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We propose a robust and efficient way to store and transport quantum information via one-dimensional discrete
time quantum walks. We show how to attain an effective dispersionless wave packet evolution using only two
types of local unitary operators (quantum coins or gates), properly engineered to act at predetermined times and
at specific lattice sites during the system’s time evolution. In particular, we show that a qubit initially localized
about a Gaussian distribution can be almost perfectly confined during long times or sent hundreds lattice sites
away from its original location and later almost perfectly reconstructed using only Hadamard and σx gates.

DOI: 10.1103/PhysRevA.104.032224

I. INTRODUCTION

In quantum mechanics the “spreading” of the wave
function is a ubiquitous characteristic of time-independent
Hamiltonians [1,2]. In this scenario, our knowledge of where
a microscopic particle is located diminishes as time goes by.
This natural delocalization of quantum entities is most of the
time a hindrance to an efficient implementation of quantum
communication protocols or to the proper execution of a quan-
tum computational task. Indeed, the main problem of any type
of communication is the ability to recover with a reasonable
level of fidelity the information content sent from one point to
another [3], and it is thus important to know where a quantum
particle is located if we want to employ it as a carrier of infor-
mation. In other words, we have to somehow reduce or sup-
press the unwanted spreading of the wave function of a quan-
tum particle to use it efficiently as a carrier of information [4].

Here we pose and solve the above problem in the frame-
work of one-dimensional discrete time quantum walks [5,6].
We show a very simple and robust scheme allowing an
effective dispersionless time evolution of a wave package
describing the position probability density of a qubit (our
quantum walker). This scheme can also be adapted to effi-
ciently store the information content of a quantum state at a
given location. Actually, as we will see, we can dispersion-
lessly send the information, store it at another place, and send
it again, repeating the previous steps many times, without
disturbing the information carried by the qubit.

The present protocol is inspired and works similarly in
spirit to the techniques employed by cowboys and cowgirls
to herd or drive livestock from one place to another inside
a cattle-handling facility. This process, usually called “cor-
ralling,” aims to either send cattle from one place to another
or corral it in a cattle pen. In order to drive the cattle from one
place to another, a cowgirl closes a given gate while open-
ing another one at the right place and time. By successively
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closing and opening gates at the right times and places, she
can smoothly move the cattle from one location to another.
The timing of the opening and closing of the gates has to be
precise, otherwise the cattle will disperse or even move in the
wrong direction. As we will see here, the protocol we describe
and call “quantum corralling” works mutatis mutandis exactly
in the same way. The opening and closing of gates in a cattle
handling facility are substituted by the activation or inactiva-
tion of σx gates at right times and places while the untamed
cattle is a Gaussian wave packet being herded by the unitary
evolution of quantum mechanics, which is not a very good
herder due to its inherent dispersive aspect. See Figs. 1–3
and especially the videos available online as Supplemental
Material [7] to this work for a visual and easy understanding
of the quantum corralling protocol.

II. THE PROTOCOL’S PLATFORM

Quantum walks are a promising framework to implement
a variety of quantum tasks, such as quantum search algo-
rithms [8,9] and universal quantum computation [10,11]. A
rich dynamical behavior can be engineered in a quantum walk,
ranging from diffusive to ballistic transport [12–19], and many
physical systems can be used to experimentally build a quan-
tum walk [20,21]. See also Refs. [22–55] for quantum state
transfer protocols using other platforms such as spin chains or
continuous variable systems.

For our purposes, we can think of a quantum walker as a
spin-1/2 particle (qubit) placed on a regular one-dimensional
lattice where each site represents a discrete position. Its dy-
namical evolution is driven by a unitary operator formed by a
quantum coin (gate) and a conditional displacement operator.
The quantum coin acts on the qubit changing its spin state
and the displacement operator moves the up (down) spin state
to the right (left) adjacent position. The interference between
the up spin state moving to the right with the down spin
state moving to the left is the reason for the rich dynamics of
quantum walks. Depending on the initial state and on the coin,
we either get localization or transport of the wave function,
with the latter being diffusive or ballistic.
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A. Mathematical formalism

We now highlight the main features of the formalism and
notation fully developed in Refs. [12,13] that are needed for
our present purposes. For further details we direct the reader
to those aforementioned references.

The internal degree of freedom of the quantum walker, for
instance the spin of an electron or the polarization of a photon,
and its external degree of freedom (position) are described by
the Hilbert space H = HC ⊗ HP. Here HC is the coin space, a
complex two-dimensional vector space spanned by the vectors
{|↑〉, |↓〉}, and HP is the position space, a numerable infinite
dimensional vector space spanned by {| j〉}, with j being an
integer denoting the discrete position of the walker on a one-
dimensional lattice. We assume that the information content
of the walker is encoded in its internal degree of freedom.

An arbitrary initial state where the internal degree of free-
dom is not entangled with the position degree of freedom can
be written as

|�(0)〉 = [cos α|↑〉 + eiβ sin α|↓〉] ⊗
∑

j

f ( j)| j〉, (1)

where we sum over all integers j, α ∈ [0, π/2] and β ∈
[0, 2π ]. Note that for simplicity we set α to be half the polar
angle θ in the Bloch sphere representation (θ ∈ [0, π ]) while
β is the usual azimuthal angle. Since we will be dealing with
a Gaussian wave packet initially centered at the origin,

f ( j) = Ae−[ j2/(4s2 )]/(2πs2)1/4. (2)

Here s is the initial standard deviation and A is a normal-
ization constant to guarantee that

∑
j | f ( j)|2 = 1. If j were

a continuous variable we would have A = 1. Eventually, in
our numerical experiments, we will set | j| � jmax and A will
be chosen to guarantee the normalization condition in this
scenario.

Our main goal is to tune the time evolution of the system
such that at a chosen position j = x, we will have at time t
the same wave packet we had at t = 0 but now centered at
x. We want |�(t )〉 to be |�(0)〉 displaced to position x. In
other words, we want |�(t )〉 = Dx|�(0)〉, where Dx = 1C ⊗∑

j | j + x〉〈 j| and 1C is the identity operator in the coin space.
In this case we will achieve an effective dispersionless time
evolution that preserves the information encoded in the spin
state: the t = 0 spin state cos α|↑〉 + eiβ sin α|↓〉 will be the
spin state at j = x and time t .

The walker’s state after n discrete time steps is given by
[12,13]

|�(n)〉 = T
n∏

t=1

U (t )|�(0)〉, (3)

where T indicates a time-ordered product and

U (t ) = SC(t ), (4)

where

S =
∑

j

(|↑〉〈↑| ⊗ | j + 1〉〈 j| + |↓〉〈↓| ⊗ | j − 1〉〈 j|) (5)

is the conditional displacement operator, moving a spin up
(down) to the right (left), and

C(t ) =
∑

j

C( j, t ) ⊗ | j〉〈 j|, (6)

where C( j, t ) is the coin operator that acts on the internal
degree of freedom at position j and at the time t . Note that in
general C( j, t ) depends on both j and t , and only if we have
the same coin at all sites we get C(t ) = C(t ) ⊗ 1P, where 1P is
the identity operator in the position space. In this work we use
only two coins, the Hadamard gate, H = (|↑〉〈↑| + |↑〉〈↓| +
|↓〉〈↑| − |↓〉〈↓|)/√2, and the not gate, σx = |↑〉〈↓| + |↓〉〈↑|.

B. Pure Hadamard dynamics

If in all sites we have only the Hadamard coin, namely,
C(t ) = H ⊗ 1P, a Gaussian state centered at the origin as
given by Eq. (1) and evolving according to Eq. (3) will split
into two dispersive Gaussian wave packets, one moving to
the left and the other moving to the right. Numerical analysis
proves the latter claim for small and large values of the initial
standard deviation s. For large enough s and small times, we
show in Appendix A that we essentially have

|�(t )〉 = |ψR〉 ⊗
∑

j

f ( j − t/
√

2)| j〉

+ (−1)t |ψL〉 ⊗
∑

j

f ( j + t/
√

2)| j〉, (7)

where |ψL〉 and |ψR〉 are orthogonal states that depend only on
α and β. It is clear from Eq. (7) that the splitting of the initial
Gaussian into two oppositely moving ones occurs regardless
of the initial condition of the internal degree of freedom. Of
course, for larger times the dispersion of the wave packets can
no longer be ignored and the approximation above no longer
applies.

We also realize looking at Eq. (7) that when only Hadamard
coins are present, we cannot get a dispersionless wave packet
evolution (the original wave package split into two wave pack-
ages). In order to “tame” and properly drive the wave packet in
the direction we want and to obtain an effective dispersionless
evolution, we need to add “gates” at specific places and leave
them “closed” during a certain time interval. As we show next,
this is achieved by exchanging Hadamard coins to σx coins at
certain lattice points (closing the gate) and then later, at an
appropriate time, changing back to Hadamard coins (opening
the gate). By proceeding in this way, we will be able to corral
the wave packet.

C. Fidelity

Before we present more technically the protocol, it is im-
portant to define the figure of merit we will be using to verify
whether or not the information content encoded in the internal
degree of freedom was stored or transmitted flawlessly. We
quantify the similarity between the evolved state at time t
with the initial one at t = 0 by computing the fidelity between
those two states: F (t ) = |〈�(0)|D†

x |�(t )〉|2, where Dx|�(0)〉
is the initial state displaced to x, the center of the wave packet
given by |�(t )〉, and D†

x is the adjoint of Dx. If F = 1 the two
states are the same up to an overall phase and if F = 0 they
are orthogonal.
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III. THE PROTOCOL

Let us start showing how to keep a Gaussian state confined
or corralled. Later, we will explain how to drive this Gaussian
state from one place to another. As outlined above, corralling
is achieved by changing the Hadamard gate to the σx gate
at specific lattice sites. The idea behind using the σx gate
is related to the fact that it acts as a not gate, changing up
(down) spin states to down (up) spin states. As such, when
we apply the conditional displacement after the action of this
coin we will reverse the movement of the qubit. The σx gate
effectively “blocks” the passage of the qubit (similarly to the
act of closing the gate while corralling cattle).

Being more specific, if initially the center of the Gaussian
wave packet is located at jc = (l + r)/2 and the left and right
blocking gates are placed at positions l and r, respectively, we
must set

C( j, t ) =
{

σx, if j = l,
H, if l < j < r,
σx, if j = r.

(8)

Numerical analysis shows that we can get an almost flaw-
less corralling for considerably long times (of the order of
thousands of time steps) and without affecting the Gaus-
sianity of the wave packet if the σx gates are placed at or
farther than three standard deviations from the wave packet’s
center. This means that l � jc − 3s and r � jc + 3s. More-
over, the analytical result reported in Appendix A also shows
that the greater the initial Gaussian width the more efficient
is the present protocol. In other words, the greater the initial
standard deviation the greater the fidelity of the corralled
state at a given fixed time. This can be understood at the
light of the Heisenberg uncertainty principle. A very narrow
Gaussian in the position space implies a greater dispersion in
momentum, which inevitably leads to a faster spreading of the
wave packet. It is worth noting that numerical analysis shows
that the efficiency of the present protocol decreases as the
Gaussians become narrower. As we decrease the dispersion in
position of the initial wave package, we will reach a threshold
below which the present protocol cannot achieve a nearly
perfect transmission (see Appendix B for details).

As a concrete illustration of what we just said, we show
in Fig. 1 the average results of several numerical experiments
using a Gaussian state with a fixed standard deviation (s = 10)
and hundreds of different spin initial conditions. We work
with 451 different initial qubit states and following the no-
tation given in Eq. (1) we pick a representative sample of
values for α and β that covers their entire range. We start at
their lowest values and generate in increments of π/20 the
remaining ones, all the way up until we reach their upper
bounds. Then we work with all combinations of the previously
generated values of α and β as our initial conditions. This
is how we get the 451 cases of different initial qubit states.
We center the Gaussian at jc = 0 and insert the σx gates at
l = −101 and r = 101.

In Fig. 1 the time starts at t = 0 and after t = 287 steps the
wave package returns to its initial position, giving the same
probability distribution in position space. However, due to the
reflection of the two split wave packages at the σx gates and
to the dynamics associated with the Hadamard walk, the spin
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FIG. 1. Average probability distribution 〈P( j, t )〉 as a function
of position j and time step t . Here P( j, t ) = |(〈↑|〈 j|)|�(t )〉|2 +
|(〈↓|〈 j|)|�(t )〉|2. We used 451 different spin initial conditions to
compute the averages. The red and blue arrows indicate the direction
of movement of the two Gaussian wave packets that split from the
original one due to the dynamics of the system (Hadamard walk).
The average fidelities at specific times are also shown. See text for
details. Here and in all graphics all quantities are dimensionless.

state when the divided wave packets first meet is orthogonal to
the initial one. We need to wait another round to get the same
global state, where another relative phase shift of π between
the up and down states compensates the first one. Therefore, at
t = 574 steps the system returns almost exactly to the original
initial state. At this time we get an average fidelity of 0.999.

It is worth mentioning that the previous average fidelity is
computed by averaging the fidelities associated with all the
451 different initial conditions described above. This means
that the corralling works very well independently of the initial
condition ascribed to the internal degree of freedom. Although
not shown here, we checked the distribution for the fidelities
of all the 451 numerical experiments and we observed that
all of them lie very close to the average value, corroborating
the independence of the reported results on the initial spin
state. Also, it is important to measure the quantum state at the
right time. If we measure the state one step before or after the
right time, we get zero fidelity. This is due to the (−1)t term
appearing in Eq. (7). A measurement in an odd time leads to
(−1)t = −1, which is equivalent to a phase shift of π and thus
to the measured state being orthogonal to the initial one.

A. Single-shot herding

Let us now move to the description of how to corral a
Gaussian wave packet from one place to another, attaining
at the end an effective dispersionless transmission. In this
scenario there are two classes of protocols. The first one drives
the Gaussian state from one corral to another in a single
shot, without interrupting the driving process along the way.
The second class of protocols is such that before reaching its
final destination, the Gaussian wave packet is provisionally
corralled in one or several intermediate corrals.

Both protocols are built on slight modifications of the pre-
vious corralling protocol, whose goal was to keep a Gaussian
state confined indefinitely at a given corral. For the single-shot
protocol, we can drive the Gaussian state to the right if at the
appropriate time we exchange the σx coin with the Hadamard
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FIG. 2. Average probability distribution 〈P( j, t )〉 as a function
of the position j and time t using the same 451 initial conditions
employed in Fig. 1. Unlike in Fig. 1, we now employ corrals whose
gates are five standard deviations away from the initial wave pack-
age’s center. The right gate ( j = 50) is opened (σx coin changed
to a Hadamard coin) when the center of both split wave packages
coincide after two reflections at the gates of the corral (t = 282). At
this time we can already close the far right gate of the new corral
to which we will be corralling the Gaussian state. Subsequently, half
of the wave package moves to the right (dashed-blue line) and the
other half, after reflecting again at the left gate of the old corral, also
starts moving to the right (dotted-red line). The confinement at the
new corral is achieved by closing its left gate ( j = 250) after the two
wave packages’ center meet for the first time inside it (t = 849). The
average fidelity for this process at t = 995 is 〈F (t )〉 = 0.998, which
implies an almost flawless transmission.

coin at the far right of the corral (we open the gate of the
corral). In this way the original Gaussian wave package will
move to the right in two separated wave packages, which will
be corralled at another location. This is achieved by exchang-
ing at the right time a Hadamard coin with a σx coin at the
far left of the new corral where we want to keep the Gaussian
wave package confined (we are closing the gate of the corral
now). See Fig. 2 for details.

B. Multiple station herding

This class of protocols is built by successive applications of
the previous one, where the right gate of the previous corral is
the left gate of the next one. After reaching a given corral, we
repeat the single-shot protocol, opening and closing the ap-
propriate gates of the old and new corrals as explained above.
Note that here we can also keep a Gaussian wave package
during different times at different corrals. Furthermore, the
multiple-station protocol can be used to drive the qubit to a
given place where a quantum gate can act upon it. In this
way, going back and forth to multiple corrals, where different
quantum gates are installed, we can implement a variety of
quantum computational tasks. See Fig. 3 for details.

IV. DISORDER

In order to investigate the robustness of the quantum cor-
ralling protocol in a more realistic scenario, we will analyze its
response to slight variations about the optimal settings leading
to the almost perfect transmissions reported above. We will

FIG. 3. Same as Fig. 2 but now we have several intermediate
corrals of the same size. The superscript r and the subscript l defin-
ing the coin operator Cr

l ( j, t ) keep track of the location of the σx

coins. The several values for the time within a given coin operator
determine when it is activated and the previous one deactivated. For
instance, C50

−50( j, 0), C150
−50( j, 282), and C150

50 ( j, 566) imply that from
t = 0 to t < 282 we have σx coins (closed gates) at j = −50 and
j = 50 with the remaining sites given by Hadamard coins. From
t = 282 to t < 566, the only sites where we have σx coins are at
j = −50 and j = 150. At t = 566, the σx coins are acting only
on sites j = 50 and j = 150. In a similar way we should read the
remaining coin operators shown. At the time t = 1566, we have an
average fidelity given by 0.997. Again, there is an almost flawless
transmission.

introduce errors (disorder) in the quantum coins needed to im-
plement the quantum walk’s dynamics. For definiteness, from
now on we will work with a fixed initial spin state, namely,
(|↑〉 + i|↓〉)/

√
2, and we will focus on the multiple-station

protocol, whose operation is more prone to be affected by
disordered quantum coins.

An arbitrary coin can be written as [12,13]

C( j, t ) =
√

q( j, t )|↑〉〈↑| +
√

1 − q( j, t )eiθ ( j,t )|↑〉〈↓|
+

√
1 − q( j, t )eiφ( j,t )|↓〉〈↑|

−
√

q( j, t )ei[θ ( j,t )+φ( j,t )]|↓〉〈↓|, (9)

where 0 � q( j, t ) � 1 and − π � θ ( j, t ), φ( j, t ) � π . In this
notation, the Hadamard coin is such that q = 1/2 and θ =
φ = 0 while for the σx coin we have q = θ = φ = 0.

We introduce disorder in a given coin by the following
prescription [12,13,56–58]:

q( j, tn) = |q( j, tn−1) + δq( j, tn)|,
θ ( j, tn) = θ ( j, tn−1) + πδθ ( j, tn),

φ( j, tn) = φ( j, tn−1) + πδφ( j, tn),

where δq( j, tn), δθ ( j, tn), and δφ( j, tn) are random numbers
drawn from independent continuous uniform distributions de-
fined at every j. All distributions are centered at zero and
ranging from −p to p. Note that for q( j, tn) we take the ab-
solute value of the right-hand side since we must always have
q( j, tn) > 0. We can understand p as the maximal relative
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FIG. 4. Top to bottom: static, dynamic, and fluctuating disorder
affecting the execution of the multiple-station protocol (Fig. 3). The
error rate p (relative fluctuation about the optimal ordered settings)
varies from 0% to 0.4% in increments of 0.01%. For every value
of p and type of disorder we implement 1000 disorder realizations,
represented by the dots in the graphics. The average value for the
fidelity is given by the solid-blue lines. The initial spin state for all
cases is (|↑〉 + i|↓〉)/

√
2 and τ = 10%tM , where tM is the time spent

by the wave packet to arrive at its last corral with optimal fidelity in
the ordered protocol. See text for details.

variation of q, θ , or φ with respect to their upper bounds.
For instance, p = 0.1% means that they will change from
tn−1 to tn by at most ±0.1% of their maximal allowed values.
For q the maximal value is 1 while for θ and φ we have π .
Also, depending on the type of disorder, δq( j, tn), δθ ( j, tn),
and δφ( j, tn) are functions only of position, only of time, or of
both position and time. In other words, we have, respectively,
static, dynamic, or fluctuating disorder [12,13,56–58].

Being more specific, for static disorder we randomly and
independently change the optimal coin at every site j ac-
cording to the above prescription only once (at t = 0). For
dynamic disorder whenever t = nτ , n = 1, 2, 3, . . ., and τ a
predetermined period, we change every coin in the same way,
i.e., using the same random number drawn from a given uni-
form distribution. Finally, for fluctuating disorder, whenever
t = nτ we change all coins independently, similar to what we
do for static disorder.

In Fig. 4 we show how the multiple-station quantum cor-
ralling protocol responds to the above three types of disorder.
We realize that it is least affected by static disorder while
fluctuating disorder is the most severe. Whenever the error rate
is below p = 0.05% we always have an average fidelity of at
least 0.8, even for fluctuating disorder. This is a quite remark-
able result, in particular if we remember that we are dealing
with a thousand-step protocol where errors accumulate from
one step to another. Also, the present efficiency is compatible
with other state-of-the-art protocols [59,60], and we believe
we can increase its efficiency at higher error rates by properly
applying quantum error correction strategies at intermediate
corrals [61,62]. See also Appendix C for a complementary
analysis of the effects of disorder in the present protocol.

V. SUMMARY

Within the framework of quantum walks we proposed a
very simple and robust way to store and transmit a qubit
initially localized in a wave package. The present protocol,
which we call quantum corralling, uses only two types of
coins, the Hadamard and the σx coins, to effectively generate
a dispersionless storage or transmission of a Gaussian wave
package.

The confined or transmitted state, when measured at the
right time, showed a high level of fidelity with the initial one,
achieving almost unity fidelity even for walks of thousands
of steps. The protocol worked independently of the initial
spin state, which suggests that it can be used as building
blocks to the development of dynamical quantum memories
if we employ state-of-the-art implementations of quantum
walks [18,19,59,60]. Finally, we also envisage the use of the
quantum corralling protocol to build quantum cargo protocols,
where several qubits are sequentially prepared and sent using
single or multiple pathways [63].
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APPENDIX A: ANALYTICAL PROOF OF EQ. (7)

To analytically understand the time evolution of a Gaussian
state when in all sites we have Hadamard coins (Hadamard
walk), we need to work in the dual k-space.

Defining the two-component vector

�( j, t ) =
[
�↑( j, t )
�↓( j, t )

]
=

[
(〈↑|〈 j|)|�(t )〉
(〈↓|〈 j|)|�(t )〉

]
, (A1)

where �↑(↓)( j, t ) is the probability amplitude of finding the
qubit at position j with spin up (down), the dual k-space is
defined as follows [64]:

�̃(k, t ) =
∑

j

�( j, t )eik j . (A2)

Here the sum runs through all integers from −∞ to ∞, k is
a real number such that k ∈ [−π, π ], and �̃(k, t ) is a two-
component vector as well. The inverse Fourier transform is
[64]

�( j, t ) = 1

2π

∫ π

−π

�̃(k, t )e−ik jdk. (A3)

Using this notation, the initial state given in the main text
[Eq. (1)] can be written as

�( j, 0) =
[
�↑( j, 0)
�↓( j, 0)

]
, (A4)

where

�↑( j, 0) = f ( j) cos α, (A5)

�↓( j, 0) = f ( j)eiβ sin α, (A6)

and

f ( j) = Ae−[ j2/(4s2 )]/(2πs2)1/4. (A7)
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The definition and meaning of A are given in the main text,
while s is the standard deviation of the Gaussian wave packet.

Using Eqs. (A2) and (A4), the initial condition in the dual
k-space is

�̃(k, 0) =
+∞∑

j=−∞
f ( j)eik j

[
cos α

eiβ sin α

]
. (A8)

For a large enough s we can approximate the above sum
for an integral. In this case A = 1, and we get

�̃(k, 0) ≈ (8πs2)1/4e−k2s2

[
cos α

eiβ sin α

]
. (A9)

The dynamics in the k-space can be deduced by first ob-
taining the state at time t + 1 from the one at t in the position
space and then using Eq. (A2). Following Ref. [64] and adapt-
ing the notation to our present problem, it is not difficult to see
that �̃(k, t + 1) = Mk�̃(k, t ), where

Mk = 1√
2

[
eik eik

e−ik −e−ik

]
. (A10)

Recursively applying this relation we get

�̃(k, t ) = (Mk )t �̃(k, 0). (A11)

If we now diagonalize Mk we have

Mk = λ+
k |u+

k 〉〈u+
k | + λ−

k |u−
k 〉〈u−

k |, (A12)

with eigenvalues

λ±
k = ±e±iωk , (A13)

where ωk ∈ [−π/2, π/2] and

sin ωk = sin k√
2

. (A14)

The corresponding eigenvectors can be written as

|u±
k 〉 =

[
1 ± √

2ei(k±ωk )

1

]
√

2(1 + cos2 k ± cos k
√

1 + cos2 k)
. (A15)

Therefore, inserting Eq. (A12) into (A11) we get

�̃(k, t ) = eiωkt |u+
k 〉〈u+

k |�̃(k, 0)

+ (−1)t e−iωkt |u−
k 〉〈u−

k |�̃(k, 0). (A16)

If we now use Eqs. (A3), (A9), (A15), and (A16) we obtain

�( j, t ) ≈
∫ +π

−π

dk

2π
e−ik j

[
(8πs2)1/4e−k2s2]

×
{

eiωkt g+(k)

[
1 + √

2ei(k+ωk )

1

]

+(−1)t e−iωkt g−(k)

[
1 − √

2ei(k−ωk )

1

]}
, (A17)

where

g±(k) = eiβ sin α + (1 ± √
2e−i(k±ωk ) ) cos α

2(1 + cos2 k ± cos k
√

1 + cos2 k)
. (A18)

We now employ once more the assumption that s is suffi-
ciently large and also assume that t is not too big. Since a large

s means a very narrow wave packet in the k-space centered
about k = 0, we can extend the above integration from −∞
to ∞ and make the following approximations:

ωkt ≈ k√
2

t + O(k3)t, (A19)

e−i(k±ωk ) ≈ 1 + O(k), (A20)

g±(k) ≈ eiβ sin α + (1 ± √
2) cos α

2(2 ± √
2)

+ O(k). (A21)

Inserting Eqs. (A19)–(A21) into (A17) and carrying out the
integration we get

�( j, t ) ≈ h+(α, β )|R〉 f ( j − t/
√

2)

+ (−1)t h−(α, β )|L〉 f ( j + t/
√

2), (A22)

where

h±(α, β ) = eiβ sin α + (1 ± √
2) cos α√

2(2 ± √
2)

(A23)

and

|R〉 = 1√
2(2 + √

2)

[
1 + √

2
1

]
,

|L〉 = 1√
2(2 − √

2)

[
1 − √

2
1

]
. (A24)

Here |R〉 and |L〉 are normalized orthogonal states.
If we now define the two orthogonal states

|ψR〉 = h+(α, β )|R〉, |ψL〉 = h−(α, β )|L〉, (A25)

we immediately see that we can write Eq. (A22) as

�( j, t ) ≈ 〈R|ψR〉|R〉 f ( j − t/
√

2)

+ (−1)t 〈L|ψL〉|L〉 f ( j + t/
√

2). (A26)

Now, working in the {|R〉, |L〉} basis and making the fol-
lowing identification:

�( j, t ) =
[

(〈R|〈 j|)|�(t )〉
(〈L|〈 j|)|�(t )〉

]
, (A27)

we have that

|�(t )〉 = |ψR〉 ⊗
∑

j

f ( j − t/
√

2)| j〉

+ (−1)t |ψL〉 ⊗
∑

j

f ( j + t/
√

2)| j〉 (A28)

is the same as Eq. (A26). The proof is finished by noting that
Eq. (A28) is Eq. (7).

APPENDIX B: INFLUENCE OF THE WAVE PACKAGE’S
INITIAL DISPERSION IN POSITION ON THE

PROTOCOL’S EFFICIENCY

Here we give a more quantitative view of the efficiency of
the protocol when the standard deviation in position of the

032224-6



QUANTUM CORRALLING PHYSICAL REVIEW A 104, 032224 (2021)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Standard deviation
0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

FIG. 5. The data above were obtained using the same setting
of Fig. 2 (single-shot herding). The only difference is that we now
fix our attention on one initial internal state, (|↑〉 − i|↓〉)/

√
2, and

change the standard deviation s of the wave package from s = 10,
the value used in Fig. 2, down to s = 1.0. For every value of s, we
evolve the system according to the single-shot herding protocol, and
we measure the system at the optimal time given in Fig. 2. This is
the state used to compute the fidelity with the initial state for a given
value of s.

initial Gaussian wave package decreases. As can be seen ana-
lyzing Fig. 5, the narrower the Gaussian wave package (lower
the standard deviation), the less efficient is the protocol. The
plot in Fig. 5 is made for a particular initial spin state, but
the general trend is similar for other initial spin states. For a
standard deviation s � 5.0, we always get a fidelity of trans-
mission at least of the order of 0.9. As we further decrease s,
the fidelity rapidly decreases, and the present protocol is no
longer the best option to transmit localized states.

APPENDIX C: MORE ON DISORDER

Our goal here is to investigate the response of the multiple-
station protocol to the following two scenarios of disorder.
First, we want to know the efficiency of the protocol when
the bias q( j, t ) of the coins are subjected to disorder while the
phases are not. Second, what happens if now the phases are
affected by disorder and the bias of the coins is unaffected.

Looking at Fig. 6 we realize that the system is barely
affected when disorder is present only in the phases. The
relevant parameter which determines the whole fate of the
protocol in the presence of disorder is the bias q( j, t ). Com-
paring the upper panel with the middle one, we see that they
lead to almost the same fidelities. The lower panel shows that
when only the phases are subjected to disorder, we can have
a much greater value of error p without appreciably affecting
the efficiency of the protocol.

We also checked a possible decrease in the efficiency of
the protocol when we measure the transmitted quantum state
at a different time than the optimal one predicted by the clean
model. The first thing worth noticing is the fact that if we
measure the state one time step before or after the right time tM
we get zero fidelity. This is related to the (−1)t relative phase

FIG. 6. The upper panel is exactly the lower panel of Fig. 4,
where fluctuating disorder is introduced in the multiple-station cor-
ralling protocol, affecting all parameters of the coins, namely, q( j, t ),
θ ( j, t ), and φ( j, t ). We also employ the same notation in the middle
and lower panels. The data of the other panels were computed using
the same settings and number of disorder realizations for each p
as given in Fig. 4, with the following modifications. Middle panel:
Fluctuating disorder acting only on the parameters q( j, t ) defining
the Hadamard and σx coins. The phases are not affected by disorder.
Lower panel: Fluctuating disorder acting only on the phases, the bias
q( j, t ) of the coins are not affected.

between the two split wave packages, as depicted in Eq. (7)
[Eq. (A28) here]. Actually, if we measure the wave package
at odd times we will always get a relative π phase, i.e.,
(−1)todd = −1. In this case we have to apply an appropriate
phase flip gate to compensate for this phase. For even times,
but not too distant from the correct measuring time, we get
very high fidelities, almost as high as if we had measured at
the right time. With that in mind, we tested what would happen
if we deviate about tM , detecting the state before or after the
right time. We observed that for deviations of the order ±10%
about tM , no appreciable reduction in the fidelity occurred. We
still get in this scenario an average fidelity greater than 0.9.

Finally, we also investigated how fluctuations about the
right time to change the Hadamard coin to a σx coin (closing
the gate) or vice versa affected the protocol. The decrease in
the efficiency of the protocol was negligible to deviations of
the order ±10% about the correct time to switch one coin to
the other. This comes about because the switching of the coins
occurs several standard deviations away from the center of the
wave package.

APPENDIX D: DESCRIPTION OF THE
ACCOMPANYING VIDEOS

This Appendix describes the videos in the Supplemen-
tal Material [7]. The file “single_shot_corralling.mp4” is the
animation of the single-shot protocol as given in Fig. 2 us-
ing the state (|↑〉 + i|↓〉)/

√
2 as the initial spin state. For

every integer t , from t = 0 to t = 995 steps, we have com-
puted the probability distribution and then animated those
996 frames. The green vertical bars mark the lattice sites
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where a Hadamard coin was changed to a σx coin (closing the
gate).

The file “multiple_station_corralling.mp4” is the anima-
tion of the multiple-station protocol as given in Fig. 3
using the state (|↑〉 + i|↓〉)/

√
2 as the initial qubit state.

For every integer t , from t = 0 to t = 1566, we have
computed the probability distribution and then animated
those 1567 frames. The green vertical bars mark where
a Hadamard coin was changed to a σx coin (closing the
gate).
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