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For over six decades, quantum electrodynamics (QED) in multipolar form has been an invaluable tool for
understanding quantum-scale atomic and molecular interactions. However, its relation to the Poincaré gauge has
been a recent topic of controversy and debate. It was claimed by Rousseau and Felbacq in [Sci. Rep. 7, 11115
(2017)] that Hamiltonian multipolar QED is not the same as Poincaré-gauge QED and that it is not generally
equivalent to Coulomb-gauge QED. This claim has subsequently been refuted, but since both sides of the debate
appear technically sound, a clear reconciliation remains to be given. This task is of paramount importance due to
the widespread use of multipolar QED in quantum optics and atomic physics. Here, unlike in other responses, we
adopt the same method as Rousseau and Felbacq of using Dirac’s constrained quantization procedure. However,
our treatment shows that Poincaré-gauge and multipolar QED are identical. We identify the precise source of
the apparent incompatibility of previous results as nothing more than a semantic mismatch. In fact there are no
inconsistencies. Our results firmly and rigorously solidify the multipolar theory.
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I. INTRODUCTION

Quantum electrodynamics (QED) is the prototypical quan-
tum gauge-field theory. Therein, the nondynamical constraint
called Gauss’ law; ∇ · E = ρ where E is the electric field and
ρ the density of charges, implies gauge redundancy. When
electromagnetic potentials are used as generalized coordinates
the Lagrangian of the theory is degenerate, implying that there
will be fewer canonical momenta than canonical coordinates
when passing to the Hamiltonian formalism. Dirac laid out a
systematic procedure by which a suitable Lie algebra of classi-
cal observables, known as Dirac brackets, can be constructed,
which respect both the equations of motion and the non-
dynamical constraints. This enables passage to the quantum
theory via the replacement of Dirac brackets with commuta-
tors. Applied to QED, Dirac’s procedure requires invoking a
gauge-fixing constraint to eliminate gauge redundancy, which
identifies a physical subspace of states.

In the nonrelativistic theory of atoms and molecules QED
in multipolar form has been an invaluable tool over the past
six decades and has been found to agree well with experi-
ment. Indeed, the first example of this goes back over fifty
years to the pioneering work of Power and Zienau [1] in
predicting the natural lineshape of atomic hydrogen within
Lamb’s famous experiments [2]. In the vast recent litera-
ture, multipolar QED has seen numerous applications; see,
for example, Refs. [3–26]. As photonic systems continue to
diversify and the field continues to expand, multipolar QED
will continue to serve as a fundamentally important theoretical
tool.

The derivation of multipolar QED and its relation to
Coulomb-gauge QED is standard textbook material [27,28].
Nearly always however, the multipolar form is obtained
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as a Power-Zienau-Woolley (PZW) transformation of the
Coulomb-gauge theory, either at the Lagrangian or Hamilto-
nian level. In other words, the Coulomb gauge is fixed first to
obtain the physical subspace and one then works from there.
Automatically, this method means that the multipolar theory
is expressed in terms of the transverse vector potential, which
is a gauge-invariant quantity, but which is often mistaken as
belonging to the Coulomb gauge because of the property that
the longitudinal vector potential vanishes therein. The PZW
transformation also transforms the Coulomb-gauge canoni-
cal momentum operators, which therefore possess different
physical meaning before and after the transformation. In the
Coulomb gauge the field canonical momentum is the trans-
verse electric field. In the multipolar formalism however, the
momentum conjugate to the transverse vector potential is not
the transverse electric field.

Multipolar QED is clearly closely related to the so-
called Poincaré gauge, but due to the preceding facts, some
confusion has arisen regarding whether and in what sense
multipolar QED can really be considered an alternative gauge
choice to the Coulomb gauge. Naively speaking, a different
gauge choice to the Coulomb gauge would presumably entail
a theory written in terms of a different vector potential. More-
over, it is not immediately obvious why the field canonical
momentum should change from the transverse electric field.
Yet multipolar QED seems to contradict these naive expec-
tations. Indeed, Refs. [29,30] apply Dirac’s method in the
case of nonrelativistic material charges to derive the Poincaré-
gauge canonical theory and claim that textbook multipolar
QED is in fact not the same as the correct Poincaré-gauge
theory. They claim further that the multipolar theory will not
produce the same results as the well-known Coulomb-gauge
theory. References [31] and [32] dispute this claim, conclud-
ing that criticisms of the multipolar framework in Ref. [29]
are not valid. In turn, Ref. [30] disputes the conclusions of
Ref. [31], maintaining that the conclusion of Ref. [29] is valid.
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Although Refs. [31] and [32] contain valuable insights, the
situation has not been clearly and decisively resolved. This is
because it is not clear where, if anywhere, either side of the
debate is technically flawed, and if both sides are technically
sound, it is unclear how the apparent disagreement comes to
be. Here, we adopt the same method of Dirac’s constrained
quantization as used in Refs. [29,30]. We show precisely why
this claim is in fact not valid, despite the technical valid-
ity of the Poincaré-gauge theory obtained in Refs. [29,30].
We demonstrate how the theory derived in this way is in
fact identical to textbook multipolar theory. The key to the
resolution we provide is the construction of the canonical
operators that are commonly used in multipolar QED from
the canonical operators of the Poincaré gauge that are found
using Dirac’s method. Attempting to equate these distinct
canonical operator sets results in the incorrect conclusion
that the two theories are disparate. In fact the two sets of
operators are not identical, but they can be easily related.
Expressing the Poincaré-gauge theory in terms of the mul-
tipolar canonical operators reveals that the two theories are
identical. We show, moreover, that all fixed-gauge theories of
QED are equivalent by explicitly constructing the necessary
unitary gauge-fixing transformations that act within the phys-
ical state space. The Power-Zienau-Woolley transformation
between Coulomb-gauge and multipolar QED is an example
of such a transformation.

This article is divided into four sections. In Sec. II we
provide a pedagogical overview of gauge freedom, which
facilitates a straightforward understanding of our results in
Sec. III. This includes understanding both electromagnetic
and material auxiliary potentials. In Sec. III we provide our
main results, which resolve all controversy surrounding mul-
tipolar QED and its relation to the Poincaré-gauge, rigorously
solidifying the multipolar theory. In Sec. IV we generalize our
results by providing the Hamiltonian in an arbitrary gauge. We
show that all such Hamiltonians are unitarily equivalent and
provide the general form of unitary gauge-fixing transforma-
tions of which the well-known Power-Zienau-Woolley (PZW)
transformation is an example. We summarize our findings
briefly in Sec. V.

II. BACKGROUND

A. Gauge freedom and electromagnetic potentials

Throughout this article we use natural Lorentz-Heaviside
units. For simplicity we restrict our attention to a single-
electron atom with fixed nucleus at the origin within the
surrounding electromagnetic field. The classical charge and
current densities are

ρ(x) = qδ(x − r) − qδ(x), (1)

J( x) = qṙδ(x − r), (2)

where q is the electron’s charge, and r is its position. Electric
and magnetic fields E and B are defined in terms of the scalar
and vector potentials A0 and A as

E = −∇A0 − Ȧ, (3)

B = ∇ × A. (4)

These definitions imply that the homogeneous Maxwell
equations, ∇ · B = 0 and Ḃ = −∇ × E, are automatically
satisfied. To see this, note that ∇ · ∇ × V = 0 for any
twice-differentiable V and that ∇ × ∇V = 0 for any twice-
differentiable V . The inhomogeneous constraint C1 := ∇ ·
E − ρ = 0 (Gauss’ law) must be imposed within the theory
while the remaining inhomogeneous equation is dynamical
Ė = ∇ × B − J (Maxwell-Ampere law). This is an equation
of motion that must be produced by any satisfactory La-
grangian or Hamiltonian description.

The electric and magnetic fields are invariant under the
gauge transformation

A′ = A + ∇χ, (5)

A′
0 = A0 − χ̇ , (6)

where χ is an arbitrary function over space-time. Recall that
the Helmholtz decomposition of a vector-field V into trans-
verse and longitudinal fields, V = VT + VL, is unique. The
transverse and longitudinal components satisfy ∇ · VT = 0
and ∇ × VL = 0. We see therefore that the transverse vec-
tor potential AT is gauge invariant and unique; that is, if
A and A′ are related as in Eq. (5) then A′

T = AT. Gauge
freedom is therefore the freedom to choose the longitudinal
vector potential AL = ∇χ where A = AT + ∇χ . Perhaps the
most straightforward choice is AL = 0, which is called the
Coulomb gauge. If we denote the corresponding Coulomb-
gauge scalar potential by φ then we have from Eq. (3) that
E = −∇φ − ȦT from which it follows that ∇ · E = −∇2φ.
If we invoke Gauss’ law, ∇ · E = ρ, then we obtain

φ(x) = − 1

∇2
ρ(x) =

∫
d3x′ ρ(x′)

4π |x − x′| , (7)

which is called the Coulomb potential of the charge distribu-
tion ρ.

The Coulomb-gauge potentials (φ, AT) provide a conve-
nient reference set in terms of which any other gauge may be
specified as

A = AT + ∇χ, (8)

A0 = φ − χ̇ . (9)

We emphasize however, that it is incorrect to identify AT

and φ as belonging to the Coulomb gauge, because they are
well-defined fields that are identifiable and the same in every
gauge. What defines the Coulomb gauge is the (gauge-fixing)
condition that χ in Eqs. (8) and (9) vanishes. This condition
has nothing to do with φ and AT. Its effect is to fix A as
equal to AT and to fix A0 as equal to φ, but whether these
equalities happen to hold, the quantities AT and φ are always
well-defined and identifiable.

Since the transverse potential AT is gauge invariant, in any
gauge it can be used as an elementary physical coordinate for
the electromagnetic field. The standard Coulomb and Poincaré
gauges of nonrelativistic QED can be generalized by speci-
fying the freely choosable gauge function χ as a functional
of AT. This can be achieved by defining the gauge-fixing
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constraint [33]

C2 :=
∫

d3x′g(x′, x) · A(x′) = 0, (10)

in which g is the Green’s function for the divergence operator

∇ · g(x, x′) = δ(x − x′). (11)

The longitudinal part gL(x, x′) is uniquely defined by this
equation as the gradient of the Green’s function for the Lapla-
cian [cf. Eq. (12)]:

gL(x, x′) = −∇ 1

4π |x − x′| , (12)

whereas the transverse part gT(x, x′) is a completely arbitrary
function of x′ and an arbitrary transverse function of x. Given
the constraint C2 = 0, choosing a concrete gT specifies the
gauge, because imposing C2 = 0 implies that A can be written
as [33]

A(x) = AT(x) + ∇
∫

d3x′g(x′, x) · AT(x′), (13)

which defines the gauge function χg such that ∇χg = AL as

χg(x) =
∫

d3x′g(x′, x) · AT(x′)

=
∫

d3x′gT(x′, x) · AT(x′). (14)

The Coulomb gauge is defined by gT = 0. The Poincaré-
gauge is defined by the condition x · A(x) = 0, and it is easily
verified that, by letting

gT(x, x′) = −
∫ 1

0
dλx′ · δT(x − λx′) (15)

in Eq. (13), we obtain a potential for which x · A(x) = 0. Here
the transverse δ-function δT is defined by

δT
i j (x) = δi jδ(x) − δL

i j (x), (16)

where

δL
i j (x) = −∇i∇ j

1

4π |x| =
∫

d3k

(2π )3 k̂ik̂ je
ik·x (17)

defines the longitudinal δ-function δL. Although the gauge-
fixing constraint C2 = 0 in Eq. (10) is certainly not sufficiently
general to include all possible gauge choices, as shown above,
it does include both the Coulomb and Poincaré gauges as spe-
cial cases. It is therefore suitable for our purpose of clarifying
the relationship between the Coulomb gauge, the Poincaré
gauge, and the multipolar theories of nonrelativistic QED. In
Secs. III and IV we use Dirac’s constrained quantization pro-
cedure in conjunction with the constraints C1 = 0 and C2 = 0,
to obtain an arbitrary-gauge Hamiltonian QED, in which the
gauge choice is controlled through the choice of the arbitrary
function gT.

B. Gauge freedom and material potentials

Before providing our main results we briefly discuss the
lesser known gauge freedom that is inherent in material aux-
iliary potentials. Doing so already allows us to identify the
connection between the Poincaré-gauge and the well-known

multipolar formalism. Auxiliary material potentials P and M
can be defined using the inhomogeneous Maxwell equations:

ρ = −∇ · P, (18)

J = Ṗ + ∇ × M. (19)

Unlike the electric and magnetic fields E and B which are
defined by the inhomogeneous Maxwell equations and ac-
companying homogeneous Maxwell equations, P and M are
auxiliary material potentials that are not required to satisfy ho-
mogeneous Maxwell equations, and so they are not uniquely
specified. They can be viewed as a material analog of the
nonunique auxiliary potentials A0 and A for the electromag-
netic field. Specifically, in the same way that E and B are
invariant under a gauge transformation of (A0, A), the phys-
ical charge and current densities ρ and J are invariant under
a transformation of (P, M) by pseudomagnetic and pseudo-
electric fields as

P → P + ∇ × U, (20)

M → M − ∇U0 − U̇, (21)

where (Uμ) = (U0,−U) are the components of an arbitrary
pseudo-four-potential. The polarization P and magnetization
M are in turn invariant under a gauge transformation Uμ →
Uμ − ∂μχ where μ = 0, 1, 2, 3 and χ is arbitrary.

The field ML is completely arbitrary because it does not
contribute to either ρ or J. Only the transverse freedom in P
and M is nontrivial. By specifying PT both P and ∇ × M =
JT − ṖT = J − Ṗ are fully specified. If we define the polar-
ization P as

P(x) = −
∫

d3x′g(x, x′)ρ(x′), (22)

then we see that −∇ · P = ρ is satisfied identically and PL =
∇φ (the gradient of the Coulomb potential) is obtained from
the expression for gL given in Eq. (12). Using Eq. (17), it is
easy to show via the gradient theorem or by Fourier transfor-
mation, that, for ρ specified by Eq. (1), PL can also be written
as a line-integral between the two charges as

PL(x) =
∫ 1

0
dλqr · δL(x − λr). (23)

The transverse polarization PT = P − PL is freely choos-
able and is fully specified by choosing gT(x, x′), which,
under the constraint C2 = 0, is also what specifies the gauge
of the electromagnetic potentials. If, in particular, we choose
the Poincaré gauge, then gT is given by Eq. (15) and, upon
using Eq. (23), we see that P is nothing but the well-known
multipolar polarization field for the atom;

P(x) =
∫ 1

0
dλqrδ(x − λr). (24)

In the following section, our proof that Poincaré gauge and
multipolar QED are identical uses the transverse polarization
field PT to express the Poincaré-gauge theory in terms of the
same canonical degrees of freedom that are typically used
within textbook expressions of multipolar QED.
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III. RESULTS

We now derive an arbitrary-gauge Hamiltonian quantum
theory of the atom-field system via the construction of Dirac
brackets. We begin with the standard QED Lagrangian for the
nonrelativistic atom within the field [27]

L = LKE +
∫

d3xL

≡ 1

2
mṙ2 −

∫
d3x

[
Jμ(x)Aμ(x) + 1

4
Fμν (x)Fμν (x)

]

= 1

2
mṙ2 −

∫
d3x[ρ(x)A0(x) − J(x) · A(x)]

+ 1

2

∫
d3x[E(x)2 − B(x)2], (25)

where m is the mass of the dynamical charge +q, (Jμ) =
(ρ, J), (Aμ) = (A0,−A), and Fμν = ∂μAν − ∂νAμ. Here
greek indices take values 0, 1, 2, 3 and repeated indices are
summed. LKE is the kinetic energy of the atomic electron
while L is the sum of the interaction and pure electromag-
netic Lagrangian densities. Using r and Aμ = (A0, A) as
generalized coordinates, the Lagrangian yields the expected
Newton-Lorentz and Maxwell-Ampere dynamical equations.
The naive canonical momenta p, �̃, and 
̃0 conjugate to r, A
and A0, respectively, are obtained from the Lagrangian in the
usual way as

p = ∂L

∂ ṙ
= mṙ + qA(r), (26)

�̃ = δL

δȦ
= Ȧ + ∇A0, (27)


̃0 = δL

δȦ0
= 0. (28)

Note that the canonical momentum conjugate to A is �̃ = −E
in agreement with Refs. [29,30]. The condition C0 := 
̃0 = 0
is our first constraint and is what implies that the Lagrangian
L is degenerate. From the equalities ∂L/∂ (∇A0) = �̃ and
∂L/∂A0 = −ρ we obtain the Euler-Lagrange equation for A0

as

0 = ∂μ

∂L
∂ (∂μA0)

− ∂L
∂A0

= ˙̃
0 + ∇ · �̃ + ρ. (29)

Thus, our second constraint C1 = 0 (Gauss’ law) ensures that,
if C0 = 0 at a fixed time, then C0 = 0 for all times.

The construction of an unconstrained quantum theory pro-
ceeds by positing Poisson brackets for the naive Hamiltonian
theory as

{ri, p j} = δi j, (30)

{Aμ(x), 
̃ν (x′)} = δμνδ(x − x′). (31)

The infinitesimal generator of gauge transformations G[χ ] is
defined using the constraints by

G[χ ] =
∫

d3x[C0χ̇ + C1χ ], (32)

in which χ is arbitrary. Specifically, a gauge transformation
of the potentials is given by A + {G[χ ], A} = A + ∇χ and

A0 + {G[χ ], A0} = A0 − χ̇ . The naive Hamiltonian is the sum
of material-kinetic and electromagnetic energies, plus the gen-
erator of gauge transformations,

H = ṙ · p +
∫

d3x[Ȧ0(x)
̃0(x) + Ȧ(x) · �̃(x)] − L

= 1

2
mṙ2 + 1

2

∫
d3x[E(x)2 + B(x)2] + G[A0]

= 1

2m
[p − qA(r)]2 + 1

2

∫
d3x[�̃(x)2 + B(x)2]

+ G[A0], (33)

in which A0 and Ȧ0 are a Lagrange multipliers for the
constraints C1 and C0, respectively. Time evolution of an
observable f is determined by the Hamilton equation ḟ =
{ f , H}. In particular, this gives back the generalized velocities
as mṙ = {mr, H} = p − qA(r), Ȧ = {A, H} = �̃ − ∇A0 and
Ȧ0 = {A0, H}, consistent with Eqs. (26)–(28).

The third and final constraint necessary is a gauge-fixing
constraint. For this we take C2 = 0 as defined in Eq. (10),
which, as remarked in Sec. II, is sufficiently general to accom-
modate both the Coulomb and Poincaré gauges. The reduced
phase space within which the constraints hold is the physi-
cal state space of the Hamiltonian theory. On this subspace
G[A0] = 0 and the Hamiltonian is the total energy. Since
{C0,C1} = 0 and {C0,C2} = 0, the dynamics of both A0 and

̃0 can be confined entirely to the complement of the physi-
cal state space and so the constraint C0 = 0 can be imposed
immediately. This removes A0 and 
̃0 from the formalism
completely. The Poisson brackets Ci j (x, x′) := {Ci(x),Cj (x′)}
of the remaining two constraints form a nonsingular matrix
with inverse

C−1(x, x′) = δ(x − x′)
(

0 1
−1 0

)
. (34)

The equal-time Dirac bracket is defined by

{·, ·}D :=

{·, ·} −
∫

d3x
∫

d3x′{·,Ci(x)}C−1
i j (x, x′){Cj (x′), ·}, (35)

where repeated indices are summed. Like the Poisson bracket,
the Dirac bracket is a Lie bracket, but, unlike the Poisson
bracket, it will yield the correct equations of motion when
used in conjunction with the Hamiltonian, even once the con-
straints Ci = 0 have been imposed.

Hereafter we denote contravariant indices with subscripts.
The nonzero Dirac brackets between the remaining canonical
variables are easily computed to be [33]

{ri, p j}D = δi j, (36)

{Ai(x), 
̃ j (x′)}D = δi jδ(x − x′) + ∇x
i g j (x′, x), (37)

{pi, 
̃ j (x)}D = q∇r
i g j (x, r) = −∇r

i Pj (x), (38)

where P is defined in Eq. (22). These Dirac brackets are
consistent with those given in Ref. [29]. Quantization of the
theory may now be carried out via the replacement {·, ·}D →
−i[·, ·]. The construction of the quantum theory is complete.
However, so far only the Dirac brackets of the fields A and �̃

032227-4



IDENTIFICATION OF POINCARÉ-GAUGE AND … PHYSICAL REVIEW A 104, 032227 (2021)

have been determined and as operators these fields provide
an inconvenient expression of the quantum theory, due to
Eq. (38). This feature is noted in Ref. [31] and its response
[30]. The ensuing lack of commutativity between p and �̃

within the final quantum theory implies that the canonical
pairs (r, p) and (A, �̃) do not define separate (“matter” and
“light”) quantum subsystems. To understand the light-matter
quantum state space as a tensor-product of a material Hilbert
space [L2(R3)] and a photonic Fock space [F (L2(R3;C2))],
we must identify material and photonic canonical degrees
of freedom that are in involution with respect to the Dirac
bracket.

It is straightforward to construct canonical operator pairs
that define quantum subsystems by imposing the constraints.
The constraint C1 := ∇ · �̃ + ρ = 0 uniquely fixes �̃L as a
function of r through the charge density ρ(x) given in Eq. (1)
as

�̃L(x) = −
∫

d3x′gL(x, x′)ρ(x′) = PL(x) = −EL(x), (39)

where gL is defined in Eq. (12). The constraint C2 = 0 implies
that A can be written as in Eq. (13) and so it is fully deter-
mined by AT and gT. We now define the momentum � by

� = �̃ − P = �̃T − PT = −E − P = −ET − PT, (40)

where the second, third, and fourth equalities hold for C1 = 0.
Since immediately we have that {pi, Pj (x)}D = −∇r

i Pj (x), it
follows from Eq. (38) that

{pi,
 j (x)}D = {pi, 
̃ j (x)}D − {pi, Pj (x)}D = 0. (41)

Thus, the only nonzero Dirac Brackets of the variables within
the set {r, p, AT, �} are

{ri, p j}D = δi j, (42)

{AT,i(x),
 j (x′)}D = δT
i j (x − x′), (43)

where the second bracket follows immediately from Eq. (37)
and {Ai(x), Pj (x′)}D = 0.

On the physical space of states the relation between the
sets {r, p, A, �̃} and {r, p, AT, �} is invertible. A is given
in terms of AT by Eq. (13) while AT is given in terms of
A by projecting onto the transverse part. The equation (40)
defining �̃ is clearly invertible because �̃ = � + P. On the
physical state space, the algebraic relations (36)–(38) for the
set {r, p, A, �̃} hold if and only if the relations (42) and
(43) hold for the set {r, p, AT, �}. Any given operator, such
as the Hamiltonian, can be written in terms of either set,
and calculations are then performed using the corresponding
algebraic relations.

The set {r, p, AT, �} defines matter and light quan-
tum subsystems upon quantization. Material operators r and
p act within L2(R3). On the composite space, L2(R3) ⊗
F (L2(R3;C2)), they have the form r ⊗ Iph and p ⊗ Iph where
Iph is the identity on the photonic Fock space F (L2(R3;C2)).
The operators AT and � act within F (L2(R3;C2)) and on
the composite space have the form Im ⊗ AT and Im ⊗ �

where Im is the identity on L2(R3). Photon states which
span the photonic Fock space are defined using the photonic

operator [27]

aλ(k) = eλ(k)√
2k

· [kAT(k) + i�(k)], (44)

where λ = 1, 2 specifies the two orthogonal (polarization)
directions orthogonal to k, such that {e1, e2, k̂} is an orthonor-
mal triad of unit vectors. The photonic operators satisfy [27]

[aλ(k), a†
λ′ (k′)] = δλλ′δ(k − k′), (45)

consistent with Eq. (43).
If we choose the Poincaré gauge; that is, if we let

gT(x, x′) = − ∫ 1
0 dλx′ · δT(x − λx′) as in Eq. (15), then the

momentum � is equal to −ET − PT where PT is the multipo-
lar transverse polarization. In this case −� = DT is nothing
but the standard multipolar transverse displacement field. The
Poincaré-gauge Hamiltonian is given by Eq. (33) in which
A(x) is the Poincaré-gauge potential and −�̃ = E is the total
electric field. This result coincides with the final result of
Ref. [30] [Eq. (12) therein]. As in Ref. [30], all algebraic
relations between objects appearing in the Poincaré-gauge
Hamiltonian are fully specified by the Dirac brackets in
Eqs. (36)–(38). The authors of Ref. [30] remark that, when
expressed in terms of the transverse vector potential AT and
the longitudinal part AL = ∇χg[AT] [in which gT is given by
Eq. (15)], the Poincaré-gauge Hamiltonian is not the multipo-
lar Hamiltonian. However, when expressed in terms of the set
{r, p, AT, �}, the Poincaré-gauge Hamiltonian is given by

H = 1

2m
[p − qA(r)]2 + 1

2

∫
d3xPL(x)2

+ 1

2

∫
d3x[[�(x) + PT(x)]2 + B(x)2], (46)

wherein the Poincaré-gauge potential would usually be ex-
pressed in terms of B as

A(r) = −
∫ 1

0
dλλr × B(λr), (47)

and where the fields PT and � = −DT are the multipolar
transverse polarization and transverse displacement field, re-
spectively. The contribution

1

2

∫
d3xPL(x)2 = 1

2

∫
d3xEL(x)2

=
∫

d3x
∫

d3x′ ρ(x)ρ(x′)
8π |x − x′| = VCoul (48)

is the energy of the longitudinal electric field which by Gauss’
law C1 = 0 is the Coulomb energy of the charge distribu-
tion. It includes the nuclear binding energy −q2/(4π |r|) as
well as the infinite Coulomb self-energies of the constituent
charges. Equation (46), which is nothing but the Poincaré-
gauge Hamiltonian expressed in terms of a convenient set
of variables and on the physical subspace, is identical to
the well-known multipolar Hamiltonian of textbook nonrela-
tivistic QED [27,28]. References [29,30] conclude that, when
written in terms of AT and �̃ = −ET − EL, the Poincaré-
gauge Hamiltonian is not the multipolar Hamiltonian because
�̃T equals −ET rather than −DT and so the momentum �̃T

is not the well-known canonical momentum encountered in
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textbook multipolar theory. However, what is required in order
that the two theories coincide is that �T = −DT, and this is
the case. Indeed, as we have shown, this equality is implied by
the equality �̃T = −ET, which therefore proves that the two
theories are identical rather than disparate.

We have shown that when the constraints are satisfied C1 =
0 = C2, the Poincaré-gauge Hamiltonian and the multipolar
Hamiltonian are one and the same. This Hamiltonian results
from the Poincaré gauge, a.k.a. the multipolar-gauge choice
of gT given in Eq. (15), which specifies that x · A(x) = 0.
The route we have taken has been to derive the Hamiltonian
on the extended space, constructing the algebra of opera-
tors using Dirac’s method, and to then reduce the theory to
the physical subspace defined by C1 = 0 = C2. Alternatively
one can use the constraints at the outset to show that the
Poincaré gauge and multipolar Lagrangians are one and the
same. Specifically, letting A = AT + ∇χ and A0 = φ − χ̇ ,
where χ (x) = − ∫ 1

0 dλx · AT(x) defines the Poincaré gauge,
and substituting these expressions into Eq. (25) yields the
Poincaré-gauge Lagrangian

Lp = 1

2
mṙ2 −

∫
d3x jμAμ − 1

4

∫
d3xFμνFμν

= 1

2
mṙ2 − VCoul +

∫
d3xJ · AT

+ 1

2

∫
d3x

[
E2

T − B2
] +

∫
d3x[J · ∇χ + ρχ̇ ]

= Lc + d

dt

∫
d3xρχ, (49)

where Lc is the Coulomb-gauge Lagrangian and we have
used ρ̇ = −∇ · J. We have also used C1 = 0 to give EL =
∇(∇−2ρ). Moreover, we have that

d

dt

∫
d3xρχ = − d

dt

∫
d3xP · AT = − d

dt

∫
d3xPT · AT,

(50)

where P is the multipolar polarization given in Eq. (24). Thus,
Lp = Lc − d

dt

∫
d3xPT · AT =: Lmult where Lmult is the stan-

dard textbook multipolar Lagrangian found as a Lagrangian
Power-Zienau-Woolley (PZW) transformation of Lc [27,28].
Taking AT as coordinate, the multipolar Hamiltonian can now
be found from Lp = Lmult via Legendre transformation as is
the route usually adopted in textbooks [27,28].

IV. DISCUSSION AND GENERALISATION

The misunderstanding stems from a one-to-two usage of
the name “canonical momentum.” Apparent disagreement be-
tween results occurs because different authors use this label
for different fields. In multipolar QED we call � = −DT

the canonical momentum, because in the final unconstrained
theory it is conjugate to AT [in the sense of Eq. (43)] and
it commutes with r and p. On the other hand, when we
follow Dirac’s method of quantization (as above and as in
Refs. [29,30]) the object termed canonical momentum is �̃ =
−E, because, in the starting naive (constrained) theory, this
momentum is conjugate to A [in the sense of Eq. (31)] and
it commutes with r and p. Thus, the same name “canonical

momentum” has been used for distinct fields that are not
equal but that are instead related by Eq. (40). Both of these
nomenclatures are reasonable, but adopting them both simul-
taneously will inevitably cause confusion. We must recognize
that neither �̃ nor �̃T equals � in general. This fact does
not imply that Poincaré gauge and multipolar QED are not
the same, and in fact, by taking into account the relationship
between �̃ and �, one can prove that the two theories are
identical, as we have done.

More generally, the Hamiltonian in Eq. (33) expressed on
the physical subspace in terms of the set {r, p, AT, �} is
found from Eqs. (33) and (40) to be

H[gT] = 1

2m
[p − qAg(r)]2

+ 1

2

∫
d3x[[�(x) + Pg(x)]2 + B(x)2], (51)

where Ag and Pg are the vector potential and polarization on
the physical subspace given by Eqs. (13) and (22), respec-
tively, as

Ag(x) = AT(x) + ∇
∫

d3x′g(x′, x) · AT(x′), (52)

Pg(x) = −
∫

d3x′g(x, x′)ρ(x′). (53)

The gauge is fully determined via a choice of gT, which
uniquely determines g. Upon quantization the Hamiltonians
of different gauges gT and g′

T are unitarily related as

H[g′
T] = Ugg′H[gT]U †

gg′ , (54)

where the gauge-fixing transformation Ugg′ is defined over the
physical Hilbert space by

Ugg′ := exp

(
−i

∫
d3x[χg(x) − χg′ (x)]ρ(x)

)
(55)

= exp

(
i
∫

d3x[Pg(x) − Pg′ (x)] · AT(x)

)
. (56)

Equation (54) can be obtained immediately from

Ugg′ [p − qAg(r)]U †
gg′ = p − qAg′ (r), (57)

Ugg′ [� + PgT]U †
gg′ = � + Pg′T, (58)

showing that Ugg′ implements the gauge change gT → g′
T

within the Hamiltonian via transformation of the momenta
p and �. The Coulomb and Poincaré-gauge (multipolar-
gauge) Hamiltonians are special cases obtained by making the
Coulomb and Poincaré-gauge choices of gT, respectively. The
unitary gauge-fixing transformation between these particular
gauges is called the Power-Zienau-Woolley (PZW) transfor-
mation. It is given according to Eq. (55) by

U = exp

(
−i

∫
d3xP(x) · AT(x)

)
, (59)

where P is the multipolar polarization. This is the textbook
expression for the PZW transformation [27,28].

We remark that previous authors have concluded that the
PZW transformation is not a gauge transformation [32], but
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this conclusion is not at odds with our findings. The PZW
transformation is not a gauge-symmetry transformation, which
is defined as a transformation that acts directly on the potential
A to implement a gauge transformation A → A − dχ within
the starting constrained theory. The PZW transformation is,
however, an example of a gauge-fixing transformation Ugg′ ,
which is defined as a unitary transformation acting within
the final unconstrained theory to transform from one fixed-
gauge realization of the physical state space to a different
fixed-gauge realization. There is clearly a distinction be-
tween gauge-symmetry and gauge-fixing transformations in
Hamiltonian QED, and the distinction provides unambiguous
clarification of the relation between the PZW transformation
and gauge freedom.

V. CONCLUSIONS

References [29,30] express the Poincaré-gauge theory in
terms of the Poincaré-gauge potential A and the momentum
�̃ [see, for example, Eq. (12) of Ref. [30] ]. The multi-
polar framework is the same theory expressed in terms of
different fields AT and �, which are more convenient for
use within the quantum theory. We have verified this via the
explicit construction of Dirac brackets as are also derived
in Refs. [29,30]. Before now such a demonstration had not
been clearly provided within the literature. Indeed, as well as
being unrecognized in Refs. [29,30], the distinction between
�̃ and � is perhaps also obfuscated elsewhere. For example,
the constraint C2 = 0 used in this article has been employed
by Woolley in Ref. [33], which summarizes the approach
developed much earlier by the same author in Refs. [3–5].
Woolley constructs the Dirac brackets for the theory, but typi-
cally adopts the notation E⊥ for −�. We emphasize that −�

does not represent the transverse electric field except when
gT = 0 (Coulomb gauge). We emphasize that the distinction
between Coulomb gauge and multipolar QED is no more or
less than a distinction between gauge choices. As we have
shown, all gauges of this type are related by unitary gauge-
fixing transformations and they are all equivalent to each
other. Multipolar QED, in particular, is strictly equivalent to
Coulomb-gauge QED and is identical to the Poincaré-gauge
theory.

More generally, we have shown that the conventional
Hamiltonians of nonrelativistic QED used in light-matter
physics and quantum optics, are fixed-gauge cases of the
general Hamiltonian H in Eq. (33) once it has been restricted
to the physical subspace and written in terms of convenient
canonical variables that possess the algebraic properties in
Eqs. (42) and (43). This writing of H is nothing but H[gT]
given in Eq. (51). All instances of this Hamiltonian are uni-
tarily equivalent, being related by unitary transformations
confined to the physical subspace. They are therefore all
physically equivalent. This is nothing but canonical QED’s
expression of gauge invariance.

The Hamiltonian H[gT] is consistent with all of the re-
quired physical constraints and yields all of the required
dynamical equations of motion for any choice of gauge gT.
This fact alone justifies the use of H[gT] for any choice of gT

and in particular it justifies the use of the multipolar theory.
While it is satisfying to connect a Hamiltonian to a Lagrangian
description, there is no further justification for the latter than
that it produces the correct equations of motion. Thus, H[gT]
is no less fundamental than the Lagrangian L from which
it happened to be derived. In this sense, any criticism of
Hamiltonian multipolar QED as less physical than another
description is immediately unfounded because, whether or not
one can derive it from some other description, one can cer-
tainly verify that it produces the required equations of motion.
The pertinent question therefore, is whether the Hamiltonians
commonly used in practice, all of which produce the correct
equations of motion, are physically equivalent in the general
sense. Fortunately, one can show (as we have) that they are,
because the quantum-theoretic definition of physical equiva-
lence is unitary equivalence. In particular, our results rigor-
ously solidify the multipolar theory and we have clarified how
alternative nonrelativistic gauges are related to the Coulomb-
gauge through unitary gauge-fixing transformations expressed
in terms of the gauge-invariant transverse vector-potential.
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