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A beautiful idea about the incompatibility of physical context (IPC) was introduced in Phys. Rev. A 102,
050201(R) (2020). Here, a context is defined as a set of a quantum state and two sharp rank-one measurements,
and the incompatibility of physical context is defined as the leakage of information while implementing those two
measurements successively in that quantum state. In this work, we show the limitations in their approach. The
three primary limitations are that (i) their approach is not generalized for positive operator-valued measurements;
(ii) they restrict information theoretic agents Alice, Eve, and Bob to specific quantum operations and do not
consider most general quantum operations, i.e., quantum instruments; and (iii) their measure of IPC can take
negative values in specific cases in a more general scenario, which implies the limitation of their information
measure. Thereby, we have introduced a generalization and modification to their approach in a more general and
convenient way, such that this idea is well defined for generic measurements, without these limitations. We also
present a comparison of the measure of the IPC through their and our methods. Lastly, we show, how the IPC
reduces in the presence of memory using our modification, which further validates our approach.

DOI: 10.1103/PhysRevA.104.032225

I. INTRODUCTION

Measurement incompatibility is a key feature of quantum
theory, which distinguishes it from the classical world [1]. A
pair of observables are incompatible if they are not measur-
able simultaneously, i.e., their outcomes can not be obtained
jointly via a single joint measurement. Today, the connec-
tions among incompatibility, nonlocality, and steering are well
known [2,3]. Nonclassical features such as Bell inequality
violation as well as steering can be demonstrated only using
incompatible measurements [4,5]. It is also well known that
incompatible measurements provide an advantage over com-
patible measurements in several information-theoretic tasks
in quantum information theory [6,7]. Measurement compat-
ibility can be characterized as the existence of a common
(i.e., constructed using same ancilla state and Hilbert space)
commuting Naimark extensions [8–10]. It has been recently
shown that there are several layers of classicality inside the
compatibility of measurement [11,12].

Recently, a novel idea was presented in Ref. [13] to get
a better understanding of nonclassicality associated with in-
compatibility. The authors of Ref. [13] introduced the concept
of incompatibility of the physical context (IPC), which is a
function of a given context, where a context is comprised of a
quantum state and two measurements. In a way their measure
of IPC captures the notion of nonclassicality associated with
the context, as it vanishes when the state is a maximally mixed
state or the measurements are commuting with each other. It
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was defined as the difference between the information remain-
ing in a quantum state after the first sharp measurement and
after the second sharp measurement. Moreover, the IPC is also
linked with the information leakage when an eavesdropper
performs a measurement on the state being transferred in a
QKD-like game [14].

However, as we will show, the approach of Ref. [13] has
several limitations. First, the authors of Ref. [13] restricted
information theoretic agents Alice, Eve, and Bob to specific
quantum operations and did not consider most general quan-
tum operations, i.e., quantum instruments. Second, if we do
not restrict Alice, Eve, and Bob to specific quantum oper-
ations, which they did, then their measure of IPC can take
negative value, which implies that the state after second mea-
surement by eavesdropper Eve has more information than the
state after first measurement, which physically does not make
sense. Third, it is not possible to extend this idea to a generic
POVM measurements through their approach and without
introducing quantum instruments. Fourth, in the presence of
memory, IPC can increase, which is against the intuition that
incompatibility is nonincreasing as we add memory.

In this work, we have generalized the idea of IPC for
POVMs and modified the corresponding information mea-
sure. Our measure of the IPC can never be negative and it
is nonincreasing on addition of memory. We also demonstrate
the usefulness of the modified IPC measure through a QKD-
like scenario as an example. In this way our approach has a
wider applicability.

The rest of this paper is organized as follows. In Sec. II,
we discuss the preliminary concepts necessary for this paper.
Then, we discuss the limitations of the approach given in
Ref. [13] and discuss our main results in Sec. III. Further,
in Sec. IV, we include the effect of presence of memory in
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our analysis. Finally, in Sec. V we summarize our work and
discuss future direction.

II. PRELIMINARIES

A. Observables and channels

An observable A with outcome set �A in quantum me-
chanics is a collection of positive hermitian matrices {A(x) |
x ∈ �A} such that

∑
x A(x) = I. A pair of observables (A, B)

acting on same d-dimensional Hilbert space H and with out-
come sets �A and �B, respectively, is compatible if there
exists a joint observable G acting on same Hilbert space H
and outcome set �A × �B such that for all ρ ∈ S (H), x ∈ �A

and y ∈ �B

A(x) =
∑

y

G(x, y); B(y) =
∑

x

G(x, y), (1)

where S (H) is the state space. Only for PVMs, compatibility
implies commutativity. We denote the set of all observables
as O.

On the other hand, a quantum channel is a CPTP map
from one state space S (H1) to another state space S (H2),
where H1 and H2 are two Hilbert spaces. We denote the con-
catenation of two quantum channels �1 and �2 as �1 ◦ �2.
Therefore, for all ρ ∈ S (H), (�1 ◦ �2)(ρ) = �1(�2(ρ)).
Consider two quantum channels � : S (H1) → S (H2) and
� : S (H1) → S (H′

1). If there exists a quantum channel � :
S (H′

1) → S (H2) such that � = � ◦ � holds, we denote it
as � � �. If both � � � and � � � hold, we denote it as
� � � and we call it as � and � are concatenation equivalent.
We denote the set of all concatenation equivalent channels to
� by [�].

There exists a special type of channel known as a com-
pletely depolarizing channel, which we will use in the
following section. A channel � is called a completely depolar-
izing channel if for all T ∈ L+(H), �(T ) = Tr(T )η for some
fixed η ∈ S (H), where L+(H) is set of positive linear oper-
ators on Hilbert space H. We denote the set of all channels
as C.

B. Quantum instruments and measurement models

In quantum measurements, there are two equivalent con-
cepts, namely measurement models and quantum instruments
[15,16]. Measurement models are descriptions of measure-
ment process, whereas instruments are the concise version of
it. Consider a measured system S associated with a Hilbert
space HS and with density matrix ρ and an ancilla system
associated with another Hilbert space Ha and with density
matrix σa. To perform a measurement on a measured system,
at first a joint unitary U has to be applied on the composite
system where U is acting on Hilbert space HS ⊗ Ha. Then, a
pointer observable A′ with outcome set �′

A has to be measured
on the ancilla system. Now in this process if the observable A
with same outcome set as A′ has is measured on the system S
then for all x ∈ �A and ρ ∈ HS we have

Tr[ρA(x)] = Tr[U (ρ ⊗ σa)U †(I ⊗ A′(x))]. (2)

The average postmeasurement state is given by

�(ρ) = TrHa [U (ρ ⊗ σa)U †]. (3)

Here, � is a quantum channel. This measurement model is
specified by the quadruple (Ha, σa,U, A′).

A quantum instrument I through, which the measurement
of an observable A can be implemented, is a collection of CP
trace nonincreasing maps {
x} such that for all x ∈ �A and
ρ ∈ HS we have

Tr[ρA(x)] = Tr[
x(ρ)] (4)

and ∑
x


x(ρ) = �(ρ), (5)

where � is a quantum channel. We call such an instrument
an A-compatible instrument. If I = {
x} is an A-compatible
instrument, then another instrument � ◦ I = {� ◦ 
x} is
also an A-compatible instrument [17], where (� ◦ 
x )(ρ) =
Tr[
x(ρ)]�( 
x (ρ)

Tr[
x (ρ)] ). We denote the set of all A-compatible
instruments as JA.

Therefore, given a measurement model (Ha, σa,U, A′),
one can associate a quantum instrument I such that for all
x ∈ �A and ρ ∈ HS we have

Tr[
x(ρ)] = Tr[U (ρ ⊗ σa)U †(I ⊗ A′(x))]. (6)

Similarly, given a quantum instrument it is possible to find
out a measurement model such that Eq. (6) holds [18]. This
implies that these two concepts are equivalent.

C. Observable-channel compatibility

A quantum channel � is compatible with an observable A if
there exists a quantum instrument I = {
x} such that Eqs. (4)
and (5) together hold. Otherwise, they are incompatible. If a
channel � and an observable A are compatible, we denote it
as � ◦◦ A [19]. We call � as A-compatible channel. It is well
known that completely depolarizing channels are compatible
with any observable [16]. For a quantum channel � ∈ C and
an observable A ∈ O, the following sets are introduced in
Ref. [19]:

τc(�) = {X ∈ O | � ◦◦ X }; (7)

σc(A) = {� ∈ C | � ◦◦ A}. (8)

Let us now write down the following theorem, which was
originally proved in Ref. [17]:

Theorem 1. Suppose A ∈ O is an observable acting on the
state space S (H)) and (V,K, Â) is its Naimark extension, i.e.,
K is a Hilbert space, V : H → K is an isometry and Â =
{Â(x)} is a PVM such that V †Â(x)V = A(x) for all x ∈ �A.
Then,

σc(A) = {� ∈ C | � � �A}, (9)

where for any state ρ, �A(ρ) = ∑
x Â(x)V ρV †Â(x).

We call �A as parent channel of σc(A) and we also call
the corresponding A-compatible instrument IA a parent instru-
ment in JA. Clearly, �A depends on the choice of the Naimark
extension. But any two parent channels are concatenation
equivalent. Therefore, we have freedom to choose it.
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D. Holevo bound

The Holevo bound captures the maximum classical infor-
mation that can be extracted from an ensemble of quantum
states [20]. Suppose we have an ensemble E = {pX (x), ρx},
and our task is to determine the classical index x by doing
some measurements. The density matrix operator correspond-
ing to this ensemble has the form ρ = ∑

x pX (x)ρx. Now, we
can do a measurement �y so that the information gain after
doing the measurement is given by the mutual information
I = I (X ;Y ) after the measurement, where Y is the random
variable corresponding to the outcome of measurement. It is
known that the maximum value of this mutual information is
given by the Holevo bound [20,21], given by

χ (E ) = S(ρ) −
∑

x

pX (x)S(ρx ), (10)

where S(ρ) is the von Neumann entropy of the state ρ. It is
interesting to note that the Holevo bound χ is also the mutual
information of a classical-quantum state of the form ρCQ =∑

x pX (x) |x〉 〈x| ⊗ ρx. Under the action of a channel � the
ensemble transforms as E → E ′ = {pX (x), ρ ′

x}. But we know
that the mutual information is nonincreasing under the action
of channels [21], which implies that the Holevo information is
also nonincreasing under the action of quantum channels, i.e.,

χ (E ) � χ (E ′). (11)

E. Incompatibility of physical context

In a recent work [13], the concept of IPC was introduced,
which was further used to show quantum resource covariance
[22]. To define this idea, we need the notion of context. A
context is defined as C = {ρ, X,Y }, where ρ is an arbitrary
quantum state. Also, X = {Xi} and Y = {Yj} are two observ-
ables, with Xi and Yj as the respective eigenprojectors.

Other than the definition of context, we also need a game,
using which we define the incompatibility of a context C.
The game goes like this. Alice prepares the quantum state
ρ, and of course it has some information content, which can
be quantified by using any known measure. The authors in
Ref. [13] quantify the information of ρ using the following:

I (ρ) = ln d − S(ρ), (12)

where S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy of ρ

and d is the dimension of the Hilbert space. This information
is non-negative, i.e., I (ρ) � 0, is ensured because S(ρ) �
ln d . After state preparation, Alice performs a noisy measure-
ment with X on the prepared state, so that ρ transforms as

ρ → NX (ρ) =
d∑

i=1

XiρXi. (13)

So, after this operation the information content in the state
NX (ρ) is I1 = I (NX (ρ)). This state NX (ρ) is then delivered to
Bob, who verifies the information content of the state. In case
Bob finds that there is no loss of information, Alice and Bob
will agree that the channel is free from information leakage.

But it might happen that there is an eavesdropper, Eve, who
performs a noisy measurement Y on the state NX (ρ), before

it is delivered to Bob. The state is then transformed as

NX (ρ) → (NY ◦ NX )(ρ) = NY X (ρ) =
d∑

j=1

YjNX (ρ)Yj .

(14)

Thus, the information content in the state NXY (ρ) is I2 =
I (NY X (ρ)). And therefore, the leakage in the information
content is given by

IC = I1 − I2 = I (NX (ρ)) − I (NY X (ρ)),

= S(NY X (ρ)) − S(NX (ρ)). (15)

Hence, only if IC > 0, Alice and Bob will know that there
is information leakage from the channel. Notice that IC = 0
in two kinds of scenarios: (i) If X and Y commute with
each other and (ii) if ρ is a maximally mixed state. In the
first scenario NX (ρ) = NY X (ρ) because the two operators
are compatible with each other. And in the second type of
scenario, I1 = 0 and there is no information to lose, which
results in I1 = I2. Thus, we require the incompatibility IC to
be nonzero for Bob to detect any leakage of information.

Hence, the concept of IPC can be defined as
Definition 1. Context incompatibility is the resource en-

coded in a context C = {ρ, X,Y } that allows one to test
the safety of a communication channel against informa-
tion leakage. It is quantified as IC = I1 − I2 = I (NX (ρ)) −
I (NY X (ρ)). It is operationally related to the amount of infor-
mation lost from the system under an external measurement.

III. MAIN RESULTS

A. Limitations of incompatibility of physical context

In this section, we discuss the limitations of the approach
given in Ref. [13].

(1) First of all, according to the approach given in
Ref. [13], the postmeasurement state after measuring a sharp
observable X ∈ O on a quantum state ρ is NX (ρ). There-
fore, to measure an observable X , Alice and Eve both are
restricted to use a particular channel NX ∈ C, or equivalently,
they are restricted to use a particular quantum instrument
IX = {
X (x)} such that

∑
x 
X (x) = NX . Since, we have no

control at least over eavesdropper Eve, there is no reason to
assume such a restriction.

(2) Second, to generalize it, suppose we remove such re-
striction, i.e., to measure an observable, now Alice and Eve
can use all possible instruments that are compatible with that
observable. Then to measure the observable X if Alice uses an
arbitrary instrument I ′

X = {
′
X (x)} such that �′ = ∑

x 
′
X (x)

and to measure Y , Eve uses a special instrument Idepo
Y =

{
depo
Y (y)} such that for all ρ ∈ S (H) and a fixed pure state η,

�
depo
η (ρ) = ∑

y 

depo
Y (y)(ρ) = η is a completely depolarizing

channel. Now, as S(η) = 0, from Eq. (15) we have

IC = I (�′(ρ)) − I
(
(�depo

η ◦ �′)(ρ)
)

= −S(�′(ρ))

� 0. (16)

The negativity of IPC implies that the postmeasurement
state of Eve has more information than the postmeasurement
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state of Alice, which does not make sense. This is because
the information that Alice sends to Bob, can not be increased
by the eavesdropper. Such a problem is occurring because
von Neumann entropy is not monotonically nonincreasing
under action of a quantum channel. Therefore, in this general
context, their information measure is not a proper information
measure.

(3) Third, as we know that for any POVM, the postmea-
surement state depends on the quantum instrument used to
implement that POVM, their results can not be generalized for
POVMs without introducing quantum instruments or equiva-
lently, without introducing measurement models.

Therefore, in our attempt to generalize the idea of IPC
for POVMs, we need to modify the idea and present it in a
different way, which we describe in following sections.

B. Modified measure of information leakage

In this section we present a generalization of the game
presented in Sec. II E. Now, in the game, after the state prepa-
ration of ρ, instead of only doing a sharp measurement we
allow Alice to perform a more generic measurement. Now, Al-
ice performs her measurement with the POVM measurement
A on the quantum state ρ ∈ S (H) using the A-compatible
instrument I ′

A = {
A,x} such that �′
A = ∑

x 
A,x and gener-
ates the ensemble EA = {px, ρx}, where px = Tr[
A,x(ρ)] and
ρx = 
A,x (ρ)

Tr[
A,x (ρ)] . Here, �′
A is the quantum channel such that

�′
A : S (H) → S (K). Furthermore, we quantify the informa-

tion content of the ensemble EA via the Holevo bound as:

χ (ρ, I ′
A) = S(�′

A(ρ)) −
∑

x

pxS(ρx ).

This measure of information has been previously used to
quantify information gain in Ref. [23]. Similarly, the eaves-
dropper Eve performs the POVM measurement B on the
quantum state �′

A(ρ) ∈ S (K) using the B-compatible instru-
ment I ′

B = {
B,y} such that �′
B = ∑

y 
B,y and generates the
ensemble EB = {px,�

′
B(ρx )}. Here, �′

B is the quantum chan-
nel such that �′

B : S (K) → S (K′). It should be noted that
Alice and Bob do not have access to Eve’s measurement out-
comes, her measurement can be represented using a channel.
Now, the information remaining in the state (�′

B ◦ �′
A)(ρ) is

given by its Holevo bound, i.e.,

χ (ρ, I ′
A, I ′

B) = S((�′
B ◦ �′

A)(ρ)) −
∑

x

pxS(�′
B(ρx )).

Therefore, Bob, who was expecting to receive an ensemble
with information χ(ρ, I ′

A), would receive a different ensemble
with information content χ (ρ, I ′

A, I ′
B). Thus, the new form of

information leakage of the channel is

IH
c (ρ, I ′

A, I ′
B) = χ (ρ, I ′

A) − χ (ρ, I ′
A, I ′

B)

= S(�′
A(ρ)) − S((�′

B ◦ �′
A)(ρ))

+
∑

x

pxS(�′
B(ρx )) −

∑
x

pxS(ρx ). (17)

As Holevo bound is monotonically nonincreasing under
the action of quantum channels, IH

c (ρ, I ′
A, I ′

B) � 0. When
IH
c (ρ, I ′

A, I ′
B) > 0, Alice and Bob will be able to detect the

information leakage in the channel.

Now, if Eve is rational, her goal will be to minimize leak-
age along with collecting information. Therefore, to measure
B, she will choose an instrument such that IH

c (ρ, I ′
A, I ′

B) takes
the minimum value. Now, let �B be a parent channel in σc(B)
and corresponding B-compatible instrument be IB. Then, as
for any other channel �′

B ∈ σB, �′
B � �B holds and Holevo

bound is monotonically decreasing under action of a quantum
channel,

χ (ρ, I ′
A, I ′

B) � χ (ρ, I ′
A, IB) ∀IB. (18)

Therefore, implementation of a parent instrument keeps max-
imum amount of accessible information or equivalently,
maximum Holevo bound. Therefore, for a given instrument
of Alice the minimum leakage of information is

IH
c (ρ, I ′

A, B) = min
I ′

B

IH
c (ρ, I ′

A, I ′
B)

= χ (ρ, I ′
A) − max

I ′
B

χ (ρ, I ′
A, I ′

B)

= χ (ρ, I ′
A) − χ (ρ, I ′

A, IB)

= IH
c (ρ, I ′

A, IB). (19)

Note that the choice of B depends on output state space S (K)
of the quantum channel �′

A and in that sense, it is arbitrary.
Now, if Alice is also rational and she does not know the

presence of Eve, she will try to create an ensemble with most
accessible information such that the receiver, i.e., Bob can get
the best amount of information, or equivalently, she will use
an A-compatible instrument for which χ (ρ, I ′

A) is maximum.
Let �A be a parent channel in σc(A) and corresponding A-
compatible parent instrument be IA. Then, using arguments
as above

χ (ρ, I ′
A) � χ (ρ, IA) ∀I ′

A. (20)

Therefore, if Alice uses the instrument IA, in this case
the information leakage will be minimum when Alice uses
a parent channel from σc(A), and is given by:

IH
c (ρ, A, B) = IH

c (ρ, IA, IB). (21)

Clearly, if Eve uses any other quantum instrument (e.g.,
dimension preserving instrument) I ′

B, then IH
c (ρ, IA, I ′

B) �
IH
c (ρ, A, B). Therefore, assuming both Alice and Eve to be

rational, IH
c (ρ, A, B) is the appropriate amount of information

leak when the parent instruments are used.

C. Incompatibility of physical context: A modified version

First of all we modify the notion of context so that, C =
{ρ,X,Y }, where X and Y are POVM measurements acting
on S (H) and S (H′), respectively. Since, X and Y are given,
to define IPC, we restrict Alice’s instrument I ′,H′

X = {
′,H′
X,x }

such that �′
X = ∑

x 
′,H′
X,x and �′

X : S (H) → S (H′). We de-

note the set of all such X-compatible instruments as JH′
X .

With this restriction also, being rational, Alice’s goal will be
to maximize χ (ρ, I ′,H′

X ). Let, for some IH′
X,max ∈ JH′

X ,

max
IH′
X

χ
(
ρ, IH′

X

) = χ
(
ρ, IH′

X,max

)
. (22)
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Therefore, similar to Sec. III B, in this case the appropriate
amount of information leak is

I(C) = IH
c

(
ρ, IH′

X,max, IY
)
. (23)

For the special case of, H′ = H, we have

I(C) = IH
c

(
ρ, IH

X,max, IY
)
. (24)

Therefore, we can define the generalized version of IPC as:
Definition 2. Context incompatibility is the resource

encoded in a context C = {ρ,X,Y } that allows one to
test the safety of the channel against information leakage.
This resource is quantified via I(C) = IH

c (ρ, IH
X,max, IY ),

where IH
X,max is the X-compatible instrument that maximizes

χ (ρ, IH
X ). Operationally, it is the proper information leakage

in the channel caused by an external measurement on the state.
Clearly, if Eve uses any other quantum instrument

(e.g., dimension preserving instrument) I ′
Y , then

IH
c (ρ, IH

X,max, I ′
Y ) � I(C). Moreover, if Alice performs

a sharp measurement X = {Xi}, from Theorem 1, choosing
V = I or equivalently choosing H = K and Xi = X̂i we get a
parent channel �A = N (X ) : S (H) → S (H). Let IX = {
X }
be a corresponding X -compatible parent instrument. As,
implementation of a parent channel keeps maximum amount
of accessible information or, equivalently maximum Holevo
bound, we have IH

X,max = IX . Then the proper information
leakage will have the following form:

I(C) = χ (ρ, IX ) − χ (ρ, IX , IY ),

= S(NX (ρ)) − S((�Y ◦ NX )(ρ))

+
∑

x

pxS(�Y (ρx )) −
∑

x

pxS(ρx ), (25)

where �Y is the Y -compatible parent channel corresponding
to the Y -compatible parent instrument IY .

D. Relation between two definitions

Our generalization of the measure of IPC, gives a simpli-
fied form when we demand that both Alice and Eve perform
rank-one sharp measurements X and Y using parent instru-
ments IX ∈ JX and IY ∈ JY , where NX ∈ σc(X ) and NY ∈
σc(Y ) are the corresponding channels respectively. In this case
I(C) reads as

I(C) =
∑

x

pxS(NY (ρx )) − IC . (26)

The above equation relates our generalized measure of IPC
with the measure of IPC IC defined in Ref. [13]. To compare
the two measures of the IPC, we remind the reader that IC

is zero when (i) X and Y commute or (ii) ρ is a maximally
mixed state (see Sec. II E). Coming to the new measure of
IPC we find that I(C) = 0 whenever X and Y commute,
because then NY (ρx ) are pure states. However, I(C) is not
necessarily equal to zero when ρ is a maximally mixed state
[as in Eq. (26), IC is zero but S(NY (ρx ))’s are not zero].

This implies that our measure captures the incompatibility
of a context even when the state (belonging to the context) is
a maximally mixed state. This is unlike the previous measure
of IPC IC given in Ref. [13], which says that the context
is compatible if the state is a maximally mixed state. This

difference arises from the fact that the Holevo quantity [unlike
the information measure in Eq. (15)], which represents the
extractable information, can be nonzero for an ensemble cre-
ated from measurement on a maximally mixed state. We show
the importance of the new IPC measure through the following
example.

Example 1. Consider a scenario in which Alice is
randomly implementing σx and σz measurements on the
single-qubit maximally mixed state with equal probabili-
ties and generates ensemble {{ 1

2 , |0〉 〈0|}, { 1
2 , |1〉 〈1|}} and

{{ 1
2 , |+〉 〈+|}, { 1

2 , |−〉 〈−|}}, respectively, for Bob. This is a
QKD-like situation. Now, the possible bases of measurements
are known for eavesdropper Eve. But she does not know
which measurement is exactly implemented in a particular
run. Therefore, she is randomly measuring σx and σz on the
ensemble created by Alice. In this case, if we use the measure
of IPC from Eq. (15), we get the following as the average IPC:

Iavg = 1

4
I

(
I

2
, σz, σz

)
+ 1

4
I

(
I

2
, σz, σx

)

+ 1

4
I

(
I

2
, σx, σz

)
+ 1

4
I

(
I

2
, σx, σx

)

= 0. (27)

Therefore, according to this analysis, the information leakage
is not detectable. But it is a well-established fact that if Alice
and Bob declare the basis of their measurements Eve will be
detected since her operation disturbs the ensemble. Therefore,
this measure of IPC is not very useful here. Instead, if we use
the modified measure of IPC, we get

Iavg = 1

4
I

(
I

2
, σz, σz

)
+ 1

4
I

(
I

2
, σz, σx

)

+ 1

4
I

(
I

2
, σx, σz

)
+ 1

4
I

(
I

2
, σx, σx

)

= 1

4
I

(
I

2
, σz, σx

)
+ 1

4
I

(
I

2
, σx, σz

)

= 1

2
ln 2

�= 0, (28)

where we have used Eq. (26) to arrived at the last line. This
nonzero value suggests that information leakage can be de-
tected, as expected. Hence, the modified IPC measure is useful
in this scenario.

In this example we have considered that Eve is using a
parent instrument for her measurement. If she uses any instru-
ment other than the parent instrument the average information
leakage will be higher than Iavg.

IV. INCOMPATIBILITY OF PHYSICAL CONTEXT IN THE
PRESENCE OF MEMORY

Motivated by the work in Ref. [24], where it was shown
that in the presence of memory the total uncertainty of two
measurements gets reduced, we ask the question: How will
the IPC change in the presence of memory? To accommodate
the presence of memory, we modify our game slightly, for the
scenario where we perform only rank-one projective measure-
ments X and Y .
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In the modified game, our initial state σin is the subsystem
of the bipartite state σin,M , where M acts as the memory. After
the X measurement on the subsystem state σin, Alice pro-
duces the bipartite ensemble ρAM = ∑

x pxρ
x
AM , where ρx

M =
TrA[ρx

AM] acts as the memory and Bob receives the subsystem
A prepared in the state ρA = TrM[ρAM]. On this ensemble, if
we use the approach in Ref. [13], the information content of
ρA conditioned on memory ρM is given by

Imem
1 = ln d − S(A|M ) = ln d − S(ρAM ) + S(ρM ),

where S(A|M ) = S(ρAM ) − S(ρM ) is the conditional entropy
[21]. After the Y measurement by Eve on ρA, the en-
semble transforms as

∑
x pxρ

x
AM → ∑

x px(NY ⊗ I)(ρx
AM ) =∑

x pxρ
x
A′M , so that the remaining information content of the

state ρA′ is

Imem
2 = ln d − S(A′|M ) = ln d − S(ρA′M ) + S(ρM ),

where I is the identity channel acting on the memory. There-
fore, in the presence of memory, the expression of IPC takes
the following form:

I mem
C = Imem

1 − Imem
2

= S(ρA′M ) − S(ρAM ). (29)

To compare the IPC with and without memory, we compare
Eq. (15) with Eq. (29), which gives the following:

IC − I mem
C = [S(ρA′ ) − S(ρA′M )] − [S(ρA) − S(ρAM )]

= Icoh(M〉A′) − Icoh(M〉A) � 0. (30)

Here, Icoh(M〉A) = S(ρA) − S(ρAM ) is the coherent infor-
mation that is nonincreasing under the action of quantum
channels [21,25,26]. This analysis tells us that the IPC is
increasing in the presence of memory, which seems contrary
to the intuition that memory reduces the incompatibility.

Next, we compute the IPC in the modified game with
our approach. In our case, after the X measurement, the ex-
tractable classical information from ρA is the mutual informa-
tion of the quantum-classical ensemble ρCA = ∑

x |x〉C 〈x| ⊗
ρx

A (see Sec. II D). However, now it is conditioned on the mem-
ory ρM . Therefore, in the presence of memory the extractable
information will be the mutual information between ρC =∑

x |x〉C 〈x| and ρA, conditioned on the memory ρM via the tri-
partite classical-quantum state ρCAM = ∑

x px |x〉C 〈x| ⊗ ρx
AM ,

i.e.,

Xmem
1 = S(A : C|M )

= S(A|M ) + S(C|M ) − S(AC|M )

= S(ρAM ) − S(ρM ) + S(ρCM ) − S(ρCAM ).

Here, we have simply expanded the conditional entropies
to get the final form. Also, after Eve performs her mea-
surement Y on the subsystem ρA, the remaining mutual
information between ρA′ and ρC conditioned on the mem-
ory ρM , via the classical-quantum ensemble

∑
x px |x〉C 〈x| ⊗

ρx
A′M is given by

Xmem
2 = S(A′ : C|M )

= S(A′|M ) + S(C|M ) − S(A′C|M )

= S(ρA′M ) − S(ρM ) + S(ρCM ) − S(ρCA′M ).

Therefore the IPC, using our approach in presence of mem-
ory, takes the following form:

Imem(C) = Xmem
1 − Xmem

2

= S(ρAM ) − S(ρA′M ) − S(ρACM ) + S(ρA′CM )

= S(ρAM ) − S(ρA′M ) −
∑

x

S
(
ρx

AM

) +
∑

x

S
(
ρx

A′M
)

= S(ρAM ) − S(ρA′M ) +
∑

x

S
(
ρx

A′
)
. (31)

In the above calculations we have used the fact that ρx
A are

pure states so that ρx
AM and ρx

A′M are bipartite product states.
Now, if we compare the IPC without and with memory in from
Eq. (26) and Eq. (31), respectively, we have

I(C) − Imem(C)

= [S(ρA) − S(ρAM )] − [S(ρA′ ) − S(ρA′M )]

= Icoh(M〉A) − Icoh(M〉A′) � 0. (32)

Thus, we find that using our approach, the IPC is nonincreas-
ing in the presence of memory. It follows the intuition that
the presence of memory should reduce the incompatibility, as
the memory can be utilized to recover the lost information. On
comparing Eq. (30) with Eq. (32), we find that IC − I mem

C =
−[I(C) − Imem(C)]. This relation strongly indicates that the
information leakage content IC envisaged in Ref. [13], is not
capable of fully capturing the problems we face in a typical
quantum information processing scenarios. This analysis also
validates our approach for quantifying the IPC.

Example 2 (Comparison of incompatibilities of a
physical context with two different memories). Suppose
σin = α |λ1〉 〈λ1| + β |λ2〉 〈λ2| is a qubit state and Sx =
{|+〉 〈+| , |−〉 〈−|} and Sz = {|0〉 〈0| , |1〉 〈1|} are the sharp
spin measurements along x and z directions, respectively,
where {|λ1〉 , |λ2〉} is the eigenbasis of σin. Here 0 � α, β � 1
and α + β = 1. Now, we take our physical context as C1 =
(σin, Sz, Sx ). We will consider the following case where Alice
is using memories M keeping input state σin fixed.

Suppose Alice is using a qubit memory M such that
σin,M = p |ψin,M〉 〈ψin,M | + 1−p

4 Iin, where 0 � p � 1,
|ψ〉in,M = √

α′ |λ1〉 |λ′
1〉 + √

β ′ |λ2〉 |λ′
2〉, IAM = I4×4,

0 � α′, β ′ � 1, α′ + β ′ = 1, {|λ1〉′ , |λ2〉′} is the eigenbasis
of σM and σM = Trin[σin,M]. Alice chooses α′, β ′ and p such
that

α = pα′ + 1 − p

2
(33)

β = pβ ′ + 1 − p

2
(34)

hold. Then, TrM[σin,M] = σin. For example, when α = 1
4

and β = 3
4 , one possible choice is p = 3

4 , α′ = 1
6 and

β ′ = 5
6 . The state of the memory is σM = Trin(σin,M ) =

α |λ′
1〉 〈λ′

1| + β |λ′
2〉 〈λ′

2|. Let, qxy = 〈x|λy〉 where x ∈
{0, 1,+,−} and y ∈ {1, 2}. The bipartite ensemble, created
by the Sz measurement of Alice, is {p′

i, σ
i
AM} where,

p′
i = Tr[(|i〉 〈i| ⊗ I)σin,M] = p[α′ | qi1 |2 +β ′ | qi2 |2] + 1−p

2
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FIG. 1. Plot of concurrence and mutual information of σin,M and
the leakage difference vs the parameter p. It can be seen that con-
currence and mutual information of σin,M and the leakage difference
is monotonically increasing with respect to the parameter p. All
quantities are normalized i.e., all of them have been divided by their
maximum values.

and σ i
AM = (|i〉〈i|⊗I)σin,M (|i〉〈i|⊗I)

Tr[(|i〉〈i|⊗I)σin,M ] and i ∈ {0, 1}. Now it can be

easily checked that σ i
AM = |i〉 〈i| ⊗ [p |φ′

i〉 〈φ′
i | + 1−p

2p′
i

I
2 ] where

|φi〉 = 1√
pi

(
√

α′qi1 |λ1〉 + √
β ′qi2 |λ2〉). The postmeasurement

average bipartite state is σAM = ∑
i p′

iσ
i
AM . Clearly,

σA = TrMσAM = p
∑

i p′
i |i〉 〈i| + (1 − p) I2 . After, Eve’s Sx

measurement on A part, the average bipartite state will become
σA′M = I

2 ⊗ σM where σM = [p
∑

i pi |φ′
i〉 〈φ′

i | + (1 − p) I2 ] =
σM and the average state of A part becomes σA′ = I

2 . So, the
reduction in information leak is given as

I(C1) − IM (C1)

= [S(σA) − S(σAM )] − [S(σ ′
A) − S(σA′M )]

= [S(σA) − S(σAM )] − [S(σ ′
A) − S(σA′ ) − S(σM )]

= S(σM ) + S(σA) − S(σAM ) = I (A : M )σAM . (35)

Now, consider a special case where |λ1〉 , |λ2〉 are the eigen-
basis of σy, α = 1

4 and β = 3
4 . In this case, | qi j |2= 1

2 ∀i ∈
{0, 1} and ∀ j ∈ {1, 2}. Also, from Eq. (33) we get α′ = 2p−1

4p .

Clearly, α′ � 0 only for p � 1
2 . We plot the leakage difference

I(C1) − IM (C1) with respect to p in Fig. 1. To quantify the
amount of memory we use the concurrence measure [27] and
the mutual information of the initial bipartite state σin,M . From
Fig. 1 we get that with increment of p, concurrence and mutual
information of σin,M and the leakage difference, are monoton-
ically increasing with p. We can also say that the information
leakage difference is a monotonically increasing function of
both concurrence and mutual information in the state σin,M .
Equivalently, we can say that the leakage with memory is
monotonically decreasing with increasing value concurrence
and mutual information. It can be observed from Fig. 1, the
leakage difference is nonzero for the region p � 0.548 where
the concurrence is vanishing. In this region the nonzero leak-
age difference can be attributed to the nonvanishing mutual
information.

Example 2 suggests us to write down the following conjec-
ture:

Conjecture 1. With increment of correlation between the
memory and the input state, information leakage monotoni-
cally decreases.

Therefore, we conclude based on the validity of the con-
jecture, that the presence of more memory correlation helps
in reducing the leakage.

V. CONCLUSION

In this work, we have derived the measure of an appropriate
information leakage in all QKD-like games. Moreover, intro-
ducing quantum instruments, we have generalized the notion
of IPC for POVMs. We have shown the relation between
previous and our approaches for sharp measurements. Our
approach always leads to a non-negative measure of IPC. We
have also shown that the modified IPC measure is more useful
compared to the earlier IPC measure in Eq. (15), in a QKD-
like scenario as an example. Also, on including memory, our
measure of IPC can never increase. In fact, in Example 2, we
have shown that information leakage monotonically decreases
with increment of correlation between input state and mem-
ory. Thus, we have successfully modified the notion of IPC
for generic measurements.

Our work opens up several future directions. First, it would
be useful to construct the resource theory of IPC using our
measure. Further, our measure can be a useful tool for generic
information-theoretic tasks, which involve transmission of
classical information over quantum channels. We would like
to explore how our generalized version of IPC can be related
to incompatibility of POVMs.
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