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We propose quantum circuits to test interferometric complementarity using symmetric two-way interfer-
ometers coupled to a which-path detector. First, we consider the two-qubit setup in which the controlled
transfer of path information to the detector subsystem depletes interference on the probed subspace, testing the
visibility-distinguishability tradeoff via minimum-error state discrimination measurements. Next, we consider
the quantum eraser setup, in which reading out path information in the right basis recovers an interference
pattern. These experiments are then carried out in an IBM superconducting transmon processor. A detailed
analysis of the results is provided. Despite finding good agreement with theory at a coarse level, we also identify
small but persistent systematic deviations preventing the observation of full particlelike and wavelike statistics.
We understand them by carefully modeling two-qubit gates, showing that even small coherent errors in their
implementation preclude the observation of Bohr’s strong formulation of complementarity.
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I. INTRODUCTION

Complementarity is one of the most intriguing aspects
of quantum mechanics, as it sets limits to our capability to
gather simultaneous information about different observables.
It was first discussed in the context of wave-particle duality
by the founders of the theory, but it soon became clear that it
applies to any set of noncommuting observables. The central
conundrum of complementarity is often formulated in terms
of a quantum object that can take two alternatives, or paths,
that we denote by |0〉 and |1〉. The wave function is prepared
in an equal superposition of the paths with a relative phase
added:

|ψ〉 = c0|0〉 + c1eiφ |1〉. (1)

As the phase is changed and the expectation value of a com-
plementary observable is measured, an interference pattern
emerges with an amplitude proportional to Re {c∗

0c1}. This can
only occur if the object evolves through both ways simultane-
ously, interfering with itself (wavelike character). If a system
is set up to gather information about which path the object
actually realizes (particlelike character), the interference con-
trast, or visibility, is washed out.

This modern understanding of the interplay between
which-path information and interference visibility began its
formulation in 1927 with Bohr’s principle of complemen-
tarity [1]. Building on previous achievements [2,3], he first
argued complementarity to be a fundamental quantum feature
whereby objects possess pairs of properties the knowledge of
which is mutually exclusive, the observation of either unam-
biguous particle trajectories or interference fringes being just
one example.

*pedro.cruz@inl.int
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In the same year, Einstein conceptualized a recoiling
double-slit interferometer hoping to falsify Bohr’s principle
[4]. This first which-path thought experiment was discussed
and followed by other proposals over the years [5–7], but
only analyzed in depth half a century later [8]. On that anal-
ysis of the momentum exchange between the photon and
the slit, the tradeoff between the interference visibility and
the amount of which-path information retrieved was quanti-
fied. This description of the partial knowledge obtained from
complementary observables confirmed and extended Bohr’s
original dichotomous version in which complete knowledge
of one of them implies maximal uncertainty about the other.

Soon after, other which-path experiments were proposed
to test complementarity enforced by physical mechanisms
not arising from the position-momentum uncertainty relation
[9,10]. The information-theoretic treatment initiated in [8]
was further pursued by others [11–13] and a duality relation
for general bipartite two-dimensional systems was obtained
by Jaeger et al. [14] and Englert [15], connecting the visibility
V (amplitude) of the pattern produced by the interfering object
to the amount of which-path information D [see Eq. (6)]
captured by the detector:

V2 + D2 � 1. (2)

This analysis was then extended to the context of imperfect
detection and quantum erasure [16], as well as more than two
interferometric paths [17]. After the turn of the century, it was
also shown that the a posteriori distinguishability of the paths,
D, contains two parts to it: the a priori predictability and the
genuine quantum correlations, as quantified by the concur-
rence entanglement measure. Equation (2) was alternatively
cast as a triality and generalized to bipartite systems of any
dimension [18,19].

Originally, Englert argued that the duality relation in
Eq. (2) was independent of Heisenberg’s uncertainty princi-
ple. Since then, however, a new entropic formulation of the
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latter has been discovered, allowing its equivalence to the
former to be established for multipath interferometers [20,21].
Other wave-particle duality relations based on different infor-
mation quantifiers and applicable to Hilbert spaces of arbitrary
dimension have also recently been introduced [22,23].

Complementarity, and the controlled depletion of in-
terference by including which-path detectors in the ex-
perimental setup, have been observed in very ingenious
experiments probing diverse interferometer-detector sys-
tems, including atom-photon [24,25], photon-photon [26–31],
electron-electron [32–34], coupled atomic nuclei in molecules
[35–37], and superconducting circuits [38–40]. Wave-particle
duality has also been observed in optical interferometers in
which the path information is not stored in a subsystem but
carried by an additional degree of freedom of the photons
along their path [41,42].

Today, with the advent of transmon quantum computers
and IBM Quantum (IBM Q) cloud services [43], new tests
of complementarity are being performed. This platform has
been used to carry out which-path experiments with multi-
path interferometers and extract quantifiers of visibility and
distinguishability using an unambiguous state discrimination
detector readout in [44]. The triality relation in [19] was tested
on two qubits with a tomography-based circuit in [45]. More-
over, a state tomography approach was also used in [46] to
test different complementarity relations obtained from density
matrix properties of random states of up to three qubits.

Here, we study two classes of which-path experiments
using simple two-qubit circuits to implement a symmetric
two-way interferometer coupled to a single detector. First, we
design a setup in which the controlled transfer of path infor-
mation to the detector subsystem depletes interference on the
probed subspace, testing Eq. (2) by quantifying distinguisha-
bility via minimum-error state discrimination measurements.
Then, we consider a nondelayed quantum-eraser configu-
ration in which the detector readout basis destroys path
information allowing interference to be recovered. We experi-
ment on a superconducting quantum processor made available
online by IBM Q. In this architecture, microwave pulses drive
arbitrary single-qubit rotations and entanglement of fixed-
frequency transmons. We pay close attention to fine details in
the experimental data to accurately interpret results and draw
their fundamental consequences.

The rest of this paper is organized as follows. In Sec. II,
we introduce the abstract quantum circuits that implement
optimal which-path detection and quantum erasure on any
gate based quantum computer. In Sec. III, we present the
experimental platform and the physical circuits, describe the
methodology, and analyze experimental results. In Sec. IV,
reassessment of the physical operations and model evaluation
are performed to understand the encountered deviations from
the theory. Finally, Sec. V discusses the main takeaways and
presents our conclusions.

II. WHICH-PATH QUANTUM CIRCUITS

Our starting point is the quantum circuit representation of a
Mach-Zehnder interferometer (MZI) [47] [see Fig. 1(a)]. The
first Hadamard gate prepares an equal superposition of the
two qubit states, 1√

2
(|0〉 + |1〉), very much like the first beam

FIG. 1. (a) Single-qubit circuit equivalent to a Mach-Zehnder
interferometer. (b) Same setup, coupling a second qubit, qd , to the
interferometer qubit, qi, to act as a which-path detector. The readout
basis is chosen by defining P†

i and P†
d before the Z basis measure-

ment. Setting P†
i = H and varying the value of α, interference on

qi can be depleted, independently of reading out qd . Setting P†
d = O†

α

maximizes which-path information retrieval. Making P†
d = 1 instead

erases path information rendering detection outcomes useless while
allowing full-visibility interference patterns on qi to be recovered.
Both measurements occur simultaneously. A delayed-choice experi-
ment would probe the detector after the interferometer.

splitter provides two alternatives in the MZI. The phase gate
Rφ introduces a relative phase between the two alternatives,
yielding the state in Eq. (1) with c0 = c1 = 1√

2
. The second

H gate, equivalent to the second beam splitter in the MZI, is
used to measure the X operator with a readout in the Z basis.
The output state |ψ ′〉 = H |ψ〉 on qi satisfies

〈ψ ′|Z|ψ ′〉 = 〈ψ |H†ZH |ψ〉 = 〈ψ |X |ψ〉 = cos φ. (3)

Thus, by measuring |ψ ′〉 in the computational basis we ob-
tain the expectation 〈ψ |X |ψ〉 and detect interference, probing
thereby the linear superposition and the added relative phase.
In this setup, we gain no information about which path, i.e.,
state |0〉 or |1〉, was taken by the qubit before the X basis
measurement.

The which-path detector is implemented by adding a sec-
ond qubit, qd , to the circuit [Fig. 1(b)]. The controlled phase
gate introduces a relative phase α in the joint interferometer-
detector state when both qubits are in state |1〉. The wave
function of the two-qubit system after this operation, in the
basis |xy〉 = |x〉i ⊗ |y〉d , is

|�〉 = 1√
2

(|0〉 ⊗ |δ0〉 + eiφ |1〉 ⊗ |δ1〉), (4)

where |δx〉, x ∈ {0, 1}, denotes the state of the detector qubit
conditioned to the path |x〉 taken by the first one:

|δ0〉 = 1√
2

(|0〉 + |1〉),

|δ1〉 = 1√
2

(|0〉 + eiα |1〉). (5)

The distinguishability D of these states is quantified by the
trace distance of their density matrices, yielding

D ≡ 1

2
‖|δ0〉 〈δ0| − |δ1〉 〈δ1|‖T (6)

=
√

1 − |〈δ0|δ1〉|2 =
√

sin2 α

2
, (7)
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where we have used

〈δ0|δ1〉 = 1
2 (1 + eiα ). (8)

Thus, D is maximal for α = π and null for α = 0.
Since we want to measure the detector to correctly identify

the path taken by the first qubit, we should maximize the
probability of success. This is accomplished by obtaining the
maximum which-path information leaked with a measurement
in the optimal basis [48]. For that, we use the eigenvectors of
|δ0〉 〈δ0| − |δ1〉 〈δ1| to build an operator Oα , which we conju-
gate transpose to obtain

O†
α = 1√

2

(
1 ie− iα

2

1 −ie− iα
2

)
. (9)

Making P†
d = O†

α in the circuit of Fig. 1(b) transforms the
reduced density matrix over qd to ρ̂x = Oα |δx〉 〈δx| O†

α , which
measured in the computational basis yields the outcome y on
the detector with maximal probability of successfully identi-
fying the correct path |x〉 on qi:

psucc = 1
2 [p(0d |ρ̂0) + p(1d |ρ̂1)] = 1

2 (1 + D). (10)

The significance of the distinguishability is therefore that it
bounds the maximum possible success probability. For α =
π , ρ̂0 = 1 − ρ̂1 = |0〉 〈0|, allowing for fully determined path
information. If we run the circuit in Fig. 1(b) with P†

i = 1 and
P†

d = O†
α we can obtain D empirically from

psucc = 1
2 p(0d |0i ) + 1

2 p(1d |1i ), (11)

where p(y|x) = p(xy)/
∑

y p(xy) stands for the conditional
probability and p(xy) is the measurement probability of the
|xy〉 output state.

A. Which-path: Interference vs detection

The interference pattern produced by the first qubit in the
circuit of Fig. 1(b) with P†

i = H is obtained from

〈X 〉 ≡ Tr σ̂X , (12)

where σ̂ is the reduced density matrix on qi before the ba-
sis change operation, associated to the two-qubit state from
Eq. (4) tracing over the states of qd :

σ̂ ≡ Trqd |�〉〈�|. (13)

After straightforward algebra, we obtain

〈X 〉 = Re {eiφ〈δ0|δ1〉} = cos φ + cos(φ + α)

2
. (14)

Thus, it is apparent that the contrast of the interference pattern
along φ is controlled by the overlap of the possible states of
the detector qubit. When this overlap, and thereby contrast,
is maximal (α = 0), which-path information is null. On the
other hand, for α = π there is no interference and maximal
which-path information is stored on the detector, allowing for
its readout to unambiguously identify the path taken by the
first qubit. In other words, it is by maximally entangling the
two-qubit system (α = π ) that we get qi to display classical
particlelike statistics with no interference visibility, regardless
of reading out the detector.

Experimentally, this interference pattern is obtained from
〈X 〉 = p(0i ) − p(1i ), approximating the output probabilities

FIG. 2. In-silico pure-state simulations obtained with two fam-
ilies of circuits of the type of Fig. 1(b), executed with 8192 shots
for each of 10 201 pairs of values α, φ ∈ [0, 2π ]. The first family
consists of the circuit with P†

i = H and P†
d = O†

α . The top right panel
shows the measured 〈X 〉 on qi for all these circuits. The left side
panel illustrates a subset of the data for six different values of α:
actual results (dots with ±2σ〈X 〉 errorbar) are compared against the
theoretical expectation given by Eq. (14) (solid lines). The third panel
shows the results for visibility and distinguishability; data in blue
are obtained from the second family of circuits, where the circuit in
Fig. 1(b) is executed with P†

i = 1 and P†
d = O†

α , and Eqs. (10) and
(11) are employed to extract D.

with the relative frequencies of the readouts. This process is
subject to shot noise, the standard deviation of which scales
with 1√

S
, where S is the number of readouts, or shots. In Fig. 2

we show the results of an in-silico simulation generated by
ramping the phase φ in the first qubit, for several values of the
control parameter α. With 8192 shots per circuit, the curves
traced by the data are in perfect agreement with Eq. (14),
and the 95.4% confidence interval contained by 〈X 〉 ± 2σ〈X 〉
is almost imperceptible. As we vary α from zero to π , the
amplitude of the interference pattern gradually vanishes.

To summarize these observations we define the interfer-
ence visibility and compute it with Eq. (14):

V ≡ 〈X 〉max
α (φ) − 〈X 〉min

α (φ)

2 + 〈X 〉max
α (φ) + 〈X 〉min

α (φ)
=

√
cos2

(α

2

)
. (15)

Using Eq. (8), visibility is related to the overlap

V = |〈δ0|δ1〉|, (16)

and therefore obeys the well-known [14,15] result

V2 + D2 = 1. (17)

This provides a mathematical description of the comple-
mentarity relation between distinguishability and visibility:
imprinting which-path information of the first qubit into the
second one gradually destroys interference. In the next sec-
tion, we address the question of whether the interference is
actually destroyed or if we could recover it by interrogating
the detector differently.

B. Quantum erasure

As we have seen in the previous section, the interference
pattern of the first qubit is compromised if the which-path
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information is stored in the detector, even if this second qubit
is not measured. We now consider the setup of Fig. 1(b) when
the state of the detector is instead measured with P†

d = 1,
keeping P†

i = H .
This detector readout destroys the which-path information

by collapsing the state directly into the Z basis. Given that
both |0〉 and |1〉 have equal weight on that projection, path
information is lost regardless of the value of α. To see how
the irreversible destruction of the which-path information can
restore interference, we write the quantum state just before
readout as

|�out〉 = 1 + eiφ

2
√

2
|00〉 + 1 + eiφ+iα

2
√

2
|01〉

+ 1 − eiφ

2
√

2
|10〉 + 1 − eiφ+iα

2
√

2
|11〉 . (18)

With that, we have the following probabilities for all the
possible measurement outcomes:

p(00) = 1
4 (1 + cos φ),

p(01) = 1
4 [1 + cos(φ + α)],

p(10) = 1
4 (1 − cos φ),

p(11) = 1
4 [1 − cos(φ + α)],

(19)

where p(xy) = |〈�out|xy〉|2. Let us then look at the expecta-
tion value of the interferometer qubit in the X basis, broken
down according to the outcome of the second qubit, which
will be |0〉 or |1〉 with equal probability. Conditioning on these
events we get

〈X0〉 ≡ p(0i|0d ) − p(1i|0d ) = cos φ, (20)

〈X1〉 ≡ p(0i|1d ) − p(1i|1d ) = cos(φ + α). (21)

It is clear that by discriminating qi readouts following the
guidance of the detector, two V = 1 interference patterns are
obtained, shifted by α. It is only when these measurements are
aggregated, disregarding the detector output and protecting
thereby path information, that we return to the situation where
the interference visibility is compromised by α, recovering the
result in Eq. (14):

1
2 〈X0〉 + 1

2 〈X1〉 = 〈X 〉. (22)

Note that if we perform the same break-down procedure
with P†

d = O†
α instead we cannot recover full-visibility inter-

ference patterns like these. Nature seems to know that our
measurement projection has already obtained some which-
path information, therefore it does not let us observe the
complete wavelike behavior of the system. Similar approaches
to quantum erasure have been described in [25,49,50].

III. EXPERIMENTAL RESULTS

We now discuss the experimental testing of the circuits in
the previous section. For that matter, we took advantage of
the IBM Q platform [43], which provides remote access to
digital quantum processors based on superconducting fixed-
frequency transmon qubits coupled via the cross-resonance

gate. In particular, we used the Qiskit open-source software
package [51] to prepare several experiments for execution in
ibmq_toronto, a 27-qubit Falcon r4 processor with a heavy-
hexagon qubit lattice [52] achieving quantum volume 32.

The core of a transmon is formed by two superconducting
islands coupled through two Josephson junctions (JJs). The
relevant dynamical quantities of the JJs are the electron im-
balance across the junction and the difference of the phases of
the superconducting order parameter, which for all practical
purposes can be considered conjugate variables. The qubit
states |0〉 and |1〉 are encoded in the two lowest-energy states
of the Hamiltonian describing this system. The control and
readout of the JJs is implemented by means of their capacitive
coupling to the electromagnetic modes confined in a transmis-
sion line resonator. For details on the working principles of the
device we refer the reader to the original papers [53–55] and
recent reviews [56,57].

IBM Q processors have been previously used to test other
fundamental aspects of quantum mechanics, such as Bell and
Mermin inequalities [58,59]. Quantum computing systems
based on transmons are also being developed by others, such
as Rigetti [60], Google Quantum AI [61], and Quantum In-
spire [62].

A. Methodology

The methodology used to test any of the circuits in Fig. 1
involved two steps: first, the estimation of the relevant observ-
ables from a sample of S shots for each of C values for the
variables of the circuit being tested. At a repetition time of
500 μs per shot, the total processing time of an experiment
adds up to about 500CS μs. The set of circuits comprising
a full experiment was executed in batches of 896. Four ad-
ditional measurement error mitigation [63–65] circuits were
included in each batch, except for the experiment with the
circuit in Fig. 1(a). Within each batch, one shot of each circuit
was executed sequentially before moving on to each of the
remaining shots. Batches ran one after another until comple-
tion of all the executions required to carry out an experiment.
Each circuit in a circuit family is defined by its φ and α values.
Hence, the order in which circuits are executed sets the order
in which this space is probed. Because of the second step of
the methodology, this space was probed uniformly at random.

In the second step, the previous C estimates were employed
to find a global experimental model f (φ, α) through a curve-
fitting procedure minimizing

χ2 =
C∑

j=1

(
z j − ẑ j

σ j

)2

, (23)

where ẑ j ≡ f [(φ, α) j], and the standard error σ j quantifies
the dispersion associated with each estimate ẑ j . Although
the measurement error mitigation procedure is used to infer
sources of error during data analysis, all models below are
fitted to raw, unmitigated data.

In order to set up the model f (φ, α) to fit the data, the
theoretical expression g(φ, α) obtained for the case of ideal
unitary execution of a given quantum circuit is modified with
two additional features. First, one fit parameter is introduced
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FIG. 3. Actual physical circuit implemented to reproduce
Fig. 1(b) in terms of the elementary gateset of the device. Final
gates are defined for each readout basis according to the correspon-
dence: P†

i = H ⇒ Gi = U2(0, π ), P†
i = 1 ⇒ Gi = 1, P†

d = O†
α ⇒

Gd = U2(0, 3π

2 ), and P†
d = 1 ⇒ Gd = U1(α/2).

per circuit variable, replacing

φ → φ + �1,

α → α + �2,
(24)

in the g(φ, α) model to account for calibration errors in the
physical gates. These two additional parameters improve the
modeling of the experimental data and their seemingly ad
hoc introduction will be justified in Sec. IV. Second, since
the quantum processor is not perfectly isolated from the envi-
ronment, the dynamics over this subspace is nonunitary. To
accommodate for the existence of a classical mixture with
identically distributed noise on all the output distributions
from an experiment, the pure state expression is scaled by η

and a bias parameter ε is introduced. The final experimental
model carries at most four parameters and is written as

f (φ, α) = η g(φ, α) + ε. (25)

After completion of the curve-fitting procedure, the au-
tocorrelation of the residuals is checked in the order of the
execution of the circuits. If observed, it is associated with
drifts in the calibration and coherence properties of the device
during the experiment. The attribution is made possible by the
execution protocol whereby the (φ, α) space is sampled at
random, since it removes the correlation component coming
from the possible use of an incorrect model to fit the data. In
order to detect autocorrelation without making any strong as-
sumptions about the generating error process, the residuals are
divided into positive or negative at their average value and the
nonparametric single-sample Wald-Wolfowitz runs test [66]
is performed on the sequence. Evidence for autocorrelation is
found if the test rejects the null hypothesis for errors to be
independent and identically distributed.

All required circuits in an experiment must be executed on
the same two-qubit pair and within a single calibration round
of the system to maintain calibration error consistency across
the tested variable space. For this reason, the random sampling
protocol brings an additional benefit. If the calibration of
the device changes before sampling all the intended variable
values, it is still possible to fit the model with the already
obtained values uniformly spread over the variable space.
Furthermore, if mild environmental drifts in the coherence
properties do occur, randomly sampling (φ, α) allows filtering
outliers uniformly in this space.

At the time of the experiment, IBM Q hardware uses
the controlled-NOT (CNOT) gate together with a fixed set of
parametrized single-qubit gates to implement any quantum
circuit. For this reason, the circuits described in Fig. 1 were
converted to the native operations as represented in Fig. 3.

FIG. 4. Experimental results for the circuit in Fig. 1(a). The X
estimations are represented with almost imperceptible ±3σX con-
fidence intervals and adjust very well to the properly constructed
Eq. (25) model, as measured by χ 2

ν . This experimental model is also
very close to the pure state model, Eq. (3).

Only two single-qubit physical gates were used:

U1(y) =
(

1 0
0 eiy

)
,

U2(x, y) = 1√
2

(
1 −eiy

eix ei(x+y)

)
. (26)

One might notice this circuit can be simplified for some values
of φ and α. However, such simplifications should not be
done experimentally since we must ensure all the results are
obtained from the same number of operations and execution
time. This guarantees adherence of the whole dataset to the
same experimental model.

Finally, the distribution of residuals is also inspected in
the (φ, α) space to assess any pattern indicating the use of
an incorrect model to fit the data. Model adequacy issues are
discussed further in Sec. IV.

B. Two-way interferometer

Our first experimental results were obtained for the setup in
Fig. 1(a), taking S = 8192 shots for each of C = 401 evenly
spaced values of φ ∈ [0, 2π ] (see Fig. 4). This one-qubit
circuit is used as a control experiment to confirm that an
interference pattern is observed. For each φ, we registered
the readout Xj , collecting then all readouts to compute the
relative frequencies (p) of the two possible outcomes and esti-
mate 〈X 〉 from the mean X = p(0) − p(1) with standard error

σX = s/
√

S, where s2 = ∑S
j=1

(Xj−X )2

S−1 is the sample variance.
Based on Eq. (3), these data were modeled with an exper-

imental model X = η cos(φ + �1) + ε. For the chosen S and
C, the minimization procedure finds very good agreement be-
tween the data and the model, scoring χ2

ν ≡ χ2/dof ≈ 1.04,
where dof = 398. The fit parameters, and their respective
one standard deviation errors, are determined with very good
precision as

η = 0.985 81 ± 0.000 24,

ε = 0.005 19 ± 0.000 22,

�1 = −0.032 19 ± 0.000 60. (27)
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The residuals are randomly distributed across the full range
of the independent variable, as evidenced by the runs test.
Yielding a p value of 0.61, it fails to reject the null hypothesis
at a significance level of 0.05. Therefore, we attest robustness
of the system to the quantum fluctuations that could have had
an effect on the circuit outputs during the ≈30 min taken by
the experiment.

In Fig. 4 we plot experimental results against theory.
Comparing the fitted parameters with Eq. (3), η shows an
amplitude drop most probably due to readout errors but in
principle also to the open nature of the system’s evolution,
while the value for �1 represents systematic calibration er-
rors. The asymmetry introduced by the ε bias is consistent
with both energy dissipation by which the qubit decays from
state |1〉 to |0〉 and different readout error rates for each of
these states.

C. Optimal which-path detection

This experiment requires the computation of two families
of circuits. One applies P†

i = H to estimate 〈X 〉 on qi and ob-
tain V , whereas the other is used to find D by making P†

i = 1.
Both types of circuits carry P†

d = O†
α and were executed with

S = 8192 shots on C = 10 201 pairs of (φ, α) values sampled
on a regular 101 × 101 square grid in φ, α ∈ [0, 2π ]. The full
experiment therefore included 20 402 circuits in 23 batches
and took ≈23 h to complete. The batches were prepared with
both families of circuits being executed at the same values
of the circuit variables in alternating order, shot by shot. The
(φ, α) space was sampled uniformly at random.

The results are analyzed separately for each circuit family.
For the first one, we obtained X and σX on the first qubit as in
the previous section. The experimental model approximating
Eq. (14) has four parameters, and the fitting procedure con-
verges with χ2

ν ≈ 2.19. The fit parameters, with one standard
deviation error, are

η = 0.930 39 ± 0.000 17, �1 = −0.037 04 ± 0.000 26,

ε = 0.037 00 ± 0.000 09, �2 = 0.005 12 ± 0.000 37.

(28)

Once again, we see no large shifts in calibration with �1,2

close to zero. This time, however, we observe a slightly larger
drop in η as well as a larger ε bias in comparison with the
one-qubit circuit. Assuming the model to be correct, causes
might include larger measurement error in the physical qubit
used to encode qi, as well as execution errors introduced by
the two-qubit gate, not present in the previous circuit.

From the results obtained with the second family of cir-
cuits, distinguishability D is estimated using the relative
frequencies of successfully determining the path on qi. We
follow Eqs. (10) and (11) to obtain

D = p(00)

p(00) + p(01)
+ p(11)

p(10) + p(11)
− 1, (29)

and the associated standard error

σD =
√

p(00) p(01)

S[p(00) + p(01)]3 + p(10) p(11)

S[p(10) + p(11)]3 . (30)

FIG. 5. Experimental results for the two families of circuits in
Fig. 1(b) in which the detector qubit is measured in the optimal basis
and the interferometer qubit is measured both in the X and the Z
basis. Experimental data for qi on the left side panel correspond to
X ± 2σX . Each of these panels is equivalent to those described in
Fig. 2.

We proceed with the two-dimensional fit of all the estimations
with a three-parameter model obtained from Eq. (7). The
procedure yields χ2

ν ≈ 1.34, providing

η = 0.902 16 ± 0.000 27, �2 = −0.002 24 ± 0.000 29,

ε = 0.002 53 ± 0.000 23. (31)

Thus, we see no relevant shifts in calibration but a noticeable
drop in η attributable to the same causes as those for the first
family of circuits, with the addition of measurement errors on
qd . The cause for the ε bias is not as straightforward to single
out as before.

We compute the visibility and distinguishability curves
from the two fitted models, obtaining then V2 + D2. These
are represented by the dashed lines in the bottom right panel
of Fig. 5 and essentially match the values obtained from
the experimental data (in color). However, while the dashed
visibility curve obtained from the fitted model reaches V = 0
by construction, when we look directly at the experimental
visibility values (red dots) we find Vmin = 0.030 ± 0.004 at
α = π and Vmax = 0.917 ± 0.004 at α = 1.94π , where the
standard deviation error is obtained with 10 000 bootstrap
samples. As for the blue experimental data points, for D, they
represent the average of the values for D obtained with all the
different circuits for that α value and the different φ.

Comparing this panel with that of Fig. 2, the loss of in-
formation is apparent for both the interference visibility V
and the path distinguishability D, lowering the amplitudes of
Eqs. (7) and (15), and modifying Eq. (17) to V2 + D2 < 1.
This comes about due to the mixing of the final pure state
distributions at the output with the noise distribution. In this
case, we conclude the noise distribution mostly arises from the
errors occurring during the readout process by verifying that
the measurement error mitigation protocol closely restores
η ≈ 1 in both models, and thus V2 + D2 ≈ 1. Since the cir-
cuits are so shallow, decoherence does not really play a role in
the loss of quantum information here.

The runs tests for the residual errors in the order of exe-
cution of the first and the second family of circuits yield p
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FIG. 6. Residual error maps z j − ẑ j for the second experiment.
On the left, the residuals of the fit to the X model of the first family
of circuits are shown. On the right, those of the fit to the D model,
obtained with the second family of circuits, are shown. The colorbars
are marked with the lowest and highest recorded values.

values numerically close to zero. Therefore, we reject the null
hypothesis at the 0.05 significance level and have evidence for
autocorrelation in the data. This signals some slight instability
in the physical properties of the system, which we examined
only to find no significant impact in the presented analysis.
Both experimental models are still able to closely fit the data,
with residual standard errors, RSE ≡

√
1

dof �
C
j=1(z j − ẑ j )2, of

0.012 74 in the first case and 0.009 46 in the second case.
Scores R2 ≈ 0.999 26 and 0.998 88 are obtained for each
model, respectively.

More importantly, we find a small but systematic deviation
from the theory, mostly in the results from the first family
of circuits, but also on those from the second. Regarding
the former, the anomaly is already suggested by the fact that
χ2

ν ≈ 2.19, but we confirm it by visual inspection of the plot
of the fit residuals as a function of φ and α. While an adequate
fit would result in a random distribution of residual errors in
this space, the left panel of Fig. 6 clearly shows a pattern. As
for the latter model, the pattern in the right panel of Fig. 6 is
less visible, in agreement with the lower χ2

ν ≈ 1.34.
Even if of small magnitude, it becomes clear with the

resolution of the data that a functional dependence in φ and
α is missing in the experimental models to be able to fully
explain the data. In Sec. IV we reanalyze these results in light
of an improved theoretical model of the entangling operation.

D. Quantum eraser

Let us now discuss the third experiment in which we ran
the circuit in Fig. 1(b) with P†

i = H and P†
d = 1. As in the

previous section, we choose S = 8192 and C = 10 201 pairs
of (φ, α) values sampled on a regular 101 × 101 square grid in
φ, α ∈ [0, 2π ]. The experiment’s 10 201 circuits in 12 batches
took ≈12 h to complete.

As discussed above, our goal is to demonstrate how mea-
suring qd in a projection that cannot access the gathered
information renders which-path detection useless while re-
covering full wavelike behavior on qi. To do so, we separate
the readouts on the latter qubit as conditioned by the output
y ∈ {0, 1} on the detector, to estimate 〈Xy〉 in Eqs. (20) and

FIG. 7. Experimental results for the quantum eraser circuit. The
expectation values of the X operator on the first qubit broken down by
the outcome of the detector are shown, with X0 ± 2σX 0

(X1 ± 2σX 1
)

in the top (bottom) row. Right-side panels plot the full set of results
for the tested (φ, α) values, while the left-side panels show a selec-
tion for six different α.

(21) from

Xy = p(0y) − p(1y)

p(0y) + p(1y)
. (32)

The associated standard error is obtained with

σXy
=

√
4 p(0y) p(1y)

S[p(0y) + p(1y)]3 . (33)

The results are shown in Fig. 7, for X0 in the top row, and X1

in the bottom row. Qualitatively, the full-visibility interference
patterns expected in theory are recognizable for both X0 and
X1. To make the analysis quantitative, we first fitted X0 data to
the expected experimental model obtained from Eq. (20). We
find

η = 0.917 40 ± 0.000 11, �1 = −0.031 18 ± 0.000 20,

ε = 0.033 61 ± 0.000 09, (34)

with χ2
ν ≈ 8.55 and RSE = 0.030 83. The other subset of the

data, for X1, was targeted by an experimental model based on
Eq. (21), achieving χ2

ν ≈ 2.49, RSE = 0.018 85, and parame-
ters

η = 0.937 65 ± 0.000 11, �1 = −0.005 65 ± 0.000 10,

ε = 0.033 79 ± 0.000 09, �2 = −0.005 65 ± 0.000 10.

(35)

As can be seen, the values for the fit parameters are very
precise in both cases. Furthermore, the runs tests, computed
on the chronologically ordered sequence of residuals for both
fits separately, fail to reject the null hypothesis for randomness
at a significance level of 0.05. Thus, during the execution of
this two-qubit circuit, the device had very stable performance.

However, χ2
ν scores show larger deviations from 1, indi-

cating some cause for concern. In fact, the plot of residuals
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as a function of (φ, α) shows once again a pattern for both
the fits with X0 and X1 data. The slight disagreement with
theory is especially marked for the X0 results and can even
be seen in the inset plot on the top-left panel of Fig. 7.
A weak dependence in α is apparent, and the visibility of
the interference slightly decreases as α approaches π . This
suggests that an imperfection in the implementation of the
controlled-Rα gate leaks a small amount of information to
the detector qubit which the readout in the Z basis does not
destroy, hence slightly reducing visibility on the top qubit. We
postpone the analysis of this problem to Sec. IV.

Finally, to understand how effective the detector qubit is at
discriminating the paths over the interferometer, we measured
distinguishability in this readout basis. To that end, we car-
ried out yet another independent experiment. This fourth one
translates P†

i = P†
d = 1 in the language of Fig. 1(b) to Gi = 1

and Gd = U1( α
2 ) in Fig. 3. The same grid with C = 10 201

pairs of (φ, α) values is probed, as well as the same number
of shots S = 8192.

Distinguishability is again measured from Eqs. (29) and
(30). Since psucc, as computed with Eq. (11), is expected to be
0.5 with the detector readout directly on the states in Eq. (5),
theory predicts the measured distinguishability [16] to be

Dm = 0, (36)

independently of φ and α. Note that for the previous case
of the detector measurement in the optimal basis, the mea-
sured distinguishability, as obtained with Eqs. (10) and (11),
matches the actual distinguishability D in Eq. (6) precisely
because of the optimal measurement.

Given Dm = 0, we used a simple model to fit the results
in which only the ε parameter from Eq. (25) is present. The
procedure returns ε = −0.003 70 ± 0.000 11 with χ2

ν ≈ 2.06
and RSE = 0.015 81. Inspection of the residuals as a function
of φ and α once again reveals a smooth pattern. Therefore,
measured distinguishability is neither zero nor constant across
the (φ, α) space, confirming the conclusion from the previ-
ous experiment of a failure to completely erase the quantum
information and produce entirely wavelike behavior. This ex-
periment also had no significant environmental perturbations
during execution, as evidenced by the p value of 0.96 for the
runs test on the ordered sequence of residuals, failing to reject
the null at a significance level of 0.05.

IV. REASSESSING THE CIRCUIT MODELS

As we have seen in the previous two-qubit experiments,
results were frequently slightly off the theoretical predictions
put forward in Sec. II. These anomalies could not be removed
with measurement error mitigation, indicating they do not
stem from the readout process. We now take into account the
systematic deviations between the ideal gates in the presented
circuits and the actual hardware-level operations to rederive
the theoretical models. We analyze how this allows for a
better fit of the experimental results and thus accounts for the
moderate, but systematic, deviations from the theory.

A. Accounting for coherent errors

Take again the operations in the physical circuit of Fig. 3.
With the exception of the gates parametrized by φ and α, all
other single-qubit gates are applied with fixed input values.
Depending on the choices for Gi and Gd , any of the circuits
will only have U2 gates on the top qubit, and both U1 and U2

gates on the bottom qubit. Let us first model single-qubit gate
errors (SQGEs) by adding a bias parameter to each rotation
angle of the U2 gate on the interferometer qubit,

U (qi )
2 (x, y) ≡ U2(x + θ1, y + θ2), (37)

and other independent bias parameters to both types of gates
on the detector qubit,

U (qd )
2 (x, y) ≡ U2(x + θ3, y + θ4), (38)

U (qd )
1 (y) ≡ U1(y + θ5). (39)

Considering these three types of gates, with the five addi-
tional parameters, to be the actual operations in Fig. 3, we can
recalculate output expressions for all the circuits presented
before. Namely, Eq. (7), as computed from Eqs. (10) and (11),
and Eqs. (14), (20), (21), and (36). We obtain, respectively,

D =
√

cos2 (θ3 + θ4) sin2
(α

2
− θ5

)
, (40)

〈X 〉 = 1

2
[cos (α + φ + θ1 + θ2 − θ5)

+ cos (φ + θ1 + θ2 + θ5)], (41)

〈X0〉 = cos (φ + θ1 + θ2 + θ5), (42)

〈X1〉 = cos (α + φ + θ1 + θ2 − θ5), (43)

Dm = 0. (44)

These models provide a microscopic justification for the
�1,2 parameters introduced with Eq. (24). As can be seen,
θ3 and θ4 errors might reduce the maximum attainable D,
while θ1, θ2, and θ5 can only shift the interference pattern for
〈X 〉 without compromising V . However, none of these SQGEs
explains the slight dependence in α of the interference contrast
for 〈X0〉, nor the varying Dm for different φ and α, both of
which have been observed.

To understand what might be missing, let us note that
state-of-the-art hardware achieves error rates reaching 10−4

on single-qubit gates [43]. The daunting challenge, though, is
to apply the CNOT gate with the same level of accuracy. The
current implementation of the CNOT gate in IBM Q devices
uses the cross-resonance (CR) gate together with single-qubit
rotations to reach errors between 10−2 and 10−3. Significant
work is being devoted to improve the fidelity of the CR gate
with carefully designed pulse sequences. These would ideally
generate only a ZX interaction term. An echoed CR sequence
with target rotary pulses has recently shown improved perfor-
mance in reducing the undesired error terms in the final pulse
Hamiltonian [67]. The CNOT used in the experiments we report
is based on this sequence.

To model the unitary errors in the CNOT implementation
derived from the aforementioned CR sequence, we introduce
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biased CNOT gate models written up in terms of different
adimensional bias ratios, β j , between the coupling strength of
the extra error terms and the desired ZX interaction term. We
take into account only the two-qubit subspace of the effective
CR pulse Hamiltonian, and the error terms comprising entan-
glement with spectator qubits are not considered. The simplest

introduced gate model, BCNOT2, contains only two bias ratios,
β1 and β2, connected to IY and IZ errors. If classical crosstalk
from the CR drive accidentally acting on the target qubit is
included, error terms for IX , ZY , and ZZ are also considered,
extending the previous model with β3, β4, and β5 to obtain
BCNOT5:

〈c′t ′| BCNOT5 |c t〉 = i(c′ − 1) − cc′(1 + i) + ic√
2

[
cos (γcπ/4)[t (1 + i)(2t ′ − 1) − (1 + i)t ′ + i]

+ sin (γcπ/4)

γc
(β1 + β2 + iβ3 + (−1)c(β4 + β5 + i) + t (1 + i){−β1

+ i[β2 + β3(2t ′ − 1) + (−1)c(iβ4 + β5 + 2t ′ − 1)]}

+ t ′(i − 1)[β1 + iβ2 − β3 + (−1)c(β4 + iβ5 − 1)])

]
, (45)

with a total of five bias parameters, where c, t, c′, t ′ ∈ {0, 1} and

γc =
√

[β1 + (−1)cβ4]2 + [β2 + (−1)cβ5]2 + [β3 + (−1)c]2, (46)

so that Eq. (45) encodes a U (4) operator. In the no bias limit
β1,...,5 → 0, the BCNOT gates converge to the ideal CNOT, a
perfect entangler [68]. When bias is present, the ability to
maximally entangle some acted upon product state is severely
hampered or entirely absent. The details of this derivation are
provided in Appendix A.

Our goal now would be to obtain further generalizations of
Eqs. (40)–(44) by replacing the ideal CNOT in the circuit of
Fig. 3 first with the BCNOT2 alternative and then with BCNOT5,
in addition to the single-qubit gates in Eqs. (37)–(39). We
would then use those ten analytical models, supplemented by
η and ε as in Eq. (25), to fit the experimental data, drawing
conclusions about the actual physics taking place in the de-
vice.

However, such a program results in very long and cum-
bersome expressions which are often difficult to compute
and simplify to an interpretable form. We could alleviate the
problem by alternatively using a truncated series expansion of
the BCNOT gates in their β1,...,5 ≈ 0 parameters. Nevertheless,
to make sure higher-order contributions are not missed when
modeling the experimental results, we consider the exact BC-
NOT gates and fit the data to the readout probabilities obtained
by numerically computing the circuits instead.

B. Model evaluation

Let us now fit the experimental results for D, 〈X 〉, 〈X0〉,
〈X1〉, and Dm to the theoretical predictions obtained by nu-
merically calculating the output probabilities of the respective
circuits with the different models for single- and two-qubit
gates. The obtained g(φ, α) models are again allowed to scale
and shift with η and ε, following Eq. (25). We aim at identify-
ing the best model to explain the data from each experiment,
and thus understand the origin of the systematic deviations
encountered in Sec. III.

For that, we evaluate the χ2
ν and RSE scores of each fit

in order to compare them. However, we do not fit and test

a model on the same data, as this could erroneously signal
better performance of more complex and parametrized models
due to overfitting. We prevent it by evaluating performance
on out-of-sample data, using part of the experimental results
to fit the model and a different subset to test it. Specifically,
we employ tenfold cross-validation with data folds selected
uniformly at random in the (φ, α) space and score all models
on equal splits. This method allows us to identify the models
that maximize accuracy and minimize the structure of the
residuals while preventing overfitting. We can confidently do
so by comparing the assessed measures, reported in Table I, to
rank model adequacy.

Looking at this table, we begin by noting the overall agree-
ment between both scores: The models with the ten single-
and two-qubit gate biases, in the last column, more accurately
fit the experimental results. The magnitude of improvement
is not the same for all of them, though. This is understood

TABLE I. Average performance measures for the fits obtained
with different single- and two-qubit gate models, as evaluated with
tenfold cross-validation. Boldface highlights the best-performing
models. Table II presents the parameter values.

No SQGEs SQGEs

CNOT CNOT BCNOT2 BCNOT5

D χ 2
ν

RSE
1.34692
0.00950

1.34766
0.00950

1.34993
0.00950

1.35376
0.00952

〈X 〉 χ 2
ν

RSE
5.78430
0.02062

2.20479
0.01278

1.81458
0.01161

1.81619
0.01161

〈X0〉 χ 2
ν

RSE
11.07644
0.03670

8.61654
0.03094

7.50310
0.02775

2.71485
0.02016

〈X1〉 χ 2
ν

RSE
2.83404
0.01997

2.51185
0.01891

2.48586
0.01873

2.42447
0.01865

Dm
χ 2

ν

RSE
2.05986
0.01582

2.07046
0.01586

2.02330
0.01568

2.02358
0.01568
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on the basis that the measured observables can be more or
less resilient to the various coherent errors depending on the
circuit, similar to what happens in Eqs. (40)–(44). At times,
considering either BCNOT2 or BCNOT5 gates yields similar per-
formance. However, as seen in the full table of parameters in
Appendix B, using BCNOT5 yields more stable and reasonable
parameter values. Let us take a closer look at each row in
Table I to discuss the details.

First, consider the scores for the 〈X 〉 models. Table I clearly
shows that taking into account SQGEs and both the BCNOT2

and BCNOT5 gates maximizes performance. We also find that
the obvious pattern in the left panel of Fig. 6 mostly disap-
pears to the human eye already using BCNOT2 by plotting the
residuals from any of the ten splits of the cross-validation
procedure. However, simply on the basis of the goodness of
fit measures, there is no clear choice between BCNOT2 and
BCNOT5, indicating that there may be some overparametriza-
tion of the model obtained with the latter. The ambiguity
is reduced by Table II, in which less problematic and more
realistic fit parameters support the adoption of BCNOT5 as the
most reliable model for the origin of the data.

With respect to the 〈X0〉 and 〈X1〉 conditional interference
patterns, Table I unambiguously validates SQGEs and the
BCNOT5 gate as the best performing choice. The goodness
of fit improvement is especially significant for 〈X0〉. In fact,
plotting again the region represented in the inset of the top-left
panel of Fig. 7 with the fitted equations, we observe that
the single ideal sinusoidal curve is replaced by multiple ones
adjusting the points from each value of α. Even so, in the
residuals of both 〈X0〉 and 〈X1〉 fits, patterns are still visually
clear, albeit of diminished magnitude. In particular, these pat-
terns show high frequency features with striking clarity, which
would require further understanding. If we look closely at the
bottom-left panel of Fig. 7 for instance, we can actually see
these very small oscillations of the data around the sinusoidal
curves of that fit.

This observation that some small additional effect is not
being taken into account by the models leads us well into
the discussion of D and Dm. As can be seen, there is little
difference in using any of the models to fit the experimental
results of both these quantities, although considering SQGEs
and both BCNOT2 and BCNOT5 slightly improves goodness
of fit for the case of Dm. It is important to note, however,
that little further improvement is possible to the scores of
the simplest D model, since these are already quite low to
begin with. In fact, these scores are the best ones in the table.
Nevertheless, we are also able to identify an odd feature in the
plots of the experimental data for both D and Dm: a smooth
dependence on φ. This is unexpected because there is no φ

dependence in the long and exact closed-form expressions of
the models for these two quantities which integrate SQGEs
and the BCNOT5 gate. Once again, the data contain evidence
of a small additional effect that is not included in our more
complex models.

Therefore, while definitely improving goodness of fit as
compared to the results in Sec. II, these new and more
parametrized models still lack some of the physics that pro-
duces the results. This does not change if we consider a more
complete model for SQGEs in which, on top of the biases
introduced in Eqs. (37)–(39), fit parameters factored with φ

and α are also added. This would be an attempt to capture an
eventual linear dependence of the errors on those variables
appearing in the nonconstant gates of Fig. 3. However, it
provides no significant improvement to the performance of the
models in the last three columns of Table I.

As such, we conjecture two possibilities for additional
effects that could improve the leftover lack of fit and are not
taken into account by the BCNOT gates based on the CR gate
analysis in [67]. These are the potentially significant spectator
errors, consisting of couplings to nearest-neighbor qubits, and
the non-negligible errors due to the crosstalk coming back to
the control transmon from the rotary tone of the CR gate.

Regardless of that, cross-validation shows that the more
complete description of the physical operations introduced
above greatly improves the modeling of the data, capturing
therefore most of the physics in an interpretable manner.
Moreover, the experimental observation of the inability to
achieve the expected situations of full particlelike and full
wavelike statistics can be explained as an important conse-
quence of the biased CNOT operation, as shown promptly
below.

C. Limitations on extreme-case statistics imposed
by the biased CNOT

As we can see from Eqs. (40)–(44), SQGEs cannot prevent
〈X 〉 from achieving V = 0 and 1, since Eq. (15) would only
suffer a phase shift. Similarly, SQGEs alone cannot com-
promise V = 1 in 〈X0〉 and 〈X1〉 interference patterns, which
would also only experience a phase shift, leaving contrast
unchanged. Moreover, Dm is also unaffected by θ1,...,5 errors.
The only exception is D, which can actually fall short of
achieving D = 1 because of SQGEs. However, in this last
case, we cannot tell from the experiment whether this is due
to SQGEs or incoherent noise accounted for by η.

Here, we quickly show that the biased CNOT gate intro-
duced in Eq. (45) can have this limiting effect, thus preventing
the observation of full particlelike and wavelike statistics even
with ideal single-qubit gate execution. To demonstrate that,
we again recompute the output probabilities of all the circuits
studied before, this time by taking the full expression for
BCNOT5 as replacement of the CNOT in Fig. 3 while preserving
single-qubit gates as in Eq. (26). From those, all other quanti-
ties follow.

Before attempting an exact solution, it is instructive to
examine the series expansion of the models truncated to first
order in all β j ≈ 0, with j = 1, . . . , 5. These five models
derived from the four different circuits are

D = sin
(α

2

)
− (β1 + β2 + β4 + β5) cos

(α

2

)
, (47)

〈X 〉 = (1 + β2 − β4) cos φ + (1 − β2 + β4) cos (α + φ)

2
− β1 + β2 + β4 + β5

2
[sin φ − sin (α + φ)], (48)
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〈X0〉 = cos (φ) + sin (φ)
[
(β1 − β5) sin

(α

2

)
− β1 − β2 − β4 − β5

]
, (49)

〈X1〉 = cos (α + φ) + sin (α + φ)
[
(β1 − β5) sin

(α

2

)
+ β1 + β2 + β4 + β5

]
, (50)

Dm = −β1 + β5 + (β2 − β4) cos
(α

2

)
− π

2
β3 sin

(α

2

)
. (51)

The first thing to note is that there is a lot of over-
parametrization in these expressions. In fact, the first four
models could be fitted by considering only nonzero β1 and
β2 parameters. Moreover, in some of these equations, the
limitations on the measurement statistics can already be con-
firmed. For instance, Eq. (48) cannot exhibit V = 0. However,
understanding the extreme values for D and V is mostly in-
conclusive using these approximations and requires an exact
approach.

As previously stated, calculating complete closed-form
models for these circuits results in exceedingly long and
cumbersome expressions. Instead, we employ numerics to
compute all circuits and derived expressions exactly. The lim-
itations to full particlelike and wavelike statistics imposed by
BCNOT5 become apparent for all the circuits we tested. The
severity of the effect varies with the magnitude of the different
bias ratios, but it starts continuously as soon as there is some
nonzero β j . The only exception occurs for V〈X 〉, in which β3

alone does not deform the function or prevent us from reach-
ing the extremes. We illustrate this with an example in Fig. 8,
which plots visibility and distinguishability obtained with the
different circuits by specifying some arbitrarily chosen values
for the biases.

On the top row, we put together the visibility obtained for
〈X 〉 with the associated distinguishability, as obtained with the
optimal measurement of the detector. As shown, even with
only a little bias present, the interferometer qubit cannot dis-
play V = 0 or 1, and the detector measurement cannot achieve
D = 1. This effect becomes more perceptible as the bias is in-

FIG. 8. Exact visibility and distinguishability plots for the dif-
ferent circuits encoded in Fig. 3, with the CNOT gate replaced by a
BCNOT5 with example bias values. In all of the panels, β1 = 0.06,
β3 = −0.05, β4 = −0.07, and β5 = 0.06. While β2 = 0.09 on the
left-side panels, it is drastically increased to 0.3 on the right-side ones
to emphasize the effect.

creased. Note that D is no longer the actual distinguishability
but what we would think the distinguishability is by using the
O†

α basis measurement. It would be more accurate to name it
D′

m but we keep D to avoid confusion with notation.
On the bottom row of Fig. 8, the visibility of the conditional

interference patterns 〈X0〉 and 〈X1〉, which should ideally be 1,
is plotted. In this case, V ≈ 1 for two α values within the 4π

period, but all other interference patterns clearly have V < 1.
The decrease in visibility as α approaches π from zero is
consistent with the experimental observations in Fig. 7. In
addition, we also plot Dm, which confirms via a different
route that the readout in the Z basis cannot completely erase
two-qubit correlations and produce full wavelike behavior.
Note that the 4π period comes from the range of the input
variables to the gates in Fig. 3, which is 2π .

These consequences to extreme-case statistics are thus in
alignment with our experimental results. Recall that in the op-
timal which-path detection experiments we could not confirm
V = 0 for any value of α, corresponding to full particlelike
dynamics, and in the quantum eraser experiments we could
not obtain full wavelike statistics since we did not observe
constant high V or Dm = 0 for all α. Therefore, biased two-
qubit operations may be a fundamental limitation in realizing
Bohr’s strong formulation of complementarity, and experi-
mental tests should not overlook eventual small systematic
deviations.

V. DISCUSSION AND CONCLUSIONS

In this paper, we set out to test interferometric complemen-
tarity using a superconducting transmon system. To do so, we
proposed a general two-qubit quantum circuit to implement
which-path detection with tunable sensitivity and adjustable
readout basis. This circuit can be executed in any gate-based
quantum computer with a universal gate set, regardless of the
underlying hardware.

We considered four specific choices of the readout ba-
sis and thus introduced four different parametrized circuits,
which were theoretically analyzed. First, we looked at two
circuits in which the detector qubit is measured in the optimal
guess basis. This allows capturing the maximum amount of
the stored which-path information, optimizing the probability
of guessing the correct path through the interferometer inde-
pendently of its readout basis. We measured the interferometer
qubit both in the X and the Z basis. By combining the results
from the two circuits, the duality relation was tested for differ-
ent visibility and distinguishability values, controlled by the
detector sensitivity parameter α.

The other two circuits we studied measure the detector
qubit in the computational basis directly, implementing the
so-called quantum eraser setup. In this case, one expects
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the which-path information to be destroyed at readout of the
detector for any value of α, obtaining a constant and null
measured distinguishability. We have shown that by using the
guidance of the detector to sort the measurement results on the
interferometer, two full-visibility interference patterns should
be recovered, something that is not possible with the optimal
readout.

These circuits were then implemented in an IBM Q quan-
tum system controlled remotely. At a coarse level, we have
found good agreement between the experiments and the the-
ory, which is expected given the low depth of the quantum
circuits. Interestingly, however, some small but persistent sys-
tematic deviations from the theoretical analysis have also been
identified at a finer resolution.

Specifically, there was always some degree of waviness in
the X basis measurements of the interferometer qubit for all
α. This has prevented the observation of complete particlelike
statistics, contrary to what was expected. Similarly, a com-
plete wavelike behavior of the interferometer was not reached
for all α with the quantum eraser circuits. We have found the
visibility of the conditional interference patterns to depend on
α, as well as a residual amount of measured distinguishabil-
ity across the φ and α space, both characters of particlelike
dynamics. This means that we could devise a way to win
the which-path guessing game with a probability greater than
50% even using the quantum eraser setup, provided we can
experiment with the circuit to tune our strategy before we bet.

We were able to relate these deviations between theory and
experiments to coherent errors in single-qubit and CNOT gates.
By properly modeling both types of operations in the physical
circuits, the latter of which is based on the cross-resonance
gate implementation, we have upgraded the theoretical models
and showed these improve data explainability. In doing so, we
have demonstrated that it is very difficult to actually generate
full wavelike and particlelike statistics, since it requires bias-
free two-qubit gates in our circuits.

This understanding raises the question of whether this
limitation is exclusive to our implementation and how can
nonbiased perfect two-qubit entanglers be operated to over-
come it, a pertinent observation given how difficult it appears
to be to precisely obtain maximal entanglement. Confidently
realizing this prediction of quantum theory would allow us
to address Bohr’s strong principle of complementarity and
not only the weaker duality relation in Eq. (2). Of course,
in order to resolve the issue, one must be able to test the
circuits with a level of precision in the measured observables
and resolution in the variable space that can pierce through
very small systematic deviations.

One option to correct the bias without attempting to im-
prove gate calibration would be to customize circuits [69–71].
However, adding circuit depth makes the system more suscep-
tible to incoherent noise, leading to results farther from the
pure state limit. Moreover, our purposes were not to estimate
observables by mixing measurements obtained with differ-
ent circuits or qubit pairs [72], which also trades coherent
for incoherent errors. Therefore, our findings also show that
which-path experiments can be a way to benchmark quantum
hardware.

The which-path experiments discussed here were initially
proposed as gedanken experiments to highlight counter-

intuitive concepts in quantum theory. Their experimental
verification required direct access to sophisticated equipment,
available only to a few groups worldwide. With the advent
of cloud-based quantum computers, our paper provides a way
to remotely test this fundamental principle of quantum me-
chanics in the circuit model language of quantum computing.
The simplicity of the procedure makes it even suitable for
undergraduate quantum-mechanics courses.
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APPENDIX A: THE BIASED-CNOT GATE MODEL

In the following, we derive the biased-CNOT gate used
to model the physical CNOT in the device. Let us start by
considering a ZX interaction Hamiltonian, with propagator
UZX (θ ) = exp(−i θ

2 ZX ). For θ = π/2, it yields

UZX

(π

2

)
= 1√

2

⎡
⎢⎣

1 −i 0 0
−i 1 0 0
0 0 1 i
0 0 i 1

⎤
⎥⎦ ≡ UZX ; π

2
, (A1)

which is locally equivalent to a CNOT and capable of maxi-
mally entangling the product state (|00〉 + |10〉)/

√
2. Even if

we do not know the exact single-qubit rotations that together
with UZX ; π

2
give the CNOT, we can capture them by solving

CNOT = UZX ; π
2
M for M to obtain

M = 1√
2

⎡
⎢⎣

1 i 0 0
i 1 0 0
0 0 −i 1
0 0 1 −i

⎤
⎥⎦, (A2)

obeying [M,UZX ; π
2
] = 0. One way of decomposing M would

be with the S† and Rx(−π/2) single-qubit gates, applied on
the control and target qubits, respectively:

M = S† ⊗ Rx

(
−π

2

)
. (A3)

Ideally, the cross-resonance gate can be used to simulate
an effective UZX (θ ) coupling. It consists in a microwave drive
of the control transmon at the frequency of the target, rotating
the state of the latter depending on the state of the former.
The CR tone has been studied and modeled by an effective
Hamiltonian in the Pauli basis [73,74], and multipulse echo
sequences and cancellation tones were designed to isolate as
much as possible the ZX term. On IBM Q processors, the
echoed CR with a target rotary pulse sequence achieves the
current state-of-the-art performance in reducing the undesired
error terms in the final interaction Hamiltonian [67], given by

Heff = ν̃ZX
ZX

2
+ Herr1 + Herr2 . (A4)
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Here,

Herr1 = ν̃IY
IY

2
+ ν̃IZ

IZ

2
(A5)

contains the error terms produced by the standard CR two-
pulse echo sequence in the two-qubit subspace, and

Herr2 = ν̃IX
IX

2
+ ν̃ZY

ZY

2
+ ν̃ZZ

ZZ

2
(A6)

contains those arising from classical crosstalk from the CR
drive accidentally acting on the target qubit. The error terms
comprising entanglement with spectator qubits are not being
considered.

If Herr1 and Herr2 could be made vanishingly small, we
would implement the perfect entangler in Eq. (A1) with τ =

π
2ν̃ZX

in exp(−iτHeff ). However, when considering the full
Hamiltonian, a systematic deviation arises. We can write the
resulting block-diagonal operator, Ueff; π

2
(B), in terms of five

bias parameters β1 ≡ ν̃IY
ν̃ZX

, β2 ≡ ν̃IZ
ν̃ZX

, β3 ≡ ν̃IX
ν̃ZX

, β4 ≡ ν̃ZY
ν̃ZX

, and

β5 ≡ ν̃ZZ
ν̃ZX

, taken together as B ≡ {β1, β2, β3, β4, β5}. The en-
tries of this 4 × 4 matrix can be compactly encoded by

〈
c′t ′∣∣Ueff; π

2
(B)

∣∣c t
〉 = (c + c′ − 1)2

[
cos

(
γc

π

4

)
(t + t ′ − 1)2

+ sin (γcπ/4)

γc
(i(t+t ′−1)[β2+(−1)cβ5]

− (t + t ′ − 2tt ′){iβ3 + i(−1)c

+ (−1)t ′
β1 + (−1)t ′+cβ4})

]
, (A7)

where c, t, c′, t ′ ∈ {0, 1} and γc is written as in Eq. (46). One
can check that limB→0 Ueff; π

2
(B) = UZX ; π

2
.

We now apply the same local operation, M, to this result
to obtain the physical approximation to the CNOT. However,
because [M,Ueff; π

2
(B)] �= 0, an assumption is required on the

ordering of the operators. If we define BCNOT5 ≡ Ueff; π
2
(B)M,

the result is in Eq. (45).
Now suppose we had chosen the definition BCNOT ′

5 ≡
M Ueff; π

2
(B) instead. We would have obtained the same

operator we get by mapping {β1 → β2, β2 → −β1, β3 →
β3, β4 → β5, β5 → −β4} in BCNOT5. Therefore, while dif-
ferent, the parametrizations of BCNOT ′

5 and BCNOT5 are
connected. This implies that if we use any of these definitions
to obtain models to fit experimental data, both options will
be able to adjust it and only the interpretation of each fit
parameter changes. This suffices for our goal, which is not to
fully characterize each bias individually but only to confirm
the whole set can model the data.

The same applies to the only two other ways of obtaining
the CNOT by combining the target entangler with phase and X
rotation gates:

BCNOT′′
5 ≡ (S† ⊗ 1) · Ueff; π

2
(B) ·

[
1 ⊗ Rx

(
−π

2

)]
, (A8)

BCNOT′′′
5 ≡

[
1 ⊗ Rx

(
−π

2

)]
· Ueff; π

2
(B) · (S† ⊗ 1). (A9)

For the first option, we have BCNOT′′
5 = BCNOT5, while for

the second one we again obtain the same BCNOT5 → BCNOT′′′
5

mapping we got for BCNOT′
5. Therefore, it is also important to

note that these maps from BCNOT5 to BCNOT′
5 and BCNOT′′′

5 do
not mix β j parameters from the different error Hamiltonians
in Eqs. (A5) and (A6). This is helpful if we want to ignore one
of these in the analysis, as it guarantees these four sequences
to arrive at a biased CNOT gate still connected among each
other. Our BCNOT2 model takes Herr2 = 0.

APPENDIX B: FURTHER DETAILS
ON MODEL EVALUATION

As described in Sec. IV, we take different combinations
of ideal and faulty models for the physical gates in Fig. 3 to
compute four models of the output probabilities of each cir-
cuit. We then fit the relevant quantities by allowing parameter
optimization within the fixed bounds |β j | � 0.5, |θk| � π/10,
η ∈ [0.7, 1], |ε| � 0.5. We employ tenfold cross-validation to
assess goodness of fit as well as to find the optimal parameters
by averaging them over the different splits used by the algo-
rithm. Precision errors are given by the standard deviation of
these ten values.

Consider the optimal parameters in the first column of
Table II concerning the models using the ideal CNOT and no
SQGEs. The precision margins in this case are among the best
in the table. This is simply because, being less parametrized,
these models quickly lock to the data and do not allow much
freedom in optimizing the function. However, as seen in Ta-
ble I, they yield the worst goodness of fit measures.

In the next three columns of Table II, with the more com-
plex models, the optimization returned some final parameter
values right at the predefined bounds. Consider the second
column. As explained, these fits are performed using numer-
ical calculations as reference, but in this particular case the
closed-form expressions are simple enough, being given by
Eqs. (40)–(44). Looking at the results in the table, we see that
the parameters with unstable values (underlined) are actually
not present in those expressions. Thus, it is unsurprising the
fit could not optimize them, and these can be ignored.

Now for the third and fourth columns, there are two
overlapping reasons contributing to some unstable parameter
values. The first is the same as before: Some of these error
parameters, though possibly existing in the gates in which
they were introduced, might not reflect in the observables
being measured by different circuits. However, by calculating
the circuit numerically we cannot tell which ones, since all
parameters are included with each gate to obtain the most
general possible output; we do not add the additional layer
of complexity to try to numerically understand which gate
parameters could be dropped for each particular circuit.

The second reason is the fact that, as described in Sec. IV,
the data carry evidence that coherent behavior persists un-
accounted for by the more complex models we considered.
Since these models have more degrees of freedom to optimize
the fit and the data are not entirely compatible with the model,
the parameters adapt in ways that might not reflect the physics
from which they were derived. Nevertheless, it is clear that the
best overall results in terms of goodness of fit as well as less
problematic values for the optimal parameters are obtained
with the models considering SQGEs and the BCNOT5 gate.

Note that, in general, β j and θk parameters shown in differ-
ent rows of Table II need not match because these correspond
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TABLE II. Optimal model parameters obtained with different single- and two-qubit gate models, evaluated by resorting to the ten different
fits used in tenfold cross-validation. Underlined values are unstable cases in which some of the fits returned the value at one of the imposed
bounds, occurring at only one of them in all ten different splits when precision errors indicate zero.

No SQGEs SQGEs

CNOT CNOT BCNOT2 BCNOT5

D

η

ε

θ1

θ2

θ3

θ4

θ5

β1

β2

β3

β4

β5

0.90206 ±0.00011

0.00261 ±0.00009

0.91506 ±0.00453

0.00261 ±0.00011

0.01839 π ±0.06088 π

−0.06065 π ±0.07914 π

0.02689 π ±0.00462 π

0.02604 π ±0.00430 π

0.00037 π ±0.00002 π

0.92386 ±0.00352
0.00240 ±0.00013
0.00471 π ±0.07067 π

−0.04070 π ±0.09111 π

0.02131 π ±0.00151 π

0.02161 π ±0.00174 π

−0.02377 π ±0.00405 π

0.03751 ±0.00629
0.03800 ±0.00628

0.92707 ±0.00238
0.00006 ±0.00147

−0.01176 π ±0.05021 π

−0.06065 π ±0.07914 π

0.01876 π ±0.00183 π

0.01876 π ±0.00183 π

−0.02842 π ±0.00646 π

0.01340 ±0.00759
0.02078 ±0.00539
0.06064 ±0.00880
0.01920 ±0.00587
0.03955 ±0.01229

〈X 〉

η

ε

θ1

θ2

θ3

θ4

θ5

β1

β2

β3

β4

β5

0.92975 ±0.00020

0.03707 ±0.00013

0.93039 ±0.00009

0.03700 ±0.00005

−0.00525 π ±0.00330 π

−0.00573 π ±0.00330 π

0.05396 π ±0.07693 π

0.02049 π ±0.06694 π

−0.00082 π ±0.00004 π

0.94163 ±0.00077

0.03706 ±0.00005

−0.01759 π ±0.00056 π

−0.01707 π ±0.00099 π

0.10000 π ±0.00000 π

−0.01281 π ±0.07203 π

−0.05063 π ±0.00196 π

0.17064 ±0.00658

−0.01194 ±0.00029

0.94054 ±0.00170

0.03706 ±0.00005

−0.00769 π ±0.00142 π

−0.00767 π ±0.00142 π

0.00961 π ±0.01214 π

−0.00520 π ±0.08215 π

−0.00676 π ±0.00396 π

0.10534 ±0.02135

−0.03753 ±0.01307

0.07033 ±0.07038

−0.01431 ±0.01384

−0.03618 ±0.01304

〈X0〉

η

ε

θ1

θ2

θ3

θ4

θ5

β1

β2

β3

β4

β5

0.91745 ±0.00015

0.03394 ±0.00008

0.91740 ±0.00018

0.03360 ±0.00007

−0.00331 π ±0.00002 π

−0.00331 π ±0.00002 π

0.00645 π ±0.09506 π

0.01769 π ±0.07071 π

−0.00331 π ±0.00002 π

0.91900 ±0.00011

0.03356 ±0.00007

0.05805 π ±0.00009 π

0.05805 π ±0.00010 π

0.10000 π ±0.00000 π

−0.01414 π ±0.08456 π

−0.10000 π ±0.00000 π

−0.02477 ±0.00063

−0.05963 ±0.00029

0.94262 ±0.00014

0.03237 ±0.00005

0.00326 π ±0.00171 π

0.00327 π ±0.00172 π

−0.01545 π ±0.02125 π

0.00289 π ±0.09722 π

0.00512 π ±0.00443 π

−0.00394 ±0.02631

−0.02698 ±0.02227

0.23815 ±0.00155

−0.06506 ±0.03454

0.02333 ±0.03759

〈X1〉

η

ε

θ1

θ2

θ3

θ4

θ5

β1

β2

β3

β4

β5

0.93767 ±0.00006

0.03391 ±0.00004

0.93765 ±0.00005

0.03379 ±0.00006

−0.00137 π ±0.00047 π

−0.00116 π ±0.00030 π

−0.02542 π ±0.06461 π

0.00000 π ±0.09982 π

0.00106 π ±0.00030 π

0.93826 ±0.00009

0.03382 ±0.00005

0.05483 π ±0.00050 π

0.05485 π ±0.00047 π

−0.03627 π ±0.00287 π

−0.03084 π ±0.07377 π

0.10000 π ±0.00000 π

−0.00272 ±0.00027

0.04713 ±0.00304

0.94136 ±0.00007

0.03379 ±0.00006

0.00477 π ±0.00164 π

0.00477 π ±0.00164 π

0.01919 π ±0.00582 π

0.04070 π ±0.09111 π

−0.00225 π ±0.00134 π

−0.01068 ±0.00611

0.00853 ±0.00825

0.06933 ±0.00161

0.07775 ±0.01049

−0.02379 ±0.00541
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TABLE II. (Countinued.)

No SQGEs SQGEs

CNOT CNOT BCNOT2 BCNOT5

Dm

η

ε

θ1

θ2

θ3

θ4

θ5

β1

β2

β3

β4

β5

−0.00370 ±0.00004

1.00000 ±0.00000

−0.00370 ±0.00007

0.00425 π ±0.07391 π

−0.02309 π ±0.06652 π

0.03880 π ±0.07545 π

−0.00000 π ±0.00000 π

−0.03308 π ±0.07253 π

0.99999 ±0.00002

0.01448 ±0.00224

−0.01039 π ±0.07781 π

−0.00139 π ±0.08569 π

0.09986 π ±0.00032 π

−0.00591 π ±0.06771 π

−0.03750 π ±0.08945 π

−0.01573 ±0.00234

−0.00364 ±0.00140

0.98819 ±0.03324
−0.32232 ±0.01093

−0.00380 π ±0.06965 π

0.00209 π ±0.07158 π

0.06215 π ±0.04653 π

−0.01688 π ±0.06911 π

−0.09324 π ±0.01471 π

0.12234 ±0.04425
−0.37500 ±0.04456

0.05512 ±0.01691
−0.10399 ±0.04620
−0.39596 ±0.05204

to different experiments, performed with different calibrations
of the device as well as different qubits. However, for the
models of 〈X 〉 and D, as well as 〈X0〉 and 〈X1〉, for which
data were obtained at the same execution time in the device,
it seems some of the β j and θk values in the last column
of Table II are comparable while others are not. This incon-
sistency is in agreement with what we argued before: there
is still some physical effect unaccounted for, which gives
some freedom to the different models to find different optimal
values for the parameters included in the model. Furthermore,

if overparametrization is present, the final models are also
optimizable with different values of the parameters, which
could also explain some differences.

To summarize, we have shown that our models capture
most of the physics of the operations, doing a very good job
at modeling the data in an interpretable manner. However, we
are also sure there is still some small degree of incompleteness
in them, not only because of the remnant lack of fit and
nonuniform distribution of residuals, but also due to some
unstable fit parameters.
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