

S0 = {�P, �Q} :=
{

1

d − 1
(1 − P),

1

d − 1
(1 − Q)

}
.

We find that the dichotomic observables A and B are S0-
incompatible. To see this, let us make a counter assumption
that A and B are S0-compatible, in which case there exists G
such that the marginal condition (3) holds for both observables
and for all � ∈ S0. We have tr[�PA(1)] = 0 and therefore

0 = tr[(1 − P)G(1, 1)] = tr[(1 − P)G(1, 0)].

It follows that G(1, 1) = αP and G(1, 0) = βP. Further,
tr[PA(1)] = 1 and hence α + β = 1. In a similar way we
obtain G(1, 1) = γ Q and G(0, 1) = δQ with γ + δ = 1. It
follows that α = γ = 0 and β = δ = 1; however, G(1, 0) +
G(0, 1) = P + Q contradicts G(1, 0) + G(0, 1) � 1. Thus
we conclude that χincomp(A, B) = 2.

For two incompatible sharp qubit observables (Example 1)
the previous example gives a concrete subset of two states
such that the observables are incompatible and proves that
χincomp(Aa, Ab) = 2 for such a pair. The incompatibility di-
mension for unsharp qubit observables is more complicated
and will be treated in Sec. V.

Example 6. Let us consider two observables A and B. We
set a state �0 ∈ S and define

S0 = {� ∈ S : tr[�A(x)] = tr[�0A(x)] ∀ x}.
Then A and B are S0-compatible. To see this, we define an
observable G as

G(x, y) = tr[�0A(x)]B(y).

It is then straightforward to verify that (3) holds for all � ∈ S0.
As a special instance of this construction, let Aa be a

qubit observable and a 
= 0 (see Example 1). We choose
S0 = {� ∈ S | tr[�Aa(+)] = 1

2 }. We then have S0 = { 1
2 (1 +

r · σ ) | r · a = 0} and hence dim affS0 = 2. Based on the pre-
vious argument, Aa is S0-compatible with any Ab. Therefore,
χcomp(Aa, Ab) = 3 for all incompatible qubit observables Aa

and Ab.

Other formulations of incompatibility dimension

The notion of S0-compatibility for quantum observables
was introduced in [8] and in that particular case (i.e., quantum
observables) it is equivalent to Definition 1. In the present
investigation our focus is on the largest or smallest S0 on
which devices D1, . . . , Dn are compatible or incompatible,
and this has some differences from the earlier approaches. In
[10], the term “compatibility dimension” was introduced and
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for observables A1, . . . , An on a d-dimensional Hilbert space H = Cd it is

R(A1, . . . , An) = max{r � d | ∃V : Cr → Cd isometry s.t. V ∗A1V, , . . . ,V ∗AnV are compatible}.
Evaluations of R(A1, . . . , An) in various cases such that n = 2 and A1 and A2 are rank-1 were presented in [10]. To describe it
in our notions, let us denote Cr by K and define SH and SK as the set of all density operator on H and K, respectively. We also
introduce SVK as

SVK := {� ∈ S | supp� ⊂ VK} = VSKV ∗ ⊂ SH.

Then we can see that the SK-compatibility of V ∗A1V, . . . ,V ∗AnV is equivalent to the SVK-compatibility of A1, . . . , An.
Therefore, if we focus only on sets of states such as SVK (i.e., states with fixed support), then there is no essential difference
between our compatibility dimension and the previous one: R(A1, . . . , An) = r if and only if χcomp(A1, . . . , An) = r2. In [10]
also the concept of strong compatibility dimension was defined as

R(A1, . . . , An) = max{r � d | ∀V : Cr → Cd isometry s.t. V ∗A1V, , . . . ,V ∗AnV are compatible}.

It is related to our notion of incompatibility dimension. In
fact, if we only admit sets of states such as SVK, then
R(A1, . . . , An) and χincomp(A1, . . . , An) are essentially the
same: R(A1, . . . , An) = r if and only if χincomp(A1, . . . , An) =
(r + 1)2.

Similar notions have been introduced and investigated also
in [9,11]. As in [10], these works focus on quantum ob-
servables and on subsets of states that are lower-dimensional
subspaces of the original state space. Therefore, the notions
are not directly applicable in GPTs. In [11] incompatibility
was classified into three types. They were explained exactly
in terms of the notion in [10] as (i) incompressible incompat-
ibility, where (A1, . . . , An) are SVK-compatible for all K and
V ; (ii) fully compressive incompatibility, where (A1, . . . , An)
are SVK-incompatible for all nontrivial K and V ; and (iii)
partly compressive incompatibility, where there are a V and
a K such that (A1, . . . , An) are SVK-compatible and some V ′
and K′ such that (A1, . . . , An) are SV ′K′ -incompatible. In [11]
concrete constructions of these three types of incompatible
observables were given.

IV. RELATION BETWEEN INCOMPATIBILITY
DIMENSION AND INCOMPATIBILITY

WITNESS FOR OBSERVABLES

In this section we show how the notion of incompatibility
dimension is related to the notion of incompatibility witness.
An incompatibility witness is an affine functional ξ defined
on n-tuples of observables such that ξ takes non-negative
values on all compatible n-tuples and a negative value at least
for some incompatible n-tuple [28–30]. Every incompatibility
witness ξ is of the form

ξ
(⊕n

j=1 A j
) = δ − f

(⊕n
j=1 A j

)
, (16)

where δ ∈ R and f is a linear functional on ⊕n
j=1Ls(H)mj ,

with Ls(H) the set of all self-adjoint operators on H and mj

the number of outcomes of A j . It can be written also in the
form

ξ (A1, . . . , An) = δ −
n∑

j=1

mj∑
x j=1

c j,x j tr[� j,x j A j (x j )], (17)

where the c j,x j are real numbers and the � j,x j are states. This
result was proven in [29] for incompatibility witnesses acting
on pairs of observables and the generalization to n-tuples is
straightforward. A witness ξ detects the incompatibility of
observables A1, . . . , An if ξ (A1, . . . , An) < 0. The following
proposition gives a simple relation between the incompatibil-
ity dimension and incompatibility witness.

Proposition 3. Assume that an incompatibility witness ξ

has the form (17) and it detects the incompatibility of observ-
ables A1, . . . , An. Then A1, . . . , An are S0-incompatible for
S0 = {� j,x j | j = 1, . . . , n, x j = 1, . . . , mj}.

Proof. Let A1, . . . , An be S0-compatible. Then we
would have compatible observables Ã1, . . . , Ãn such that
tr[�A j (x j )] = tr[�Ã j (x j )] for all � ∈ S0. This would imply
that

ξ (A1, . . . , An) = ξ (Ã1, . . . , Ãn) � 0,

which contradicts the assumption that ξ detects the incompat-
ibility of observables A1, . . . , An. �

It was shown in [29] that any incompatible pair of observ-
ables is detected by some incompatibility witness of the form
(17). The proof is straightforward to generalize to n-tuples
of observables and thus, together with Proposition 3, we can
obtain

χincomp(A1, . . . , An) � m1 + · · · + mn. (18)

That is, the incompatibility dimension of A1, . . . , An can be
evaluated via their incompatibility witness (we will derive a
better upper bound later in this section). We can further prove
the following proposition.

Proposition 4. The following statements (i) and (ii) for a
set of incompatible observables {A1, . . . , An} are equivalent:
(i) χincomp(A1, . . . , An) � N and (ii) there exist a family of
linearly independent states {�1, . . . , �N } and real numbers δ

and {cl, j,x j }l, j,x j (l = 1, . . . , N ; j = 1, . . . , n; x j = 1, . . . , mj )
such that the incompatibility witness ξ defined by

ξ (B1, . . . , Bn) = δ −
N∑

l=1

n∑
j=1

mj∑
x j=1

cl, j,x j tr[�lB j (x j )]

detects the incompatibility of {A1, . . . , An}.
The claim (i) ⇒ (ii) may be regarded as the converse of

the previous argument to obtain (18). It manifests that we can
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find an incompatibility witness detecting the incompatibility
of {A1, . . . , An} reflecting their incompatibility dimension.

Proof. The claim (ii) ⇒ (i) can be proved in the same way
as Proposition 3. Thus we focus on proving (i) ⇒ (ii).

Suppose that a family of observables {A1, . . . , An} sat-
isfies χincomp(A1, . . . , An) = N . Then there exists a family
of linearly independent states {�1, �2, . . . , �N } in Ls(H) on
which {A1, . . . , An} are incompatible. We can regard the fam-
ily {A1, . . . , An} as an element of a vector space L defined
as L := ⊕n

j=1Ls(H)mj , that is, A := ⊕n
j=1A j ∈ L. For each

l = 1, . . . , N , j = 1, . . . , n, and x j = 1, . . . , mj , let us define
a subset K (A, �l , j, x j ) of L as

K (A, �l , j, x j )

:= {B ∈ L | 〈�l |B j (x j )〉HS = 〈�l |A j (x j )〉HS}, (19)

where 〈�l |A j (x j )〉HS := tr[�lA j (x j )] is the Hilbert-Schmidt
inner product on Ls(H). Note that this inner product can be
naturally extended to an inner product 〈〈·|·〉〉 on L:

〈〈A|B〉〉 =
n∑

j=1

mj∑
x j=1

〈A j (x j )|B j (x j )〉HS.

Embedding �l into L by �̂
j,x j

l = ⊕n
i=1 ⊕mi

y=1 δi jδyx j �l for each
j, x j , and l , we obtain another representation of (19) as

K (A, �l , j, x j ) = {B∣∣〈〈�̂ j,x
l

∣∣B〉〉 = 〈〈�̂ j,x j

l

∣∣A〉〉}. (20)

Thus this set is a hyperplane in L. Note that {�̂ j,x
l }l, j,x j is a

linearly independent set in L. Consider an affine set K :=
∩N

l=1 ∩n
j=1 ∩mj

x j=1K (A, �l , j, x j ). Because {A1, . . . , An} is in-
compatible in {�1, . . . , �N }, it satisfies

K ∩ C = ∅, (21)

where C := {C ∈ L | {C1, . . . , Cn} is compatible}. Thus, by
virtue of the separating hyperplane theorem [24], there exists a
hyperplane in L which separates strongly the (closed) convex
sets K and C. In the following, we will show that one of those
separating hyperplanes can be constructed from {�̂ j,x

l }l, j,x j .
Let us extend a family of linearly independent vectors

{�̂ j,x j

l }l, j,x j to form a basis of L. That is, we introduce
a basis {vb}b=1,...,dim L of L satisfying {va}a=1,...,N (

∑
j m j ) =

{�̂ j,x j

l }l, j,x j . We introduce its dual basis {wb}b=1,2,...,dim L sat-
isfying 〈〈va|wb〉〉 = δab. Because K can be written as

K = {B∣∣〈〈�̂ j,x j

l

∣∣(B − A)
〉〉 = 0 ∀ l, j, x j

}
,

it is represented in terms this (dual) basis as

K = A + K0,

where K0 is an affine set defined by

K0 :=
{

dim L∑
a=N (

∑
j m j )+1

cawa

∣∣∣∣∣ ca ∈ R

}
. (22)

Now we can construct a hyperplane separating K and C. To
do this, let us focus on the convex sets K0 and C′ := C − A in-
stead of K and C, which satisfy K0 ∩ C′ = ∅ because of (21).
We can apply the separating hyperplane theorem (Theorem
11.2 in [24]) for the affine set K0 and convex set C′. There
exists a hyperplane H0 in L such that K0 and C′ are contained

by H0 and one of its associating open half spaces, respectively.
That is, there exists h ∈ L satisfying

H0 = {B ∈ L | 〈〈B|h〉〉 = 0},
with K0 ⊂ H0, and 〈〈C′|h〉〉 < 0 for all C′ ∈ C′. Let us examine
the vector h. It satisfies

〈〈wa|h〉〉 = 0 ∀ a = N

(∑
j

m j

)
+ 1, . . . , dim L

because K0 ⊂ H0 [see (22)]. Thus, if we write h as h =∑dim L
a=1 cava, then we can find that ca = 0 holds for all a =

N (
∑

j m j ) + 1, . . . , dim L. It follows that

h =
N (
∑

j m j )∑
a=1

cava =
∑

l

∑
j

∑
x j

cl, j,x j �̂
j,x j

l

holds and the hyperplane H0 can be written as

H0 =
{

B ∈ L
∣∣∣∣∣
∑

l

∑
j

∑
x j

cl, j,x j tr[�lB j (x j )] = 0

}
.

Then the hyperplane H ′ := A + H0, a translation of H0, of the
form

H ′ =
{

B ∈ L
∣∣∣∣∣
∑

l

∑
j

∑
x j

cl, j,x j tr[�lB j (x j )] = δ′
}

contains the original sets K and satisfies∑
l

∑
j

∑
x j

cl, j,x j tr[�lC j (x j )] < δ′

for all C ∈ C. We can displace H ′ slightly in the direction of
C to obtain a hyperplane H defined as

H =
{

B ∈ L
∣∣∣∣∣
∑

l

∑
j

∑
x j

cl, j,x j tr[�lB j (x j )] = δ

}
,

which (strongly) separates H ′ (in particular K) and C because
H ′ is closed and C is compact (see Corollary 11.4.2 in [24]).
The claim now follows as A ∈ K . �

Upper bound on the incompatibility dimension
of observables via incompatibility witness

We can give a better upper bound than (18) for the in-
compatibility dimension by slightly modifying the previous
argument in [29] on incompatibility witness.

Proposition 5. Let A1, . . . , An be incompatible observables
with m1, . . . , mn outcomes, respectively. Then

χincomp(A1, . . . , An) �
n∑

j=1

mj − n + 1.

Proof. We continue following the same notation as the
proof of Proposition 4. Let us assume that the incompatibility
of A1, . . . , An is detected by an incompatibility witness ξ . The
functional ξ is of the form

ξ (A) = δ − f (A)
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with a real number δ and a functional f on L [see (16). Then
the Riesz representation theorem shows that the functional f
can be represented as

f (A) =
n∑

j=1

mj∑
x j

〈Fj (x j )|A j (x j )〉HS,

with some Fj (x j ) ∈ Ls(H) ( j = 1, . . . , n and x j =
1, . . . , mj). If we define F ′

j (x j ) = Fj (x j ) + ε j1, then we
find

ξ (A) = δ + d
∑

j

ε j −
n∑

j=1

mj∑
x j=1

〈F ′
j (x j )|A j (x j )〉HS.

We choose ε j so that∑
x j

tr[F ′
j (x j )] =

∑
x j

〈F ′
j (x j )|1〉HS = 0

holds. The choice of {F ′
j (x j )} j,x j still has some freedom. Each

F ′
j (x j ) can be replaced with F ′′

j (x j ) = F ′
j (x j ) + Tj , where Tj ∈

Ls(H) satisfies tr[Tj] = 〈Tj |1〉HS = 0. In fact, it holds that∑
x j

〈F ′′
j (x j )|A j (x j )〉HS

=
∑

x j

〈F ′
j (x j )|A j (x j )〉HS +

∑
x j

〈Tj |A j (x j )〉HS

=
∑

x j

〈F ′
j (x j )|A j (x j )〉HS + 〈Tj |1〉HS

=
∑

x j

〈F ′
j (x j )|A j (x j )〉HS.

We choose Tj as mjTj = −∑mj

x j=1 F ′
j (x j ), which indeed satis-

fies mj〈Tj |1〉HS = −∑mj

x j=1〈F ′
j (x j )|1〉HS = 0, i.e., tr[Tj] = 0,

to obtain ∑
x j

F ′′
j (x j ) = 0.

We further choose large numbers α j � 0 so that Gj (x j ) :=
F ′′

j (x j ) + α j1 � 0 for all j and x j . Now we obtain a represen-
tation of the witness which is equivalent to ξ for n-tuples of
observables as

ξ ∗(A) = δ + d
∑

j

(ε j + α j ) −
∑

j

∑
x j

〈Gj (x j )|A j (x j )〉HS,

where positive operators Gj (x j ) satisfy
∑

x j
G j (x j ) = mjα j1.

Defining density operators � j (x j ) by � j (x j ) = Gj (x j )
tr[Gj (x j )]

, we
obtain yet another representation

ξ ∗(A) = δ + d
∑

j

(ε j + α j )

−
∑

j

∑
x j

tr[Gj (x j )]tr[� j (x j )A j (x j )]

with the � j (x j ) satisfying constraints∑
x j

tr[Gj (x j )]� j (x j ) = mjα j1. (23)

Thus, according to Proposition 3, A1, . . . , An are S0 incompat-
ible with S0 = {� j (x j )} j,x j . To evaluate dim affS0, we focus
on the condition (23). Introducing the parameters p j (x j ) :=
tr[Gj (x j )]/dmjα j such that

∑
x j

p j (x j ) = 1, we obtain

∑
x j

p j (x j )� j (x j ) = 1

d
1

or ∑
x j

p j (x j )�̃ j (x j ) = 0,

where �̃ j (x j ) := � j (x j ) − 1
d 1. It follows that {�̃ j (x j )}x j are

linearly dependent and thus

dim span{�̃ j (x j )}x j � m1 − 1.

Similar arguments for the other j result in

dim span{�̃ j (x j )} j,x j �
∑

j

(mj − 1) =
∑

j

m j − n.

Considering that

dim span{�̃ j (x j )} j,x j = dim aff{� j (x j )} j,x j

holds, we can obtain the claim of the proposition. �
The bound in Proposition 5 is not tight in general since

the right-hand side of the inequality can exceed the bound
obtained in (7). However, for small n and mj , the bound can
be tight. In fact, while for n = 2 and m1 = m2 = 2 it gives
χincomp(A1, A2) � 3, we will construct an example which at-
tains this upper bound in the next section.

V. MUTUALLY UNBIASED QUBIT OBSERVABLES

In this section we study the incompatibility dimension of
pairs of unbiased qubit observables introduced in Example
1. We concentrate on pairs that are mutually unbiased, i.e.,
tr[Aa(±)Ab(±)] = 1

2 . (This terminology originates from the
fact that if the observables are sharp, then the respective
orthonormal bases are mutually unbiased. In the previously
written form the definition makes sense also for unsharp
observables [31].) The condition of mutual unbiasedness is
invariant under a global unitary transformation; hence it is
enough to set the basis x = (1, 0, 0), y = (0, 1, 0), and z =
(0, 0, 1) in R3 and choose two of these unit vectors. We will
study the observables Atx and Aty, where 0 � t � 1. The
observables are written explicitly as

Atx(±) = 1
2 (1 ± tσ1), Aty(±) = 1

2 (1 ± tσ2).

The condition (2) shows that Atx and Aty are incompatible
if and only if 1/

√
2 < t � 1. The choice of having mutually

unbiased observables as well as using a single noise parameter
instead of two is to simplify the calculations.

We have seen in Example 6 that χcomp(Atx, Aty) = 3
for all values t for which the pair is incompatible. We
have further seen (in the discussion after Example 5) that
χincomp(Ax, Ay) = 2, and from Proposition 5 it follows that
χincomp(Atx, Aty) � 3 for all 1/

√
2 < t � 1. The remaining

question is then about the exact value of χincomp(Atx, Aty),
which can depend on the noise parameter t and will be our
focus in this section (see Table I).
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TABLE I. Values of χincomp and χcomp for (Atx, Aty ) with 0 � t �
1. For t � 1/

√
2 the observables Atx and Aty are compatible and

χincomp and χcomp are not defined.

t χincomp(Atx, Aty ) χcomp(Atx, Aty )

t � 1√
2

1√
2

< t < 1 2 or 3a 3b

t = 1 2c 3b

aProposition 6.
bExample 6.
cExample 5.

Let us first make a simple observation that follows from
Proposition 2. Considering that Asx is obtained as a post-
processing of Atx if and only if s � t , we conclude that

χincomp(Asx, Asy) = 2

⇒ χincomp(Atx, Aty) = 2 for
1√
2

< s � t

and

χincomp(As′x, As′y) = 3

⇒ χincomp(At ′x, At ′y) = 3 for s′ � t ′ >
1√
2
.

Interestingly, there is a threshold value t0 where the value of
χincomp(Atx, Aty) changes; this is the content of the following
proposition.

Proposition 6. There exists 1/
√

2 < t0 < 1 such
that χincomp(Atx, Aty) = 3 for 1/

√
2 < t � t0 and

χincomp(Atx, Aty) = 2 for t0 < t � 1.
The main line of the lengthy proof of Proposition 6 is the

following. Defining two subsets L and M of ( 1√
2
, 1] as

L := {t | χincomp(Atx, Aty) = 2},
M := {t | χincomp(Atx, Aty) = 3}, (24)

we see that

inf L = sup M(=: t ′
0) (25)

holds unless L and M are empty. By definition, the number t ′
0

satisfies

χincomp(Atx, Aty) = 2 for t > t ′
0,

χincomp(Atx, Aty) = 3 for t < t ′
0.

Based on the considerations above, the proof of Proposition
6 proceeds as follows. First, in Part 1, we prove that M is
nonempty while L has already been shown to be nonempty
as t = 1 ∈ L. It will be found that χincomp(Atx, Aty) = 3 for
t sufficiently close to 1√

2
, and thus t ′

0 introduced above can
be defined successfully. Then we demonstrate in Part 2 that
sup M = max M, i.e., t ′

0 is equal to t0 in the claim of Proposi-
tion 6.

Remark 1. In [8] a problem similar to ours was considered.
While in that work the focus was on several affine sets and
a threshold value t0 was given for each of them by means of
their semidefinite programs where observables {Atx, Aty, Atz}

become compatible, we are considering all affine sets with
dimension 2.

Proof of Proposition 6: Part 1

In order to prove that M is nonempty, let us introduce the
relevant notions

D := {v | |v| � 1, vz = 0} ⊂ B := {v | |v| � 1},
SD := {�v | v ∈ D} ⊂ S = {�v | v ∈ B},

where v = vxx + vyy + vzz ∈ R3 and �v := 1
2 (1 + v · σ ).

Since SD is a convex set, we can treat SD almost like a
quantum system. In the following we will do it without giving
precise definitions because they are obvious. For an observ-
able E on S with effects {E(x)}x, we write its restriction to SD

as E|D with effects {E(x)|D}x, which is an observable on SD.
It is easy to obtain the following lemma.

Lemma 1. The following claims are equivalent: (i) Atx and
Aty are incompatible (thus 1√

2
< t � 1), (ii) Atx and Aty are

SD-incompatible, and (iii) Atx|D and Aty|D are incompatible
as observables on SD.

Proof. For (i) ⇒ (iii), suppose that Atx|D and Aty|D are
compatible in SD. There exists an observable M on SD whose
marginals coincide with Atx|D and Aty|D. One can extend this
M to the whole S so that it does not depend on z (for example,
one can simply regard its effect c01 + c1σ1 + c2σ2 as an effect
on S). Since both Atx|D and Aty|D also do not depend on z,
the extension of M gives a joint observable of Atx and Atx.
For (iii) ⇒ (ii), suppose that Atx and Aty are SD-compatible.
There exists an observable M on S whose marginals coincide
with Atx and Aty in SD. The restriction of M on SD proves
that (iii) is false. For (ii) ⇒ (i), suppose that Atx and Aty are
compatible. Then they are SD-compatible. �

This lemma demonstrates that the incompatibility of Atx

and Aty means the incompatibility of Atx|D and Aty|D. We can
present further observations.

Lemma 2. Let us consider two pure states �r1 and �r2

(r1, r2 ∈ ∂B, r1 
= r2) and a convex subset S0 of S generated
by them: S0 := {p�r1 + (1 − p)�r2 | 0 � p � 1}. We also in-
troduce an affine projection P by P�v = �Pv, where �v ∈ S
with v = vxx + vyy + vzz and Pv = vxx + vyy, and extend it
affinely. The affine hull of S0 is projected to SD as

PS0 := {λP�r1 + (1 − λ)P�r2 | λ ∈ R} ∩ SD. (26)

If Atx and Aty are S0-incompatible, then their restrictions
Atx|D and Aty|D are PS0-incompatible.

Proof. Suppose that Atx and Aty are S0-incompatible. This
implies that Pr1 
= Pr2 i.e., P�r1 
= P�r2 (see Example 6), and
thus PS0 is a segment in SD.

If Atx|D and Aty|D are PS0-compatible, then there exists a
joint observable M on SD such that its marginals coincide with
Atx|D and Aty|D on PS0 ⊂ SD. This M can be extended to an
observable on S so that the extension does not depend on z.
Because

tr[Atx(±)P�r1 ] = tr[Atx(±)�r1 ],

tr[Atx(±)P�r2 ] = tr[Atx(±)�r2 ]

(and their y counterparts) hold due to the independence of
Atx(±) from σ3, the marginals of M coincide with Atx and
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Aty on S0. This results in the S0-compatibility of Atx and Aty,
which is a contradiction. �

It follows from this lemma that χincomp(Atx|D, Aty|D)
is 2 when χincomp(Atx, Aty) is 2 and equivalently
χincomp(Atx, Aty) is 3 when χincomp(Atx|D, Aty|D) is 3 [recall
that χincomp(Atx, Aty) � 3]. In fact, the converse also holds.

Lemma 3. χincomp(Atx|D, Aty|D) is 3 when χincomp(Atx, Aty)
is 3.

Proof. Let χincomp(Atx, Aty) = 3. It follows that for any line
S ⊂ S , Atx and Aty are S-compatible. In particular, Atx and
Aty are S′-compatible for any line S′ in SD, and thus there is an
observable M such that its marginals coincide with Atx and Aty

on S′. It is easy to see that the marginals of M|D coincide with
Atx|D and Aty|D on S′, which results in the S′-compatibility of
Atx|D and Aty|D. Because S′ is arbitrary, we can conclude that
χincomp(Atx|D, Aty|D) = 3. �

The lemmas above manifest that if Atx and Aty are incom-
patible, then Atx|D and Aty|D are also incompatible and

χincomp(Atx, Aty) = χincomp(Atx|D, Aty|D).

Therefore, in the following we denote Atx|D and Aty|D sim-
ply by Atx

D and Aty
D , respectively, and focus on the quantity

χincomp(Atx
D , Aty

D ) instead of χincomp(Atx, Aty). Before proceed-
ing to the next step, let us confirm our strategy of this part.
It is composed of two additional parts: (a) and (b). In (a)
we will consider a line (segment) S1 in SD and consider
for 0 < t < 1 all pairs of observables (Ãt

1, Ãt
2) on SD which

coincide with (Atx
D , Aty

D ) on S1. Then, in (b) we will investigate
the (in)compatibility of those Ãt

1 and Ãt
2 in order to obtain

χincomp(Atx
D , Aty

D ). It will be shown that when t is sufficiently
small, there exists a compatible pair (Ãt

1, Ãt
2) for any S1, that

is, Atx
D and Aty

D are S1-compatible for any line S1. This results
in χincomp(Atx

D , Aty
D ) = 3, and thus M 
= ∅.

Part (a). Let us consider two pure states �r1 and �r2 with
r1, r2 ∈ ∂D (r1 
= r2) and a convex set S1 := {p�r1 + (1 −
p)�r2 | 0 � p � 1}. We set the parameters ϕ1 and ϕ2 as

r1 = cos ϕ1x + sin ϕ1y, (27)

r2 = cos ϕ2x + sin ϕ2y, (28)

where −π � ϕ1 < ϕ2 < π . By exchanging ± properly, with-
out loss of generality we can assume the line connecting r1

and r2 passes through above the origin (instead of below). In
this case, from geometric consideration, we have

0 < ϕ2 − ϕ1 � π,

0 � ϕ1 + ϕ2

2
� π

2
. (29)

Note that when ϕ2 − ϕ1 = π , �r1 and �r2 are perfectly dis-
tinguishable, which results in the S1-compatibility of Atx

D and
Aty

D (see Example 3). On the other hand, when ϕ1+ϕ2

2 = 0 or π
2 ,

tr[�Atx
D (+)] or tr[�Aty

D (+)] is constant for � ∈ S1 respectively,
so Atx

D and Aty
D are S1-compatible (see Example 6). Thus,

instead of (29), we hereafter assume that

0 <
ϕ2 − ϕ1

2
<

π

2
,

0 <
ϕ1 + ϕ2

2
<

π

2
. (30)

Next we consider a binary observable Ãt
1 on SD which co-

incides with Atx
D on S1 ⊂ SD. There are many possible Ãt

1,
and each Ãt

1 is determined completely by its effect Ãt
1(+)

corresponding to the outcome + because it is binary. The
effect Ãt

1(+) is associated with a vector v1 ∈ D defined as

v1 := arg maxv∈Dtr[�vÃt
1(+)]. (31)

Let us introduce a parameter ξ1 ∈ [−π, π ) by

v1 = cos ξ1x + sin ξ1y (32)

and express Ãt
1(+) as

Ãt
1(+) = 1

2 {[1 + w(ξ1)]1 + m1(ξ1) · σ }, (33)

where we set

m1(ξ1) = C1(ξ1)v1, (34)

with 0 � C1(ξ1) � 1. Because

tr[�r1Atx
D (+)] = tr[�r1Ãt

1(+)],

tr[�r2 Aty
D (+)] = tr[�r2 Ãt

1(+)],

namely,

1

2
+ t

2
cos ϕ1 = 1 + w1(ξ1)

2
+ C1(ξ1)

2
cos(ϕ1 − ξ1),

1

2
+ t

2
cos ϕ2 = 1 + w1(ξ1)

2
+ C1(ξ1)

2
cos(ϕ2 − ξ1),

(35)

hold, we can obtain

C1(ξ1) = t (cos ϕ1 − cos ϕ2)

cos(ϕ1 − ξ1) − cos(ϕ2 − ξ1)

= t sin ϕ0

sin(ϕ0 − ξ1)
, (36)

w1(ξ1) = −t

(
sin(ϕ1 − ϕ2)

2 sin( ϕ1−ϕ2

2 )

)(
sin ξ1

sin(ϕ0 − ξ1)

)

= −t cos ψ0 sin ξ1

sin(ϕ0 − ξ1)
, (37)

where we set ϕ0 := ϕ1+ϕ2

2 and ψ0 := ϕ2−ϕ1

2 (0 < ϕ0 < π
2 and

0 < ψ0 < π
2 ). Note that if sin(ϕ0 − ξ1) = 0 or cos(ϕ1 − ξ1) −

cos(ϕ2 − ξ1) = 0 holds, then cos ϕ1 − cos ϕ2 = 0 holds [see
(36)]. This means that ϕ0 = 0, which is a contradiction, and
thus sin(ϕ0 − ξ1) 
= 0 [that is, C1(ξ1) and w1(ξ1) in (36) and
(37) are well defined]. Moreover, because C1(ξ1) � 0, we can
see from (36) that sin(ϕ0 − ξ1) > 0 holds, which results in

0 � ξ1 < ϕ0 (38)

or

−π + ϕ0 < ξ1 � 0. (39)

In addition, ξ1 is restricted also by the condition that Ãt
1(±) are

positive. Since the eigenvalues of Ãt
1(±) are 1

2 {[1 + w1(ξ1)] ±
C1(ξ1)}, the restriction comes from both

1 + w1(ξ1) + C1(ξ1) � 2,

1 + w1(ξ1) − C1(ξ1) � 0 (40)
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FIG. 1. Geometric description of determining ξmin
1 .

or equivalently

1 − w1(ξ1) � C1(ξ1), (41)

1 + w1(ξ1) � C1(ξ1). (42)

When (39) (i.e., sin ξ1 � 0) holds, w1(ξ1) � 0 holds, and thus
(41) is sufficient. It is written explicitly as

sin (ϕ0 − ξ1) + t sin ξ1 cos ψ0 � t sin ϕ0

or

1

t
cos ξ1 + 1

t sin ϕ0
(t cos ψ0 − cos ϕ0) sin ξ1 � 1. (43)

In order to investigate (43), we adopt a geometric method here
while it can be solved in an analytic way. Let us define

h1(t, ϕ0, ψ0) = 1

t sin ϕ0
(t cos ψ0 − cos ϕ0). (44)

Then we can rewrite (43) as

(cos ξ1, sin ξ1) ·
[(

1

t
, h1

)
− (cos ξ1, sin ξ1)

]
� 0. (45)

In fact, it can be verified easily that ( 1
t , h1) is the intersection

of the line l1 := {λr1 + (1 − λ)r2 | λ ∈ R} and the line x = 1
t

in R2. Considering this fact, we can find that ξ1 satisfies (45)
if and only if

ξmin
1 (t, ϕ0, ψ0) � ξ1 � 0, (46)

where ξmin
1 (t, ϕ0, ψ0) is determined by the condition[(

1

t
, h1

)
− ( cos ξmin

1 , sin ξmin
1

)] ⊥ ( cos ξmin
1 , sin ξmin

1

)
(47)

(see Fig. 1). Analytically, this corresponds to the case when
the equality of (43) holds,

1

t
cos ξmin

1 + 1

t sin ϕ0
(t cos ψ0 − cos ϕ0) sin ξmin

1 = 1 (48)

or

1 − w1
(
ξmin

1

) = C1
(
ξmin

1

)
.

FIG. 2. Geometric description of determining ξmax
1 .

It can be represented explicitly as

(t2 cos2 ψ0 − 2t cos ϕ0 cos ψ0 + 1) sin2 ξmin
1

− 2t sin ϕ0(t cos ψ0 − cos ϕ0) sin ξmin
1

+ (t2 − 1) sin2 ϕ0 = 0, (49)

and sin ξmin
1 is obtained as its negative solution. Note that since

the coefficient (t2 cos2 ψ0 − 2t cos ϕ0 cos ψ0 + 1) is strictly
positive, the solutions do not show any singular behavior. In
summary, we have obtained

ξmin
1 (t, ϕ0, ψ0) � ξ1 � 0, (50)

with ξmin
1 (t, ϕ0, ψ0) uniquely determined for t , ϕ0, and ψ0 by

−π + ϕ0 < ξmin
1 (t, ϕ0, ψ0) � 0,

1 − w1
[
ξmin

1 (t, ϕ0, ψ0)
] = C1

[
ξmin

1 (t, ϕ0, ψ0)
]
. (51)

On the other hand, when (38) (i.e., sin ξ1 � 0) holds, (42) is
sufficient. It results in a tight condition for ξ1,

0 � ξ1 � ξmax
1 (t, ϕ0, ψ0), (52)

where ξmax
1 (t, ϕ0, ψ0) is a constant uniquely determined for ϕ0

and ψ0 by

0 � ξmax
1 (t, ϕ0, ψ0) < ϕ0,

1 + w1
[
ξmax

1 (t, ϕ0, ψ0)
] = C1

[
ξmax

1 (t, ϕ0, ψ0)
]
. (53)

We remark that this can be obtained by a geometric method
similar to the previous case: Consider the intersection of the
line l1 and the line x = − 1

t in turn (see Fig. 2). Overall, we
have demonstrated that ξ1 for Ãt

1 satisfies

ξmin
1 (t, ϕ0, ψ0) � ξ1 � ξmax

1 (t, ϕ0, ψ0), (54)

where ξmin
1 (t, ϕ0, ψ0) and ξmax

1 (t, ϕ0, ψ0) are obtained thor-
ough (51) and (53), respectively. Note that ξmin

1 (t, ϕ0, ψ0)
and ξmax

1 (t, ϕ0, ψ0) depend continuously on t (and ϕ1 and ϕ2

through ϕ0 and ψ0).
Similarly, we consider a binary observable Ãt

2 on SD which
coincides with Aty

D on S1 and focus on its effect Ãt
2(+). We

define the parameters v2 ∈ D and ξ2 ∈ [−π, π ) as

v2 = sin ξ2x + cos ξ2y

= arg maxv∈Dtr
[
Ãt

2(+)�v
]
. (55)
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Here Ãt
2(+) is represented as

Ãt
2(+) = 1

2 {[1 + w2(ξ2)]1 + m2(ξ2)}, (56)

with

m2(ξ2) = C2(ξ2)v2,

where 0 � C2(ξ2) � 1. Equation (35) becomes

1

2
+ t

2
cos

(
π

2
− ϕ1

)

= 1 + x2(ξ2)

2
+ C2(ξ2)

2
cos

(
π

2
− ϕ1 − ξ1

)
,

1

2
+ t

2
cos

(
π

2
− ϕ2

)

= 1 + x2(ξ2)

2
+ C2(ξ2)

2
cos

(
π

2
− ϕ2 − ξ1

)
. (57)

So defining ϕ1 := π
2 − ϕ1 and ϕ2 := π

2 − ϕ2, we can obtain,
similarly to (36) and (37),

C2(ξ2) = t sin ϕ0

sin(ϕ0 − ξ1)
, (58)

w2(ξ2) = −t cos ψ0 sin ξ2

sin(ϕ0 − ξ2)
, (59)

where ϕ0 := ϕ1+ϕ2

2 = π
2 − ϕ0. It follows that the properties of

Ãt
2 can be obtained just by replacing ξ1 and ϕ0 exhibited in the

argument for Ãt
1 by ξ2 and ϕ0, respectively. We remark that

0 < ϕ0 < π
2 holds similarly to ϕ0 and that the change ψ0 →

ψ0 := ϕ2−ϕ1

2 = −ψ0 does not affect the equations above, so
we dismiss it. From (58) and (59) we have

ξmin
2 (t, ϕ0, ψ0) � ξ2 � ξmax

2 (t, ϕ0, ψ0), (60)

where

ξmin
2 (t, ϕ0, ψ0) = ξmin

1 (t, ϕ0, ψ0) = ξmin
1

(
t,

π

2
− ϕ0, ψ0

)
(61)

and

ξmax
2 (t, ϕ0, ψ0) = ξmax

1 (t, ϕ0, ψ0) = ξmax
1

(
t,

π

2
− ϕ0, ψ0

)
,

(62)

which satisfy

−π

2
+ ϕ0 < ξmin

2 (t, ϕ0, ψ0) � 0,

1 − w2
[
ξmin

2 (t, ϕ0, ψ0)
] = C2

[
ξmin

2 (t, ϕ0, ψ0)
]

(63)

and

0 � ξmax
2 (t, ϕ0, ψ0) <

π

2
− ϕ0,

1 + w2
[
ξmax

2 (t, ϕ0, ψ0)
] = C2

[
ξmax

2 (t, ϕ0, ψ0)
]
,

(64)

respectively.
Part (b). We consider the (in)compatibility of the observ-

ables Ãt
1 and Ãt

2 defined in (a) for t close to 1√
2

(t ∼ 1√
2
). It is

related directly to the S1-(in)compatibility of Atx
D and Aty

D as
we have shown at the beginning of this section.

Let us examine the behavior of ξmin
1 (t, ϕ0, ψ0) for t ∼

1√
2
. We denote ξmin

1 (t = 1√
2
, ϕ0, ψ0) and h1(t = 1√

2
, ϕ0, ψ0)

simply by ξ̂min
1 (ϕ0, ψ0) and ĥ1(ϕ0, ψ0), respectively. The fol-

lowing lemma is useful.
Lemma 4. With ϕ0 fixed, ξ̂min

1 is a strictly decreasing func-
tion of ψ0.

Proof. The claim can be observed to hold by a geometric
consideration in terms of Fig. 1. In fact, increasing ψ0 with
ϕ0 fixed corresponds to moving the line l1 down with its
inclination fixed. The movement makes h1 (or ĥ1) and hence
ξmin

1 (or ξ̂min
1 ) smaller, which proves the claim. Here we show

an analytic proof of this fact. We can see from (44) and (48)
that

√
2 cos ξ̂min

1 + ĥ1 sin ξ̂min
1 = 1, (65)

i.e.,

ĥ1 = 1

sin ξ̂min
1

(
1 −

√
2 cos ξ̂min

1

)
holds [note that sin ξ̂min

1 
= 0 because sin ξ̂min
1 = 0 contradicts

(65)]. Because

dĥ1

d ξ̂min
1

= 1

(sin ξ̂min
1 )2

(√
2 − cos ξ̂min

1

)
> 0

and ĥ1 = 1
sin ϕ0

(cos ψ0 − √
2 cos ϕ0) is a decreasing function

of ψ0, the claim follows. �
From this lemma it follows that

ξ̂min
1 (ϕ0, ψ0) < lim

ψ0→+0
ξ̂min

1 (ϕ0, ψ0) =: �min
1 (ϕ0) (66)

and

ξ̂min
2 (ϕ0, ψ0) < �min

2 (ϕ0) (67)

hold for all ϕ0 ∈ (0, π
2 ) and ψ0 ∈ (0, π

2 ), where

ξ̂min
2 (ϕ0, ψ0) := ξmin

2

(
t = 1√

2
, ϕ0, ψ0

)
[
= ξ̂min

1

(
π

2
− ϕ0, ψ0

)]
,

�min
2 (ϕ0) := lim

ψ0→+0
ξ̂min

2 (ϕ0, ψ0)

[
= �min

1

(
π

2
− ϕ0

)]
. (68)

We can prove the following lemma.
Lemma 5.

�min
1 (ϕ0) + �min

2 (ϕ0) � −π

2

holds for all 0 < ϕ0 < π
2 .

Proof. Let us define

H1(ϕ0) := lim
ψ0→+0

ĥ1(ϕ0, ψ0)

= lim
ψ0→+0

h1

(
t = 1√

2
, ϕ0, ψ0

)

= 1

sin ϕ0
(1 −

√
2 cos ϕ0).
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It holds similarly to (65) that
√

2 cos �min
1 + H1 sin �min

1 = 1. (69)

Hence, together with sin2 �min
1 + cos2 �min

1 = 1, we can ob-
tain

cos �min
1 = 1√

2

2 + H1

√
2H2

1 + 2

H2
1 + 2

(70)

or its more explicit form

cos �min
1 = 1√

2

4 − 3
√

2 cos ϕ0

3 − 2
√

2 cos ϕ0

. (71)

This results in

�min
1 (ϕ0) = − arccos

(
1√
2

4 − 3
√

2 cos ϕ0

3 − 2
√

2 cos ϕ0

)
, (72)

where we follow the convention that arccos : [−1, 1] →
[0, π ], and thus �min

1 ∈ (−π + ϕ0, 0] is obtained through
− arccos : [−1, 1] → [−π, 0]. Because

d

dϕ0

(
1√
2

4 − 3
√

2 cos ϕ0

3 − 2
√

2 cos ϕ0

)
= sin ϕ0

(3 − 2
√

2 cos ϕ0)2

and √√√√1 −
(

1√
2

4 − 3
√

2 cos ϕ0

3 − 2
√

2 cos ϕ0

)2

=
√(

sin ϕ0

3 − 2
√

2 cos ϕ0

)2

= sin ϕ0

3 − 2
√

2 cos ϕ0

,

we can observe that

d�min
1

dϕ0
=
(

sin ϕ0

3 − 2
√

2 cos ϕ0

)−1 sin ϕ0

(3 − 2
√

2 cos ϕ0)2

= 1

3 − 2
√

2 cos ϕ0

and

d2�min
1

dϕ2
0

= −2
√

2 sin ϕ0

(3 − 2
√

2 cos ϕ0)2
< 0, (73)

which means �min
1 is concave. Therefore, for any ϕ0 ∈ (0, π

2 ),
the concavity results in

1

2
�min

1 (ϕ0) + 1

2
�min

2 (ϕ0) = 1

2
�min

1 (ϕ0) + 1

2
�min

1

(
π

2
− ϕ0

)

� �min
1

[
1

2
ϕ0 + 1

2

(
π

2
− ϕ0

)]

= �min
1

(
π

4

)
.

Since we can see from (72) that �min
1 ( π

4 ) = −π
4 and

�min
1 (ϕ0) + �min

2 (ϕ0) � −π

2

it holds for any ϕ0 ∈ (0, π
2 ). �

According to Lemmas 4 and 5,

ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0)

< �min
1 (ϕ0) + �min

2 (ϕ0) � −π

2
,

that is,

ξmin
1

(
t = 1√

2
, ϕ0, ψ0

)
+ ξmin

2

(
t = 1√

2
, ϕ0, ψ0

)
< −π

2

holds for any ϕ0 and ψ0 (i.e., for any ϕ1 and ϕ2). However, we
cannot conclude that

ξmin
1 (t, ϕ0, ψ0) + ξmin

2 (t, ϕ0, ψ0) � −π

2
(74)

holds for t ∼ 1√
2
; it may fail when

sup
ϕ0,ψ0

[
ξmin

1

(
t = 1√

2
, ϕ0, ψ0

)
+ ξmin

2

(
t = 1√

2
, ϕ0, ψ0

)]

= −π

2
.

On the other hand, because we can observe similarly to
Lemma 4 that ξmin

1 is a strictly decreasing function of ψ0, it is
anticipated that (74) holds for t ∼ 1√

2
and for ψ0 sufficiently

close to π
2 . In fact, for ψ0 ∈ [π

4 , π
2 ), we can prove the follow-

ing proposition.
Proposition 7. There exists a constant C < −π

2 such that

ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0) < C,

i.e.,

ξmin
1

(
t = 1√

2
, ϕ0, ψ0

)
+ ξmin

2

(
t = 1√

2
, ϕ0, ψ0

)
< C,

holds for all ψ0 ∈ [π
4 , π

2 ) and ϕ0 ∈ (0, π
2 ).

Proof. Because

ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0)

= ξ̂min
1 (ϕ0, ψ0) + ξ̂min

1

(
π

2
− ϕ0, ψ0

)
,

we can assume without loss of generality that 0 < ϕ0 � π
4 .

Due to Lemma 4, it holds for any ψ0 ∈ [π
4 , π

2 ) that

ξ̂min
1 (ϕ0, ψ0) � ξ̂min

1

(
ϕ0, ψ0 = π

4

)
,

ξ̂min
1

(π

2
− ϕ0, ψ0

)
� ξ̂min

1

(
π

2
− ϕ0, ψ0 = π

4

)
. (75)

Let us denote ξ̂min
1 (ϕ0, ψ0 = π

4 ) simply by �̃min
1 (ϕ0). In order

to investigate �̃min
1 (ϕ0) and �̃min

1 ( π
2 − ϕ0), we have to recall

(65). Similarly to (69) and (70) in the proof of Lemma 5, it
results in

cos �̃min
1 = 1√

2

2 + H̃1

√
2H̃2

1 + 2

H̃2
1 + 2

, (76)

where

H̃1(ϕ0) = ĥ1

(
ϕ0, ψ0 = π

4

)

= 1

sin ϕ0

(
1√
2

−
√

2 cos ϕ0

)
. (77)
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FIG. 3. Geometric description of �̃min
1 . It can be observed that

�̃min
1 = − π

2 when H̃1 = −1.

Note that in this case we cannot apply a method similar to
the one in Lemma 5 because �̃min

1 does not have a clear form
like (72). Alternatively, we focus on the following monotonic
relations between �̃min

1 , H̃1, and ϕ0 (referring to the proof of
Lemma 4 may be helpful):

d�̃min
1

dH̃1
> 0,

dH̃1

dϕ0
> 0

(
thus

d�̃min
1

dϕ0
> 0

)
. (78)

From these relations it can be seen that our restriction 0 <

ϕ0 � π
4 is equivalent to the condition H̃1 � 1 − √

2 since
H̃1(0) = −∞ and H̃1( π

4 ) = 1 − √
2. The claim of the propo-

sition can be shown easily when H̃1 � −1 [or 0 < ϕ0 � ϕ∗ :=
arccos 2+√

10
6 , where H̃1(ϕ∗) = −1]. In fact,

�̃min
1 (ϕ0) � �̃min

1 (ϕ∗) = −π

2

and

�̃min
1

(
π

2
− ϕ0

)
< �̃min

1

(
π

2

)
= − arccos

2
√

2 + √
3

5

hold [see Fig. 3 and (76)], and thus we can conclude that

�̃min
1 (ϕ0) + �̃min

1

(
π

2
− ϕ0

)
< C1,

where

C1 = −π

2
− arccos

2
√

2 + √
3

5

(
< −π

2

)
.

When −1 < H̃1 � 1 − √
2 (or ϕ∗ < ϕ0 � π

4 ), we need a
somewhat complicated evaluation. It holds similarly to the
previous calculations that

�̃min
1 (ϕ0) � �̃min

1

(
π

4

)
,

�̃min
1

(π

2
− ϕ0

)
< �̃min

1

(
π

2
− ϕ∗

)
.

Since

�̃min
1 = −π

4
⇐⇒ H̃1 = 0 ⇐⇒ ϕ0 = π

3
,

�̃min
1 ( π

4 ) < −π
4 = �̃min

1 ( π
3 ) holds due to the monotonic rela-

tions (78). On the other hand, we have

cos ϕ∗ − cos
π

6
= 2 + √

10

6
−

√
3

2
= −0.0056 . . . < 0,

that is,

ϕ∗ >
π

6
.

It follows that π
2 − ϕ∗ < π

3 , and thus �̃min
1 ( π

2 − ϕ0) < −π
4 .

Therefore, we can conclude also in this case

�̃min
1 (ϕ0) + �̃min

1

(
π

2
− ϕ0

)
< C2,

where

C2 = �̃min
1

(
π

4

)
+ �̃min

1

(
π

2
− ϕ∗

)(
< −π

2

)
.

Overall, we have obtained

�̃min
1 (ϕ0, ψ0) + �̃min

2 (ϕ0, ψ0) < max{C1,C2}
(

< −π

2

)

for all ϕ0 ∈ (0, π
2 ) and ψ0 ∈ [π

4 , π
2 ). �

By virtue of this proposition, for t sufficiently close to 1√
2
,

ξmin
1 (t, ϕ0, ψ0) + ξmin

2 (t, ϕ0, ψ0) � −π

2

follows from the continuity of ξmin
1 and ξmin

2 with respect to t
when π

4 � ψ0 < π
2 . This means that there always exist ξ�

1 �
ξmin

1 and ξ�
2 � ξmin

2 for such t and for any ϕ1 and ϕ2 satisfying
ξ�

1 + ξ�
2 = −π

2 . For these ξ�
1 and ξ�

2 , v1 = −v2 holds, and thus
Ãt

1 and Ãt
2 are compatible, i.e., Atx

D and Aty
D are S1-compatible.

On the other hand, when 0 < ψ0 < π
4 , it may not hold for

t ∼ 1√
2

that ξmin
1 (t, ϕ0, ψ0) + ξmin

2 (t, ϕ0, ψ0) � −π
2 , and thus

we cannot apply the same argument. Nevertheless, we can
demonstrate that there exist ξ1 and ξ2 such that Ãt

1 and Ãt
2

are compatible even when 0 < ψ0 < π
4 . To see this, let us as-

sume that 0 < ψ0 < π
4 and apply the necessary and sufficient

condition for (in)compatibility. According to the result proved
in [32–34], Ãt

1 and Ãt
2 with (33) and (56), respectively, are

compatible if and only if(
1 − F 2

1 − F 2
2

)(
1 − w2

1

F 2
1

− w2
2

F 2
2

)
� (m1 · m2 − w1w2)2

(79)

holds, where

F1 := 1

2

(√
(1 + w1)2 − C2

1 +
√

(1 − w1)2 − C2
1

)
, (80)

F2 := 1

2

(√
(1 + w2)2 − C2

2 +
√

(1 − w2)2 − C2
2

)
. (81)

For ξmin
1 and ξmin

2 , since it holds that

1 − w1
(
ξmin

1

) = C1
(
ξmin

1

)
, (82)

1 − w2
(
ξmin

2

) = C2
(
ξmin

2

)
, (83)

they become

F1 =
√

w1
(
ξmin

1

)
, F2 =

√
w2
(
ξmin

2

)
. (84)
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Therefore, (79) can be rewritten as{[
1 − sin

(
ξmin

1 + ξmin
2

)]
w1
(
ξmin

1

)
w2
(
ξmin

2

)− [1 + sin
(
ξmin

1 + ξmin
2

)][
1 − w1

(
ξmin

1

)− w2
(
ξmin

2

)]}
× {[

1 − w1
(
ξmin

1

)][
1 − w2

(
ξmin

2

)][
1 − sin

(
ξmin

1 + ξmin
2

)]}
� 0. (85)

If 1 − sin(ξmin
1 + ξmin

2 ) = 0, then (85) holds, that is, Ãt
1 and Ãt

2 for ξmin
1 and ξmin

2 , respectively, are compatible. Therefore, we
hereafter assume that 1 − sin(ξmin

1 + ξmin
2 ) > 0 and rewrite (85) as [note that 0 < w1(ξmin

1 ) < 1 and 0 < w2(ξmin
2 ) < 1][

1 − w1
(
ξmin

1

)− w2
(
ξmin

2

)]
�
[
1 − sin

(
ξmin

1 + ξmin
2

)]
w1
(
ξmin

1

)
w2
(
ξmin

2

)
. (86)

In other words, Ãt
1 and Ãt

2 with respect to ξmin
1 and ξmin

2 are incompatible if and only if[
1 − w1

(
ξmin

1

)− w2
(
ξmin

2

)]
>
[
1 − sin

(
ξmin

1 + ξmin
2

)]
w1
(
ξmin

1

)
w2
(
ξmin

2

)
(87)

holds. In order to investigate whether (87) holds, it is helpful to introduce a function Z defined as

Z (t, ϕ0, ψ0) := {1 + sin
[
ξmin

1 (t, ϕ0, ψ0) + ξmin
2 (t, ϕ0, ψ0)

]}{
1 + w1

[
ξmin

1 (t, ϕ0, ψ0)
]+ w2

[
ξmin

2 (t, ϕ0, ψ0)
]}

− {1 − sin
[
ξmin

1 (t, ϕ0, ψ0) + ξmin
2 (t, ϕ0, ψ0)

]}
w1
[
ξmin

1 (t, ϕ0, ψ0)
]
w2
[
ξmin

2 (t, ϕ0, ψ0)
]
. (88)

Because [
1 + sin

(
ξmin

1 + ξmin
2

)][
1 − w1

(
ξmin

1

)− w2
(
ξmin

2

)]
<
[
1 + sin

(
ξmin

1 + ξmin
2

)][
1 + w1

(
ξmin

1

)+ w2
(
ξmin

2

)]
,

Z (t, ϕ0, ψ0) > 0 (89)

holds if Ãt
1 and Ãt

2 with respect to ξmin
1 and ξmin

2 are incompatible. Let us focus on the case when t = 1√
2

(i.e., ξmin
1 = ξ̂min

1 ). If a

pair (ϕ0, ψ0) satisfies ξ̂min
1 (ϕ0, ψ0) � −π

2 or ξ̂min
2 (ϕ0, ψ0) � −π

2 , then

ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0) < C,

with

C = −π

2
+ lim

ϕ0→π/2−0
ψ0→ + 0

ξ̂min
1 (ϕ0, ψ0) = −π

2
− arccos

(
2
√

2

3

)
< −π

2
,

holds due to monotonic relations similar to (78) between ϕ0, ψ0, and ξ̂min
1 [recall that ξ̂min

2 (ϕ0, ψ0) = ξ̂min
1 ( π

2 − ϕ0, ψ0)].
Therefore, in this case, we can apply the same argument as Proposition 7, which results in the compatibility of Ãt

1 and
Ãt

2 for t ∼ 1√
2
. On the other hand, let us examine the case when (ϕ0, ψ0) satisfies ψ0 ∈ (0, π

4 ), and ξ̂min
1 (ϕ0, ψ0) > −π

2 and

ξ̂min
2 (ϕ0, ψ0) > −π

2 . Because ψ0 ∈ (0, π
4 ), we obtain, for general t [see (37)],

w1
(
ξmin

1

)
> − t√

2

sin ξmin
1

sin
(
ϕ0 − ξmin

1

) � t√
2

(− sin ξmin
1

)
. (90)

For t = 1√
2
, since

−π

2
< ξ̂min

1 (ϕ0, ψ0) < lim
ϕ0→π/2−0

ψ0→+0

ξ̂min
1 (ϕ0, ψ0),

it gives a bound

w1
(
ξmin

1

)
> 1

2 sin ξ̂0, (91)

where we define

ξ̂0 = − lim
ϕ0→π/2−0

ψ0→+0

ξ̂min
1 (ϕ0, ψ0) = arccos

(
2
√

2

3

)
.

Let ε be a positive constant satisfying ε < 1
16 (sin ξ̂0)2. Due to the continuity of the sine function, there exists a positive constant δ

such that sin x ∈ (−1,−1 + ε) whenever x ∈ (−π
2 − δ,−π

2 ). If (ϕ0, ψ0) satisfies ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0) � −π
2 − δ, then

it again leads to the same argument as Proposition 7, and we can see that Ãt
1 and Ãt

2 for this (ϕ0, ψ0) are compatible. Conversely,
if (ϕ0, ψ0) satisfies −π

2 − δ < ξ̂min
1 (ϕ0, ψ0) + ξ̂min

2 (ϕ0, ψ0) < −π
2 (recall Lemma 5), then

−1 < sin
[
ξ̂min

1 (ϕ0, ψ0) + ξ̂min
2 (ϕ0, ψ0)

]
< −1 + ε
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follows from the definition of δ. Therefore, by virtue of (88), we have

Z

(
t = 1√

2
, ϕ0, ψ0

)
= {1 + sin

[
ξ̂min

1 (ϕ0, ψ0) + ξ̂min
2 (ϕ0, ψ0)

]}{
1 + w1

[
ξ̂min

1 (ϕ0, ψ0)
]+ w2

[
ξ̂min

2 (ϕ0, ψ0)
]}

− {1 − sin
[
ξ̂min

1 (ϕ0, ψ0) + ξ̂min
2 (ϕ0, ψ0)

]}
w1
[
ξ̂min

1 (ϕ0, ψ0)
]
w2
[
ξ̂min

2 (ϕ0, ψ0)
]

< ε
{
1 + w1

[
ξ̂min

1 (ϕ0, ψ0)
]+ w2

[
ξ̂min

2 (ϕ0, ψ0)
]}− (2 − ε)w1

[
ξ̂min

1 (ϕ0, ψ0)
]
w2
[
ξ̂min

2 (ϕ0, ψ0)
]

= ε
{
1 + w1

[
ξ̂min

1 (ϕ0, ψ0)
]}{

1 + w2
[
ξ̂min

1 (ϕ0, ψ0)
]}− 2w1

[
ξ̂min

1 (ϕ0, ψ0)
]
w2
[
ξ̂min

2 (ϕ0, ψ0)
]

< 4ε − 2w1
[
ξ̂min

1 (ϕ0, ψ0)
]
w2
[
ξ̂min

2 (ϕ0, ψ0)
]
.

Because

4ε − 2w1
[
ξ̂min

1 (ϕ0, ψ0)
]
w2
[
ξ̂min

2 (ϕ0, ψ0)
]

< 1
4 (sin ξ̂0)2 − 1

2 (sin ξ̂0)2 = − 1
4 (sin ξ̂0)2,

it holds that

Z

(
t = 1√

2
, ϕ0, ψ0

)
< −1

4
(sin ξ̂0)2 < 0.

Therefore, for t ∼ 1√
2
, Z (t, ϕ0, ψ0) � 0 holds, that is, Ãt

1 and

Ãt
2 with respect to ξmin

1 and ξmin
2 are compatible. Overall, we

have demonstrated that when t ∼ 1√
2
, there exist compatible

observables Ãt
1 and Ãt

2 for any line S1 ⊂ SD such that they
agree with Atx

D and Aty
D on S1, respectively. That is, when

t ∼ 1√
2
, Atx

D and Aty
D are S1-compatible for any line S1 ⊂ SD.

Therefore, we can conclude that χincomp(Atx
D , Aty

D ) = 3 for t ∼
1√
2
, and thus the set M in (24) is nonempty.

Proof of Proposition 6: Part 2

In this part we show that

t ′
0 := inf L = sup M ∈ M,

where L and M are defined in (24). In order to prove this,
we will see that if t ∈ L, then t − δ ∈ L for sufficiently small
δ > 0, that is, t ′

0 /∈ L.
Let us focus again on a system described by a two-

dimensional disk state space SD. It is useful to identify this
system with the system of a quantum bit with real coefficients
by replacing {σ1, σ2} with {σ3, σ1}. Then, defining ED as the
set of all effects on SD, we can see that any E ∈ ED can be
expressed as a real-coefficient positive matrix smaller than
1. We also define OD(2) ⊂ ED × ED as the set of all binary
observables on SD, which is isomorphic naturally to ED since
a binary observable A is completely specified by its effect
A(+) ∈ ED. By introducing a topology (e.g., norm topology)
on ED, it also can be observed that OD(2) is homeomorphic
to ED. Note that because the system is described by finite-
dimensional matrices, any (natural) topology (norm topology,
weak topology, etc.) coincides with another. For a pair of
states {�r1 , �r2} in SD and a binary observable A ∈ OD(2),
we define a set of observables C(A : �r1 , �r2 ) as the set of all
binary observables Ã ∈ OD(2) such that

tr[�r1Ã(±)] = tr[�r1A(±)],

tr[�r2 Ã(±)] = tr[�r2 A(±)].

It can be confirmed easily that C(A : �r1 , �r2 ) is closed in
OD(2) � ED. Let us denote by OD(4) the set of all observables

with four outcomes, which is a compact (i.e., bounded and
closed) subset of E4

D. For each M = {M(x, y)} ∈ OD(4) we can
introduce a pair of binary observables by

π1(M) =
{∑

y

M(x, y)

}
x

, π2(M) =
{∑

x

M(x, y)

}
y

.

Since π j : OD(4) → OD(2) is continuous, the set of all com-
patible binary observables denoted by

JM(2, 2) := {(π1(M), π2(M)) | M ∈ OD(4)}
is compact in OD(2) × OD(2) � ED × ED as well. As we
have seen in the previous part, χincomp(Atx, Aty) = 2 [i.e.,
χincomp(Atx

D , Aty
D ) = 2] if and only if there exists a pair of

vectors r1, r2 ∈ ∂D such that[
C
(
Atx

D : �r1 , �r2
)× C

(
Aty

D : �r1 , �r2
)] ∩ JM(2 : 2) = ∅.

Let us examine concrete representations of the sets. Each
effect E ∈ ED is written as E = 1

2 (e01 + e · σ ) = 1
2 (e01 +

e1σ1 + e2σ2) with (e0, e) = (e0, e1, e2) ∈ R3 satisfying 0 �
e0 ± |e| � 2.

If we consider another effect F = 1
2 ( f01 + f · σ ), the op-

erator norm of E − F is calculated as

‖E − F‖ = 1
2 (|e0 − f0| + |e − f |). (92)

We may employ this norm to define a topology on ED

and OD(2) � ED. On the other hand, each state in SD

is parametrized as �r1 = 1
2 (1 + x1σ1 + y1σ2), where r1 =

(x1, y1) satisfies |r1| � 1. For an effect E and a state
�r1 , we have tr[�r1 E ] = 1

2 (e0 + r1 · e). In particular, when
considering Atx(±) = 1

2 (1 ± tσ1), a binary observable C
determined by the effect C(+) = 1

2 (c01 + c · σ ) = 1
2 (c01 +

c1σ1 + c2σ2) satisfies C ∈ C(Atx : �r1 , �r2 ) if and only if

tr[�r1Atx(+)] = tr[�r1C(+)],

tr[�r2 Atx(+)] = tr[�r2 C(+)],

i.e.,

1 + tx1 = c0 + r1 · c = c0 + x1c1 + y1c2,

1 + tx2 = c0 + r2 · c = c0 + x2c1 + y2c2
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FIG. 4. Geometric description of n, which can observed to lie in
the third quadrant.

hold, where we set r2 = (x2, y2). The set of their solutions for
(c0, c) is represented as

(c0, c) = (1, t, 0) + λ′
(

− x1y2 − y1x2

x1 − x2
,−y1 − y2

x1 − x2
, 1

)
,

with λ′ ∈ R. Let us define a vector n ∈ R2 such that

(1, n) · (1, r1) = (1, n) · (1, r2) = 0

(i.e., n · r1 = n · r2 = −1). It is easy to see that(
−x1y2 − y1x2

x1 − x2
,−y1 − y2

x1 − x2
, 1

)
∝ (1, n),

and thus the set of solutions can be rewritten as

(c0, c) = (1, t, 0) + λ(1, n), (93)

with λ ∈ R. Note that because we are interested in the case
when Atx

D and Aty
D are S1-incompatible, we do not consider the

case when r1 and r2 are parallel or when x1 = x2 correspond-
ing to ψ0 = π

2 or ϕ0 = 0 in Part 1, respectively. Therefore,
the vector n = (nx, ny) can be defined successfully, and it is

easy to verify that |n| =
√

n2
x + n2

y > 1. Moreover, because
ϕ0 is supposed to be 0 < ϕ0 < π

2 as shown in Part 1, we can
assume without loss of generality that its components nx and
ny are negative (see Fig. 4). In order for C to be an element of
C(Atx : �r1 , �r2 ), Eq. (93) should also satisfy

0 � 1 + λ ± |(t, 0) + λn| � 2,

i.e.,

1 + λ − |(t, 0) + λn| � 0, 1 + λ + |(t, 0) + λn| � 2.

This can be reduced to

λt
1 � λ � λt

2, (94)

with

λt
1 = 1 − nxt −

√
(1 − nxt )2 + (|n|2 − 1)(1−t2)

|n|2 − 1
,

λt
2 = min

{
1,

−1−nxt +
√

(1+nxt )2 + (|n|2 − 1)(1 − t2)

|n|2 − 1

}
,

(95)

FIG. 5. Solutions for λ.

where we used |n| > 1 and nx < 0 (see Fig. 5). Overall,
C(Atx

D : �r1 , �r2 ) is isomorphic to the set parametrized as{
(1, t, 0) + λ(1, n) | λt

1 � λ � λt
2

}
, (96)

where λt
1 and λt

2 are shown in (95). We remark that the same
argument can be applied for C(Aty : �r1 , �r2 ).

We now prove t ′
0 = inf L /∈ L. Suppose that t ∈ L, i.e.,

χincomp(Atx
D , Aty

D ) = 2. It follows that there exist r1 and r2 in
∂D such that[

C
(
Atx

D : �r1 , �r2
)× C

(
Aty

D : �r1 , �r2
)] ∩ JM(2 : 2) = ∅.

Denoting C(Atx
D : �r1 , �r2 ) and C(Aty

D : �r1 , �r2 ) simply by X t

and Y t , respectively, we can rewrite it as

X t × Y t ∩ JM(2 : 2) = ∅.

We need the following lemma.
Lemma 6. Let δ > 0. There exists � > 0 such that for all

τ ∈ [0,�] and for all C ∈ X t−τ , there exists A ∈ X t satisfying

d (C, A) := ‖C(+) − A(+)‖ < δ,

where d is a metric on OD(2) defined through the operator
norm ‖ · ‖ on ED � OD(2).

Proof. By definition, X t is a convex set of OD(2), and
thus for all E ∈ OD(2) we can define successfully the distance
between E and X t :

d (E, X t ) = min
F∈Xt

d (E, F).

In particular, for E′ ∈ X t−�′ ⊂ OD(2) with �′ > 0 and
E′(+) = 1

2 (e′
01 + e′ · σ ), it becomes

d (E′, X t ) = min
F∈Xt

d (E′, F)

= min
F∈Xt

1
2 (|e′

0 − f0| + |e − f |), (97)

where F(+) = 1
2 ( f01 + f · σ ) [see (92)]. Since, in terms of

(96), E′ ∈ X t−�′
and F ∈ X t imply

(e′
0, e′) = (1, t − �′, 0) + λ′(1, n)

with λt−�′
1 � λ′ � λt−�′

2 and

( f0, f ) = (1, t, 0) + λ(1, n)

with λt
1 � λ � λt

2, respectively, Eq. (97) can be rewritten as

2d (E′, X t )

= min
λ∈[λt

1,λ
t
2]

[|λ′ − λ| + |(−�′, 0) + (λ′ − λ)n|].
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It follows that

2d (E′, X t ) � �′ + min
λ∈[λt

1,λ
t
2]

|λ′ − λ|(1 + |n|). (98)

Let us evaluate its right-hand side. It is easy to see that

min
λ∈[λt

1,λ
t
2]

|λ′ − λ| =
⎧⎨
⎩

λt
1 − λ′ (λ′ < λt

1)
0 (λt

1 � λ′ � λt
2)

λ′ − λt
2 (λ′ > λt

2).

Suppose that λ′ < λt
1 holds, for example. In this case, because

λt−�′
1 � λ′, we can obtain

λt
1 − λ′ � λt

1 − λt−�′
1 .

In a similar way, it can be demonstrated that

sup
λ′∈[λt−�′

1 ,λt−�′
2 ]

min
λ∈[λt

1,λ
t
2]

|λ′ − λ|

= max
{
λt

1 − λt−�′
1 , 0, λt−�′

2 − λt
2

}
.

By virtue of (95), the right-hand side converges to 0 as �′ →
0, and thus we can see from (98) that

sup
E′∈Xt−�′

d (E′, X t ) −→
�′→0

0.

This results in there being a � > 0 such that for all τ ∈ [0,�],

sup
E′∈Xt−τ

d (E′, X t ) < δ

holds, that is, d (C, X t ) < δ holds for any C ∈ X t−τ . More-
over, because X t is convex, there exists A ∈ X t satisfy-
ing d (C, X t ) = d (C, A), which proves the claim of the
lemma. �

Note that a similar statement also holds for Y t : There
exists �̃ > 0 such that for all τ̃ ∈ [0, �̃] and for all D ∈
Y t−τ̃ , there exists B ∈ Y t satisfying d (D, B) < δ. Let V :=
OD(2) × OD(2)(� ED × ED) and let dV be a product metric
on V defined as

dV ((A, B), (C, D)) = max{d (A, C), d (B, D)}.
According to Lemma 6 and its Y t counterpart, if we take
�0 = min{�, �̃} (>0), then there exists (A, B) ∈ X t × Y t for
all (C, D) ∈ X t−�0 × Y t−�0 such that dV ((A, B), (C, D)) <

δ. On the other hand, as we have seen, it holds that

X t × Y t ∩ JM(2 : 2) = ∅.

Since X t × Y t and JM(2 : 2) are closed in V and V is a metric
space, we can apply Urysohn’s lemma [35]. It follows that

there exists a continuous (in fact uniformly continuous since
V is compact) function f : V → [0, 1] satisfying f (U ) = 0
for any U ∈ X t × Y t and f (W ) = 1 for any W ∈ JM(2 : 2).
The uniform continuity of f implies that for some ε ∈ (0, 1)
there is δ > 0 such that

dV ((E′, F′), (E, F)) < δ

⇒ | f ((E′, F′)) − f ((E, F))| < ε (99)

holds for any (E, F) ∈ V . For this δ, we can apply the
argument above: We can take �0 > 0 such that for any
(C, D) ∈ X t−�0 × Y t−�0 there exists (A, B) ∈ X t × Y t sat-
isfying dV ((A, B), (C, D)) < δ. Because f ((A, B)) = 0, we
have f ((C, D)) < ε < 1 [see (99)], and thus (C, D) /∈ JM(2 :
2). This indicates that X t−�0 × Y t−�0 ∩ JM(2 : 2) = ∅, that
is, there is �0 > 0 for any t ∈ L satisfying t − �0 ∈ L. There-
fore, t ′

0 = inf L /∈ L can be concluded.

VI. CONCLUSION

In this study we have introduced the notions of incompati-
bility and compatibility dimensions for collections of devices.
They describe the minimum number of states which are
needed to detect incompatibility and the maximum number
of states on which incompatibility vanishes, respectively. We
have not only presented general properties of those quantities
but also examined concrete behaviors of them for a pair of
unbiased qubit observables. We have proved that even for this
simple pair of incompatible observables there exist two types
of incompatibility with different incompatibility dimensions
which cannot be observed if we focus only on the robustness
of incompatibility under noise. We expect that it is possible
to apply this difference to some quantum protocols such as
quantum cryptography. Future work will be needed to investi-
gate whether similar results can be obtained for observables in
higher-dimensional Hilbert space or other quantum devices.
As the definitions apply to devices in GPTs, an interesting
task is further to see how quantum incompatibility dimension
differ from incompatibility dimension in general.
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