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Reconstructing the wave function through the momentum weak value
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The wave function is the cornerstone of quantum mechanics, although it is still open to different interpreta-
tions. It has been shown that the amplitude and the phase of a wave function are manifested in the imaginary and
real parts of the momentum weak value, respectively. Based on this, we develop a weak measurement scheme to
reconstruct the wave function through measuring the momentum weak value. A proof-of-principle experiment is
made to confirm the feasibility of our measurement scheme, in which the polarization states and the momentum
of light are coupled. We believe the experimental protocol has the potential to be applied in diverse fields such as
wave-front sensing, edge detection, and optical communication, and measurement of the momentum weak value
may offer valuable insight to better understand quantum mechanics.
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I. INTRODUCTION

The wave function, which can be also recognized as the
quantum state once a representation is chosen, plays a central
part in quantum mechanics. According to the Born rule, the
squared modulus of the wave function just corresponds to
the probability of measuring a particle at a given position (or
momentum). However, since the wave function is complex-
valued, finding an effective way to measure the amplitude and
especially the phase is crucial to capturing the entire informa-
tion of the wave function. Vogel and Risken showed that the
Wigner function can be uniquely determined by tomographic
inversion of a large discrete set of measured probability
distributions [1]. This method is known as quantum state
tomography [2,3]. By performing a Fourier transform on the
Wigner function, one can obtain the elements of the density
matrix. However, for the ambition of measuring the wave
function, quantum state tomography is quite indirect.

Based on the theory of weak measurement, Lundeen et al.
proposed a scheme in which they can measure the wave
function directly [4]. The key element is a sliver that can
introduce a weak phase shift in a particular position state
where the sliver locates. Although their measurement scheme
is ingenious and implementable, there remain two technical
problems. An ideal “point filter” is required to be placed in
the Fourier transform plane, which brings a lot of difficulties
in practice. Because a filter always occupies a certain area,
one has to minimize the filter’s size as much as possible to
reduce the experimental error. The smaller the filter’s size is,
the smaller the probability of a successful detection by the
apparatus is, and so the lower the efficiency of measurement
is. Moreover, only when the position space is scanned all over,
can the entire wave function be obtained. In order to solve
these problems, Shi et al. came up with a scheme in which
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they introduced a weak phase shift in only one momentum
state instead of the position states, so that a scan-free mea-
surement can be achieved [5]. Furthermore, since there is no
need for a “point filter” to filter out the photons with transver-
sal momentum equal to zero, the efficiency of measurement
can be improved a lot. However, a weak phase modulation
imposed in only one momentum state is indeed impractical,
and due to the periodicity of the sine or cosine function, their
scheme may lose its validity in the case where the phase of
the wave function is not restricted in the range [0, 2π ). On the
other hand, in notable research, Vallone and Dequal argued
that strong measurement gives a better estimation of the wave
function [6]. In fact, the only difference of strong and weak
measurements is found in the value of the phase shift being
weak or π/2. Therefore, the follow-up studies in Refs. [7–10]
were still based on the measurement schemes which were
originally proposed by Lundeen et al. [4] and Shi et al. [5].

Here we develop a different measurement scheme to recon-
struct the wave function through the momentum weak value,
in which manipulations to only one position or momentum
state are no longer required. Then we use a proof-of-principle
experiment that is scan-free and diffraction-free to confirm the
feasibility of this measurement scheme. A comparison of the
two measurement schemes which are respectively proposed
by Shi et al. and this work is made, indicating that our scheme
may prevail in the case where the range of phase is not known
beforehand.

This work is organized as follows. In Sec. II, we propose
the measurement scheme. In Sec. III, a practical experimental
protocol is implemented. In Sec. IV, we make a comparison
of the two measurement schemes. Finally a brief conclusion
and some discussion are presented in Sec. V.

II. MEASUREMENT SCHEME

Let us consider a pre- and postselected measurement
scheme, in which the system is chosen in the state |ψi〉 and
the probe is in |φ〉, respectively. The unitary transformation,
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which couples the system and probe, takes the following form
[11,12]:

U = exp(−iγ Â ⊗ p̂), (1)

where γ is defined as the coupling strength, Â denotes the
operator corresponding to the measurable quantity A of the
system, and p̂ denotes the operator representing the momen-
tum p of the probe. If a two-state system is referred to, Â is
usually chosen as one of the Pauli operators. If we assume
that γ is sufficiently weak (a more detailed discussion about
how weak γ should be can be found in Ref. [13]), the unitary
transformation can be expanded and held up to the first-order
term only, namely,

U � 1 − iγ Â ⊗ p̂. (2)

Finally, pre- and postselected measurements are accomplished
by a projection at the states |ψ f 〉 and |x〉. Hence, the probabil-
ity distribution function of a successful measurement in the
position space is given by

�(x) = |〈x|〈ψ f |U |ψi〉 ⊗ |φ〉|2

� |〈ψ f |ψi〉φ(x)(1 − iγ Aw pw )|2, (3)

where Aw = 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 is defined as the system weak value, and

pw = 〈x| p̂|φ〉
〈x|φ〉 = −i 1

φ(x)
∂φ(x)

∂x is defined as the momentum weak
value (here we call pw the momentum weak value for the pur-
pose of being consistent with previous studies, although “the
probe weak value” may be a more appropriate name). With
respect to Aw, |ψi〉 and |ψ f 〉 are the pre- and postselections,
while for pw, |φ〉 and |x〉 play the role of pre- and postselec-
tions. It can be noted that the complex-valued pw carries all
the information of the probe wave function, which offers the
possibility of reconstructing the wave function through pw.
Because |φ〉 is to be measured, the pre- and postselections
refer in particular to |ψi〉 and |ψ f 〉 in the following.

Since |φ(x)|2 can be readily obtained by a direct mea-
surement of the probability distribution of the wave function
and 〈ψ f |ψi〉 is totally determined by the pre- and postse-
lections, the product |〈ψ f |ψi〉φ(x)|2 in the second line of
Eq. (3) may be considered independent of the reconstruction
of the wave function. Then the term unity can be regarded
as the background. We can note that Aw can be arbitrarily
large by making the pre- and postselections nearly orthogonal,
i.e., 〈ψ f |ψi〉 → 0. Therefore, although γ is weak, the term
−iγ Aw pw can still stand out from the background. This kind
of technique is known as weak value amplification. Nearly
orthogonal pre- and postselections also lead to an additional
reduction of probability, so that practical limitations including
noise and saturation of detection can be overcome [14].

For later convenience, let us write the wave function in the
form φ(x) = a(x) exp[ib(x)], with a(x) being the amplitude
and b(x) being the phase. It follows immediately that

Re{pw} = ∂b(x)

∂x
and Im{pw} = −∂lna(x)

∂x
, (4)

which indicates that the information of the phase and am-
plitude are contained in the real and imaginary parts of pw,
respectively. Now taking the explicit expression of pw into

account, Eq. (3) becomes

�(x) =
∣∣∣∣〈ψ f |ψi〉a(x)

[
1 − γ Aw

∂ ln a(x)

∂x
− iγ Aw

∂b(x)

∂x

]∣∣∣∣
2

.

(5)

It can be noted from Eq. (5) that the information of the phase
and the information of the amplitude are mixed and then mani-
fested in the probability distribution �(x). Therefore, seeking
an effective way to separate the phase and the amplitude is
crucial in reconstructing the wave function.

For the particular case where 〈ψ f |ψi〉 = 0, which implies
that the pre- and postselections are orthogonal, and b(x)
is constant, which implies that the phase is uniformly dis-
tributed, Eq. (5) yields

�(x) = |〈ψ f |Â|ψi〉|2
[
γ

∂a(x)

∂x

]2

, (6)

indicating a linear relation between the probability distribu-
tion and the square of the derivative of the amplitude. On
the other hand, when 〈ψ f |ψi〉 = 0 and a(x) is uniformly dis-
tributed, it can be given similarly that

�(x) = |〈ψ f |Â|ψi〉|2
[
γ a

∂b(x)

∂x

]2

. (7)

Taking advantage of Eqs. (6) and (7), methods for edge
detection and phase measurement have been developed, in
which the spin-orbit interaction of light has been utilized to
build a coupling between spatial and polarization degrees of
freedom [15–23]. However, it can be noted that the sign of the
derivatives of the amplitude and phase cannot be determined
by measuring the probability distribution function. Therefore,
Eqs. (6) and (7) can be applied very well in edge detection. But
for reconstructing the wave function, they are not sufficient.
To solve this problem, Zhu et al. found that, by observing the
change after introducing a constant bias, the sign of ∂b(x)/∂x
in Eq. (7) can be determined [18]. However, it requires that the
intensity of the bias to be at the same order as a × ∂b(x)/∂x.
Then not only can the information of phase can be manifested
but also the correct sign can be decided in the mean time. Thus
the magnitude of a × ∂b(x)/∂x should be a priori in practice.
Another problem arises in that introducing a bias introduces
more or less experimental errors.

Based on Eq. (5), we next develop a measurement scheme
in which the information of the amplitude and the information
of the phase can be naturally separated without bringing in any
other auxiliary experimental setup. First of all, consider that
the pre- and postselections are chosen appropriately such that
|〈ψ f |ψi〉|2 remains an unchanged value, say μ. This condition
may seem to be very strict. However, we show that it can be
readily satisfied in our proof-of-principle experiment. Then
we make the value of Aw take ν, −ν, iν, and −iν, with ν being
purely real, respectively. So the corresponding four probabil-
ity distribution functions are obtained, which may be denoted
as �1(x), �2(x), �3(x), and �4(x). Through straightforward
calculation, it can found that

�1(x) − �2(x) = 4μγ ν|φ(x)|2Im{pw}

= −2μγ ν
∂a2(x)

∂x
(8)
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and

�3(x) − �4(x) = 4μγ ν|φ(x)|2Re{pw}

= 4μγ νa2(x)
∂b(x)

∂x
. (9)

Unlike Eq. (6), Eq. (8) presents a linear relation between
the probability difference and the derivative of the square of
the amplitude. The sign of ∂a2(x)/∂x is automatically deter-
mined by two measurements of the probability distribution.
It is also worth noting that Eq. (6) only applies for the case
where the phase is uniformly distributed. However, Eq. (8)
has been derived regardless of the phase distribution, so that
a pure measurement of the derivative of the amplitude can
be realized. Since a2(x) is just the probability distribution
without pre- and postselections, it can be measured directly.
So, actually measurements guided by Eq. (8) are not neces-
sary in reconstructing the wave function; nevertheless, it may
have important applications in fields such as edge detection
and optical computing. The amplitude a(x) can be obtained
immediately once the distribution a2(x) is given.

Equation (9) shows that the information of the amplitude
and the information of the phase are together manifested in
the probability difference. This is understandable, since only
when the amplitude is not zero can the definition of the phase
makes sense. However, as stated in the previous paragraph,
a2(x) can be measured directly. Therefore, the information of
the phase can readily be separated from that of the amplitude.
It can be also noted that if we replace b(x) with b(x) + b0,
where b0 is a constant, Eq. (9) remains invariant. This invari-
ance corresponds to the fact that the probability is symmetric
under a U(1) transformation imposed on the wave function.
Henceforth, there must be some boundary conditions if we
are pursuing a definite phase distribution.

When we refer to the wave function in one dimension, b(x)
can be derived by a simple integral calculation once ∂b(x)/∂x
is obtained. The constant term brought by the integral can be
determined by the boundary conditions that

lim
x→±∞ b(x) = 0. (10)

For the two-dimensional wave function, in addition to
∂b(x, y)/∂x, the derivative with respect to the y direction, say
∂b(x, y)/∂y, is also required. Then, by utilizing the Fourier
reconstruction algorithm, the phase distribution can be given
by (see Appendix A)

b(x, y) = F−1

{
F

[
∂b(x, y)

∂x
+ i

∂b(x, y)

∂y

]
/(ipx − py)

}
,

(11)

where px and py denote momenta corresponding to x and
y, and F and F−1 represent the Fourier and inverse Fourier
transforms, respectively. When Eq. (11) is applied, it has
already been implied that there hold the boundary conditions
that

lim
x,y→±∞ b(x, y) = 0. (12)

Consequently, because a2(x) can be measured directly and
∂b(x)/∂x can be obtained by two measurements guided by
Eq. (9), the wave function can be reconstructed. We note

that the measurement scheme presented here has already been
applied, in part, in work by Yang et al., in which a birefringent
crystal coupled the polarization states and the momentum
[24]. However, they did not notice that the momentum weak
value is actually complex-valued. Furthermore, diffraction of
light in the pre- and postselected measurements was not taken
into account. As a result, the wave functions reconstructed
were not completely accurate.

III. PROOF-OF-PRINCIPLE EXPERIMENT

In order to implement the measurement scheme given
in Sec. II, a proof-of-principle experiment to reconstruct a
photonic wave function is made, the schematic diagram of
which is depicted in Fig. 1. A monochromatic light beam
with a wavelength of λ = 632.8 nm is generated by a He-Ne
laser. Then the light beam is expanded by a telescope system
consisting of lenses 1 and 2. Afterwards, in the 4f imaging
system between lenses 3 and 4, the pre- and postselected
measurements are performed. In the end, the beam profiler
(BP) placed in the back focal plane of lens 4 detects the
intensity distribution which corresponds to the wave function
φ(x, y) of photons in the front focal plane of lens 3.

In the pre- and postselected measurements, the first polar-
izer (P1) with the polarization direction set at π/4 preselects
photons in the state

|ψi〉 = 1√
2

(|H〉 + |V 〉), (13)

where |H〉 and |V 〉 denote the horizontal and vertical polar-
ization states, respectively. The Wollaston prism (WP) that is
placed in the confocal plane couples the Pauli operator

Â = |H〉〈H | − |V 〉〈V | (14)

and the momentum (see Appendix B). The coupling strength
can be adjusted by changing the length-width ratio of the
WP or the incident angle of the light beam on the WP. As
shown in Fig. 1, the WP can be rotated to achieve a directional
conversion of the momentum to be coupled. Then a quarter
wave plate (QWP) together with the second polarizer (P2)
postselect photons in the state [25]

|ψ f 〉 = 1√
2

[exp(−iε)|H〉 − exp(iε)|V 〉], (15)

with ε being the angle at which the polarization direction of P2
deviates from −π/4. So it can be obtained immediately that
μ = sin2 ε and Aw = −i cot ε. By rotating the angle to ±ε,
respectively, a reconstruction of the phase which is indicated
by Eq. (9) can be realized. It should be noted that the 4f
imaging system guarantees what the BP detects is exactly
corresponding to φ(x, y). In other words, our experimental
protocol is diffraction-free.

We first characterize photons with a Gaussian distribution
in the transverse position space. When we make the polariza-
tion directions of P1 and P2 parallel to each other, it turns
out that ε = π/2 and so Aw = 0. Under this circumstance,
a2(x, y) can be directly read out in the BP according to Eq. (5).
The distribution of a2(x, y) is shown in Fig. 2(a). Since in this
work what we care about most is the distribution instead of
the absolutely accurate values of a(x, y) and b(x, y), all figures
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Laser

Lens 1 Lens 2

Pinhole
Phase plate

Lens 3
Lens 4

P1 WP
P2

QWP

BP

FIG. 1. Experimental implementation of the photonic wave-function reconstruction. The laser generates a monochromatic Gaussian-
distributed light beam. Lenses 1 and 2 form a telescope system, in the confocal plane of which a pinhole can be plugged in to generate a
wave whose amplitude is approximately uniform. Lenses 3 and 4 construct a 4f system, in which weak measurement is performed. Polarizer 1
(P1) plays the role of the preselection. A quarter wave plate (QWP) and the other polarizer, polarizer 2 (P2), postselect the polarization system.
A Wollaston prism (WP) builds a coupling between the momentum and the polarization degrees of freedom. A beam profiler (BP) detects the
intensity distribution.

about distribution will be normalized first and then presented
henceforth. After the polarization direction of P2 being rotated
to be perpendicular to P1’s, measurements of the phase get
started. We fine-tune the value of ε to take ±0.05 rad, so
that the distribution functions �3(x, y) and �4(x, y) can be
obtained. The difference of �3(x, y) and �4(x, y) is presented
in Fig. 2(b). As a result, b(x, y) can be reconstructed, which
is given in Fig. 2(c). For a better visual presentation, here
we plot −b(x, y) instead of b(x, y). It can be seen that the
phase distribution, especially the parts of the edge, is not very
symmetric. The reason may be twofold: First, the Gaussian
beam generated is not perfectly symmetric. Second, an optical
system is always diffraction-limited in practice.

In order to verify the correctness of our reconstructed
phase, we plot the distribution of ∂b(x, 0)/∂x in Fig. 2(d).
Since under the paraxial assumption, the surfaces of the

FIG. 2. Experimental results of the Gaussian-distributed pho-
tons. (a) The probability distribution a2(x, y). (b) The distribution
a2(x, y) ∂b(x,y)

∂x about the amplitude and the phase, which is obtained
by calculating the difference of �3(x, y) and �4(x, y). (c) The recon-
structed phase distribution −b(x, y). (d) ∂b(x,0)

∂x in a function of x. The
red curve corresponds to the experimental results, and the blue dotted
line corresponds to the fitting line.

constant phase of a Gaussian beam can be approximately
considered spherical, the phase distribution in the front focal
plane of lens 3 may be given by [26]

b(x, y) � 2π

λ

(
z0 + x2 + y2

2z0

)
, (16)

where z0 is the distance from the waist to the focal plane. So
it follows at once the relation ∂b(x, 0)/∂x ∝ x. The linearly
fitting line is plotted in Fig. 2(d) as well. We can see that
the fitting line does not match perfectly well with the exper-
imental results for the case where x > 0. Nevertheless, since
the coefficient of determination R2 = 0.9918, which is very
closed to unity, the reconstructed phase is convincing to be
considered correct.

Compared to the phase, measuring the amplitude is rather
trivial. Hence, by inserting a pinhole in the confocal plane of
lenses 1 and 2, we generate a light beam whose amplitude is
approximately uniform to reconstruct a phase-only distribu-
tion placed in the front focal plane of lens 3. The pattern of
the transmission-type phase plate is a four-leaf clover, which
is manufactured by covering a cloverlike mask on a quartz
substrate and then coating the other parts of the substrate
with SiO2. The depth of the concave clover is about 500 nm.
We plot ∂b(x, y)/∂x and ∂b(x, y)/∂y in Figs. 3(a) and 3(b),
respectively. It can be seen that, in the light spot, the parts
apart from the edges of the clover are not all equal to zero.
This is because even after being filtered by a pinhole, the
phase distribution of photons is not uniform, which can be
confirmed by the phase distribution reconstructed without the
cloverlike phase plate shown in Fig. 3(c). Finally, the phase
distribution with the clover is presented in Fig. 3(d). For better
visual presentations, we also plot −b(x, y) instead of b(x, y).

IV. COMPARISON OF THE TWO MEASUREMENT
SCHEMES

In this section, we theoretically compare the measurement
scheme proposed by Shi et al. [5] with the one presented
in Sec. II. For an intuitive understanding, we also consider
reconstructing the photonic wave function.

Suppose an evolution exp(−iαÂ) ∈ SU(2) is implemented
in the state |p0〉, where exp(−iαÂ) indicates a rotation about
the axis Â by an angle 2α. If we take Â = |H〉〈H | − |V 〉〈V |,
then exp(−iαÂ) induces a phase difference of 2α between
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FIG. 3. Experimental results of the cloverlike phase-only-
distributed photons. (a) The derivative of the phase with respect to x,
∂b(x,y)

∂x . (b) The derivative of the phase with respect to y, ∂b(x,y)
∂y . (c) The

reconstructed phase distribution without the cloverlike phase plate.
(d) The reconstructed phase distribution with the cloverlike phase
plate, −b(x, y).

the polarization states |H〉 and |V 〉. For other states |pk〉 with
the index k running all over the momentum space except for
k = 0, no evolution is implemented. In this case, the unitary
transformation is given by

Us = exp(−iαÂ) ⊗ |p0〉〈p0| +
∑
k �=0

|pk〉〈pk|

=
[

1 +
∞∑

n=1

1

n!
(−iαÂ)n

]
⊗ |p0〉〈p0| +

∑
k �=0

|pk〉〈pk|

= 1 +
∞∑

n=1

1

n!
(−iαÂ)n ⊗ |p0〉〈p0|

= exp(−iαÂ ⊗ |p0〉〈p0|), (17)

where in the second line we have applied the Taylor formula,
and in the third line the completeness relation

∑
k |pk〉〈pk| =

1 has been used. Us is equivalent to the unitary transformation
adopted by Shi et al. [5], which couples the Pauli operator of
polarization and the zero-momentum state.

On the other hand, let us consider a case where an evo-
lution exp(−iβ p̂) is implemented on the state |H〉 while the
other evolution exp(iβ p̂) is implemented on |V 〉. We note
that exp(−iβ p̂) is the so-called displacement operator, whose
function can be manifested in the following relation:

〈x| exp(−iβ p̂)|φ〉 = φ(x − β ). (18)

So, exp(−iβ p̂) acts on every position state instead of on one
particular position state. In this case, the unitary transforma-

tion is given by

Uz = exp(−iβ p̂) ⊗ |H〉〈H | + exp(iβ p̂) ⊗ |V 〉〈V |

=
∞∑

n=0

1

n!
(−iβ p̂)n ⊗ (|H〉〈H | + (−1)n|V 〉〈V |)

= exp(−iβÂ ⊗ p̂), (19)

where the relation Â2n = 1 has been implied in the third line.
Uz is just the unitary transformation adopted in Sec. II, which
couples the Pauli operator and the momentum.

Therefore, the essential difference between the two mea-
surement schemes is the evolution. exp(−iαÂ) acts on the
zero-momentum state |p0〉, which is actually impossible to
realize in practice. Shi et al. [5] took an area of 2-by-2 pixels
of a Spatial Light Modulator (SLM) as |p0〉〈p0| in an approxi-
mate way. There is no doubt that exp(−iαÂ) ⊗ |p0〉〈p0| can be
realized as much as possible with the size of each pixel getting
smaller, which is, however, technically difficult to achieve. As
for our scheme, exp(−iβ p̂) acts on the polarization state |H〉
while exp(iβ p̂) acts on |V 〉, which can be readily realized by
a birefringent crystal without any compromise in technique.

If α is sufficiently weak such that exp(−iαÂ) can be ex-
panded and held up to the first-order term only, then the
zero-momentum-state weak value can be naturally defined by

〈πp0〉w = 〈x|p0〉〈p0|φ〉
〈x|φ〉 = c

φ(x)
, (20)

where c is a constant that can be determined through normal-
ization. Since c is complex-valued, we further write c = c1 +
ic2 henceforth. Taking φ(x) = a(x) exp[ib(x)] into account, it
follows at once that

Re{〈πp0〉w} = c1
cos[b(x)]

a(x)
+ c2

sin[b(x)]

a(x)
,

Im{〈πp0〉w} = c2
cos[b(x)]

a(x)
− c1

sin[b(x)]

a(x)
. (21)

The momentum weak value pw has already been given by
Eq. (4). Different from the case of pw, the information of
the phase and the information of the amplitude are contained
in both the real and imaginary parts of 〈πp0〉w. Each of
Re{〈πp0〉w} and Im{〈πp0〉w} can be obtained by two corre-
sponding measurements [5].

Assume that a(x) is constant and difficulties brought by the
Fourier reconstruction algorithm are disregarded for simplic-
ity. We can consider cos[b(x)] and sin[b(x)] as two quantities
which can be obtained by Eq. (21). Then tan[b(x)] can be
calculated to uniquely determine b(x), since tan[b(x)] is bi-
jective when b(x) ∈ [0, 2π ). For the case where b(x) is not
restricted in [0, 2π ), b(x) cannot be settled unless some other
technical methods, such as the phase unwrapping algorithm,
are introduced. For reconstructing a one-dimensional phase
distribution through Re{pw}, two measurements are already
sufficient. For the two-dimensional case, four measurements
are also required. However, there will be no restriction to the
range of b(x). Hence, if we refer to a wave function with
the range of phase completely unknown, making use of pw

to reconstruct it can prevail over the case where 〈πp0〉w is
applied.
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V. CONCLUSION AND DISCUSSION

In conclusion, the information of the phase and the infor-
mation of the amplitude of a wave function are contained in
the real and imaginary parts of the momentum weak value,
respectively. Thus we have proposed a weak measurement
scheme to separate the phase and the amplitude from the prob-
ability distribution functions. Then, with the principle that the
amplitude distribution can be measured directly and the phase
distribution can be recovered by the Fourier reconstruction
algorithm, the wave function can be reconstructed. In order
to show the feasibility of the measurement scheme, we have
made a proof-of-principle experiment. At last, a comparison
of our measurement scheme and the one proposed by Shi
et al. [5] has been made, in which we have found that our
measurement scheme may be preferable in the case where the
range of phase is unknown.

Since optical experiments can be implemented well and
photons can be readily prepared in the same quantum state,
we have chosen to reconstruct the photonic wave function.
However, it should be noted that the wave function of other
kinds of particles, such as neutrons, can be also measured
by this method, although this may be beyond the reach of
current technology. Taking a beam of neutrons, for example,
a coupling between the Pauli operator of spin and the position
can be built by imposing a slowly varying magnetic field
[11], which offers the possibility to realize the wave function
reconstruction of neutrons.

We also notice that the momentum weak value, combined
with the introduction of a global random variable, can define
the epistemically restricted phase-space (ERPS) distribution
[27]. The real and imaginary parts of the momentum weak
value correspond to the position-dependent average and vari-
ance of the epistemically restricted momentum fluctuation,
respectively. We may consider that the randomness in each
quantum measurement is due to the random fluctuation of the
epistemically restricted momentum. Therefore, our measure-
ment scheme provides a realistic way to obtain the restricted
momentum field and study the ERPS representation.
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APPENDIX A: FOURIER RECONSTRUCTION
ALGORITHM

For a real and normalized distribution function f (x, y)
which is square-integrable on (−∞,+∞), we have

∫∫ +∞

−∞
dxdy f (x, y) = 1. (A1)

And f (x, y) should satisfy the boundary conditions

lim
x,y→±∞ f (x, y) = 0. (A2)

On this basis, we introduce the following equation:∫∫ +∞

−∞
dxdy

∂

∂x
f (x, y)e−i(xpx+ypy )

=
∫∫ +∞

−∞
dxdy

[
f (x, y)

∂x
− ipx f (x, y)

]
e−i(xpx+ypy ). (A3)

According to the boundary conditions above, the left-hand
side of Eq. (A3) should be zero. So, it follows that

ipxF[ f (x, y)] = F
[
∂ f (x, y)

∂x

]
, (A4)

where F denotes the two-dimensional Fourier transform. Up
to this point, one may conclude that

f (x, y) = F−1

{
F

[
∂ f (x, y)

∂x

/
ipx

]}
. (A5)

However, since in numerical computation F[ ∂ f (x,y)
∂x ] usually

cannot be zero where px is equal to zero, px = 0 will behave
like a “singular line.” Therefore, we can introduce another
equation:

−pyF[ f (x, y)] = F
[

i
∂ f (x, y)

∂y

]
. (A6)

Combing Eqs. (A4) and (A6), it can be concluded that

f (x, y) = F−1

{
F

[
∂ f (x, y)

∂x
+ i

∂ f (x, y)

∂y

]
/(ipx − py)

}
,

(A7)

which is just the Fourier reconstruction algorithm used in this
work. Now it can be noted that there is only one singularity
where px = 0 and py = 0. By setting a high-pass filter before
the inverse Fourier transform, the problem caused by the sin-
gularity can be solved.

APPENDIX B: HOW DOES THE WOLLASTON PRISM
CONSTRUCT THE COUPLING?

First of all, we need to be clear about one thing, that at the
waist of a Gaussian beam, the wave front becomes a plane.
The functional diagram of the Wollaston prism (WP) is given
in Fig. 4. It can be readily derived from Snell’s law that

no sin θ = ne sin(θ + α1),

ne sin θ = no sin(θ − α2),
(B1)

where no and ne denote the refractive indices of the so-called
ordinary light (O-light) and extraordinary light (E-light), re-
spectively. Then the solutions are given by

α1 = arcsin

(
no

ne
sin θ

)
− θ,

α2 = θ − arcsin

(
ne

no
sin θ

)
. (B2)

The distance of the O-light and E-light emergent is given by

δx = h(tan α1 + tan α2). (B3)

The length of the WP is so tiny that δx can be considered as
a second-order small value and then be neglected. Applying
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FIG. 4. The functional diagram of the Wollaston prism.

Snell’s law again, the following emergent angles can be ob-
tained:

β1 = arcsin[tan θ (no − ne cos α1)],

β2 = arcsin[tan θ (no cos α2 − ne)]. (B4)

Since θ is made sufficiently small, α1 and α2 can be consid-
ered small as well. It finally turns out that

γ ≡ β1 ≈ β2 ≈ arcsin[tan θ (no − ne)]. (B5)

Recalling that at the waist we can consider there is a transfor-
mation from the position space to the momentum space. Thus
the wave function of the O-light and E-light emergent reads
exp(−iγ px ) ⊗ |H〉〈H | + exp(iγ px ) ⊗ |V 〉〈V |, which can be
written symbolically as

U = exp(−iγ Â ⊗ p̂x ), (B6)

with Â = |H〉〈H | − |V 〉〈V |.
If the light beam is not incident perpendicularly, it can be

readily found that γ will be also dependent on the incident
angle.

The phase difference between the O-light and the E-light,
which is denoted as ϕ, can be given by

ϕ = 2π

λ
[(ne − no)ab + (nobc − nebd )], (B7)

where ab is the length between points a and b, etc. The
effect of this phase difference can be described by a unitary
transformation:

Uph = exp(−iϕÂ/2). (B8)

We can put Uph and the postselection |ψ f 〉 together to form a
new postselection as follows:

U †
ph|ψ f 〉 = 1√

2

[
e−i(ε− ϕ

2 )|H〉 − ei(ε− ϕ

2 )|V 〉]. (B9)

In the experiment, we found that ϕ can range from 0 to 2π

by choosing different incident points on the WP. So, before
the measurement of the wave function, a particular incident
point was set, in which ϕ = 0.
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